ON LUSTERNIK-SCHNIRELMANN CATEGORY OF SO(10) N. IWASE, K. KIKUCHI AND T. MIYAUCHI

Abstract: Let G be a compact connected Lie group and $p: E \to \Sigma A$ a principal G-bundle whose characteristic map is denoted by $\alpha: A \to G$. We assume that $clA \leq 1$ and $clG \leq m$: let $A = \Sigma A_0$ for a space A_0 and $\{K_i \to F_{i-1} \hookrightarrow F_i \mid 1 \leq i \leq n, F_0 = \{*\} F_1 = \Sigma K_1 \text{ and } F_n \simeq G\}$ be a cone-decomposition of G of length m. Our main result is as follows: If there is a subspace $F'_1 \subset F_1$ such that $F'_1 = \Sigma K'_1, K'_1 \subset K_1$ and $F_iF'_1 \subset F_{i+1}$ up to homotopy for any i, we have $\operatorname{cat} X \leq m+1$, if firstly the characteristic map α is compressible into F'_1 , secondly the Berstein-Hilton Hopf invariant $H_1(\alpha)$ vanishes in $[A, \Omega F'_1 * \Omega F'_1]$ and thirdly K_m is a sphere. We apply this to the principal bundle $\operatorname{SO}(9) \hookrightarrow \operatorname{SO}(10) \to S^9$ to determine $\operatorname{cat} \operatorname{SO}(10)$.