CONSTRUCTIONS OF BETA ELEMENTS OF STABLE HOMOTOPY OF SPHERES

KATSUMI SHIMOMURA

Let p be a prime number p greater than three. We work in the stable homotopy category $\mathcal{S}_{(p)}$ of spectra localized at the prime p. Consider the Adams-Novikov spectral sequence converging to the stable homotopy groups $\pi_*(S^0)$ of spheres with E_2 -term

$$E_2^{s,t} = \operatorname{Ext}_{BP_*(BP)}^{s,t}(BP_*, BP_*)$$

where BP denotes the Brown-Peterson spectrum. In [1], Miller, Ravenel and Wilson defined the generalized Greek letter elements in the E_2 -term. In particular, we have the beta elements.

Theorem 1 ([1, Th. 2.6]). There are generators

$$\beta_{sp^n/j,i+1} \in E_2^{2,(sp^n(p+1)-j)q} \quad (q=2p-2)$$

of order p^{i+1} for $n \ge 0$, $p \nmid s \ge 1$, $j \ge 1$, $i \ge 0$ subject to

 $\begin{array}{ll} 1) & j \leq p^n \ if \ s = 1, \\ 2) & p^i \ | \ j \leq p^{n-i} + p^{n-i-1} - 1, \\ \end{array} \ and$

3) $a_{n-i-1} < j \text{ if } p^{i+1} \mid j.$

We abbreviate $\beta_{s/t,1}$ and $\beta_{s/1,1}$ to $\beta_{s/t}$ and β_s .

It is an interesting problem which of them survives in the spectral sequence. So far, the following elements are known to be permanent cycles:

- a) β_s for $s \ge 1$ in [12],
- b) $\beta_{sp/t}$ for $s \ge 1$ and $t \le p$, and t < p if s = 1 in [2], [3],
- c) $\beta_{sp^2/t}$ for $s \ge 1$ and $t \le 2p$, and $t \le 2p 2$ if s = 1 in [2], [4],
- d) $\beta_{sp^2/t}$ for $s \ge 1$ and $t \le p^2 2$ in [11],
- e) $\beta_{sp^n/t}$ for $s \ge 1$, $n \ge 3$, $1 \le t \le 2^{n-2}p$, and $t \le 2^{n-2}(p-1)$ if s = 1, in [6], [7],
- f) $\beta_{sp^2/p,2}$ for $s \ge 2$ in [4], and
- g) $\beta_{sp^n/up,2}$ for $s \ge 1$, $n \ge 3$, $1 \le u \le 2^{n-2}$, and $up \le 2^{n-2}(p-1)$ if s = 1, in [6], [7].

Furthermore, Ravenel showed that β_{p^n/p^n} cannot be a permanent cycle for $n \ge 1$ (cf. [9, 6.4.2. Th.]). Thus, the beta elements $\beta_{sp^n/t}$ for $2^{n-2}p < t \le p^n + p^{n-1} - 1$ and $t < p^n$ if s = 1 are left undetermined.

Consider the subsets of the E_2 -term:

Let K_u denotes the cofiber of $\alpha^u \colon \Sigma^{uq} M \to M$ for the mod p Moore spectrum M and the Adams map α . Then, $BP_*(K_u) = BP_*/(p, v_1^u)$, and we consider an element $f_{s,u} \in \pi_*(K_u)$ such that $BP_*(f_{s,u}) = v_2^s \in BP_*(K_u)$.

KATSUMI SHIMOMURA

Theorem 2 ((Oka [6], [7]). If $f_{s,u} \in \pi_*(K_u)$ exists, then every element of $\mathfrak{B}_{Oka}(s, u)$ survives to $\pi_*(S)$.

We here consider the subsets:

We further consider the cofiber W of the beta element $\beta_1 \in \pi_{pq-2}(S^0)$, and an element $f_{p^i,u} \in \pi_*(W \wedge K_u)$ such that $BP_*(f_{s,u}) = v_2^s \in BP_*(W \wedge K_u)$. Then, we have a similar theorem.

Theorem 3. If $f_{p^i,u} \in \pi_*(W \wedge K_u)$ exists, then every element of $\mathfrak{B}(p^i, u)$ survives to $\pi_*(S)$.

In [11, Th. 1.7], we showed the existence of $f_{p^2,p^2} \in \pi_*(W \wedge K_{p^2})$ for p > 5, though there does not exist $f_{p^2,p^2} \in \pi_*(K_{p^2})$ shown by Ravenel.

Corollary 4. Let p > 5. Then, $\mathfrak{B}(p^2, p^2)$ yields a beta family of $\pi_*(S)$.

In other words, we have following beta elements generating subgroups of $\pi_*(S)$:

- e') $\beta_{sp^n/t}$ for $s \ge 1, n \ge 2, 1 \le t \le 2^{n-2}p^2 2$, and
- g') $\beta_{sp^n/up,2}$ for $s \ge 1, n \ge 3, 1 \le u \le 2^{n-3}p 1$.

This improves Oka's results if the prime number p is greater than five.

References

- H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469–516.
- 2. S. Oka, A new family in the stable homotopy groups of sphere I, Hiroshima Math. J. **5** (1975), 87–114.
- S. Oka, A new family in the stable homotopy groups of sphere II, Hiroshima Math. J. 6 (1976), 331–342.
- S. Oka, Realizing some cyclic BP_{*}-modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977), 427–447.
- 5. S. Oka, Ring spectra with few cells, Japan. J. Math. 5 (1979), 81–100.
- S. Oka, Small ring spectra and *p*-rank of the stable homotopy of spheres, Contemp. Math. 19 (1983), 267-308.
- S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic topology, Proc. Conf., Aarhus 1982, Lect. Notes Math. 1051 (1984), 418-441.
- S. Oka, Derivations in ring spectra and higher torsions in Coker J, Mem. Fac. Sci., Kyushu Univ. 38 (1984), 23–46.
- D. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Second edition, AMS Chelsea Publishing, Providence, 2004.
- K. Shimomura, Note on beta elements in homotopy, and an application to the prime three case, Proc. Amer. Math. Soc. 138 (2010), 1495–1499.
- K. Shimomura, The beta elements β_{tp²/r} in the homotopy of spheres, Algebraic and Geometric Topology 10 (2010) 2079–2090.
- 12. L. Smith, On realizing complex bordism modules, Amer. J. Math. 92 (1970), 793-856.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan

E-mail address: katsumi@kochi-u.ac.jp

2