On classifications of a certain class of 6-dimensional torus manifolds

Shintarô Kuroki

kuroki@scisv.sci.osaka-cu.ac.jp
http://www.sci.osaka-cu.ac.jp/kuroki/index.html
OCAMI

6th December 2013
40th Symposium on Transformation Groups
Meiji University
§0. Contents of this talk

§1. Torus manifolds
§2. Classification of (low dimensional) torus manifolds
§3. Main Result 1 (geometric topological classification)
§4. Main Result 2 (algebraic topological classification)
§1. Torus manifolds

Definition (Hattori-Masuda)
Let M be a cpt, con, orie, $2n$-dim manifold with n-dim torus T-action. Then, M (or (M, T)) is called a torus manifold if $M^T \neq \emptyset$.

Example
(1) $T^n \times S^2 \subset C^n \oplus \mathbb{R}$
(2) $T^n \times \mathbb{C}P^n = (\mathbb{C}^n + 1 - \{0\}) = \mathbb{C}^\ast$ (on last n coord)
(3) An equivariant connected sum $M_1 \# M_2$ of two ($2n$-dim) torus mfds along fixed points $p_1 \in M_1$ and $p_2 \in M_2$.
(4) A gluing along free orbits $M \# T(N \times T)$ for any n-dim cpt orie mfd N (⇒ torus mfds are very huge class!).
(5) (Quasi)toric (next slide)
§ 1. Torus manifolds

Definition (Hattori-Masuda)

Let M be a cpt, con, orie, $2n$-dim manifold with n-dim torus T-action. Then, M (or (M, T)) is called a torus manifold if $M^T \neq \emptyset$.

Example

1. $T^n \sim S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R} \Rightarrow M^T = \{(0, 1), (0, -1)\}$.
2. $T^n \sim \mathbb{C}P^n = (\mathbb{C}^{n+1} - \{O\})/\mathbb{C}^*$ (on last n coord) $\Rightarrow M^T = \{[1 : 0 : \cdots : 0], \ldots, [0 : \cdots : 0 : 1]\}$.
3. An equivariant connected sum $M_1 \# M_2$ of two ($2n$-dim) torus mfds along fixed points $p_1 \in M_1$ and $p_2 \in M_2$.
4. A gluing along free orbits $M \#_T (N^n \times T)$ of with $N \times T$ for any n-dim cpt orie mfd N (\Rightarrow torus mfds are very huge class!).
5. (Quasi)toric. (next slide)
Definition (toric manifold)

A torus mfd M^{2n} is called a (smooth) toric manifold if there is a T^n-invariant complex structure. (by Ishida-Karshon)

Definition (quasitoric manifold)

A torus mfd M^{2n} is called a quasitoric manifold if

1. T^n-action is locally isomorphic to $T^n \sim \mathbb{C}^n$;
2. the orbit space M/T is an n-dim simple polytope P^n.
Definition (toric manifold)
A torus mfd M^{2n} is called a (smooth) toric manifold if there is a T^n-invariant complex structure. (by Ishida-Karshon)

Definition (quasitoric manifold)
A torus mfd M^{2n} is called a quasitoric manifold if

1. T^n-action is locally isomorphic to $T^n \sim \mathbb{C}^n$;
2. the orbit space M/T is an n-dim simple polytope P^n.

Example

1. $\mathbb{C}P^n$ with the standard T^n-action is (quasi)toric.
2. $\mathbb{C}P^2 \# \mathbb{C}P^2$ (this is known as quasitoric but not toric)
3. S^{2n} for $n \geq 2$ is NOT (quasi)toric.
FACT

$2n$-dim smooth toric \Rightarrow $2n$-dim quasitoric for $n \leq 3$.
§2. Classification of low dimensional torus mfds

Problem

How can we classify torus manifolds?

Proposition (when $n = 1$)

*Every 2-dim torus mfd is (equivariantly diffeomorphic to) S^2.***

$(\therefore M^T = \chi(M) > 0.)$
Theorem (Orlik-Raymond (1970, when $n = 2$))

Let M be a simply connected 4-dim torus mfd. Then,

$$M \cong M_1 \# \cdots \# M_\ell$$

where each M_i is S^4, $\mathbb{C}P^2$, $\overline{\mathbb{C}P^2}$ or Hirzebruch surfaces ($\mathbb{C}P^1$-bdl over $\mathbb{C}P^1$).
Theorem (Orlik-Raymond (1970, when \(n = 2 \)))

Let \(M \) be a \textit{simply connected} 4-dim torus mfd. Then,

\[
M \cong M_1 \# \cdots \# M_\ell
\]

where each \(M_i \) is \(S^4, \mathbb{C}P^2, \overline{\mathbb{C}P^2} \) or Hirzebruch surfaces (\(\mathbb{C}P^1 \)-bdl over \(\mathbb{C}P^1 \)).

Problem

How can we generalize Orlik-Raymond’s thm to the higher dimension? (What kind of assumptions do we need?)
 Sect. Main Result 1

Theorem (K (when $n = 3$))

Let M be a simply con, 6-dim torus mfd with $H^{\text{odd}}(M) = 0$. Then,

$$M \cong M_1 \# \cdots \# M_\ell$$

where each M_i is one of the followings:

1. S^6;
2. 6-dim quasitoric manifold;
3. S^4-bundle over S^2 which is the form

$$S^3 \times S^1 S(\mathbb{C}_a \oplus \mathbb{C}_b \oplus \mathbb{R})$$

where S^1 acts on S^3 freely ($S^3/S^1 \cong S^2$) and $t \in S^1$ acts on $z \in \mathbb{C}_k = \mathbb{C}$ by $z \mapsto zt^k$ for $k \in \mathbb{Z}$.
Outline of proof: Step 1 \((H^{odd}(M) = 0)\)

Assume \(H^{odd}(M) = 0\).
Outline of proof: Step 1 \((H^{\text{odd}}(M) = 0)\)

Assume \(H^{\text{odd}}(M) = 0\).

Theorem (Masuda-Panov)

\[H^{\text{odd}}(M) = 0 \iff \]

(1) \(T \curvearrowright M\) is locally \(T \curvearrowright \mathbb{C}^n\) (locally standard);

(2) \(M/T\) is face acyclic \((H_*(F) \simeq H_*(\text{pt})\) for each face \(F\)).

In particular, \(\dim M = 6 \Rightarrow M/T\) is a homology 3-disk.
Outline of proof: Step 1 \((H^{odd}(M) = 0)\)

Assume \(H^{odd}(M) = 0\).

Theorem (Masuda-Panov)

\[H^{odd}(M) = 0 \iff \]

1. \(T \cong M\) is locally \(T \cong \mathbb{C}^n\) (locally standard);
2. \(M/T\) is face acyclic \((H_*(F) \cong H_*(pt)\) for each face \(F\)).

In particular, \(\dim M = 6 \Rightarrow M/T\) is a homology 3-disk.

Proposition

Let \(W\) be a 6-dim torus mfd with \(H^{odd}(W) = 0\). Then, there are a simply con, 6-dim torus mfd \(M\) (with \(H^{odd}(M) = 0\)) and a homology 3-sphere \(hS^3\) such that

\[W \cong M \#_T(hS^3 \times T^3). \]
Step 2 (simply connected)

Assume $H^{odd}(M) = 0$ and M is simply connected.

$\Rightarrow M/T$ is the standard disk (with the structure of mfd with faces).
Main thm 1 and Proof

Step 2 (simply connected)

Assume $H^{odd}(M) = 0$ and M is simply connected.

\Rightarrow M/T is the standard disk (with the structure of mfd with faces).

Therefore,

(M^6, T^3) is determined by $(M/T, \lambda)$, where λ is the information of isotropy subgroups of codim-2 (4-dim) torus submfd (characteristic function).
Step 2 (simply connected)

Assume $H^{\text{odd}}(M) = 0$ and M is simply connected.

$\Rightarrow M/T$ is the standard disk (with the structure of mfd with faces).

Therefore,

(M^6, T^3) is determined by $(M/T, \lambda)$, where λ is the information of isotropy subgroups of codim-2 (4-dim) torus submfd's (characteristic function).

Lemma

Such (M^6, T^3) is determined by 3-valent torus graphs (Γ, A), i.e., fixed points, 1-dim orbits Γ and tangential representations A.

Step 2 (simply connected)

Assume $H^{odd}(M) = 0$ and M is simply connected.

$\Rightarrow M/T$ is the standard disk (with the structure of mfd with faces).

Therefore,

(M^6, T^3) is determined by $(M/T, \lambda)$, where λ is the information of isotropy subgroups of codim-2 (4-dim) torus submfds (characteristic function).

Lemma

Such (M^6, T^3) is determined by 3-valent torus graphs (Γ, A), i.e., fixed points, 1-dim orbits Γ and tangential representations A.

Problem (GOAL)

Classification of all 3-valent torus graphs!
Step 3 (classification of 3-valent torus graphs)

A torus graph \((\Gamma, A)\) of \((M, T)\) is defined by

1. \(V(\Gamma)\) is \(M^T\);
2. \(E(\Gamma)\) is invariant \(S^2\)'s;
3. \(A : E(\Gamma) \rightarrow H^2(BT)\) is tangential representation on \(T_p M\) for all \(p \in M^T\).
Torus graph of $T^2 \cong \mathbb{C}P^2$ by $[x : y : z] \mapsto [x : t_1y : t_2z]$.

Tangential rep. on $q = [0 : 1 : 0]$

$T_q M \cong \{ [x : 1 : z] \}$

$[x : 1 : z] \mapsto [x : t_1 : t_2z]$

$= [t_1^{-1}x : 1 : t_1^{-1}t_2z].$

$\therefore T_q M \cong V(-\alpha) \oplus V(\beta - \alpha).$

Here, $\langle \alpha, \beta \rangle = t^*_\mathbb{Z} \cong H^2(BT)$.
Basic torus graphs

(1) \((S^6, T^3)\) where \(S^6 \subset \mathbb{C}^3 \oplus \mathbb{R}\):

(2) 6-dim quasitoric, i.e., 2-connected planner, e.g. \((\mathbb{C}P^3, T^3)\):

(3) \(S^4\)-bdl over \(S^2\):
3-valent torus graphs

Theorem

(Γ, \mathcal{A}) (induced from 6-dim simply con torus mfds with $H^{\text{odd}}(M) = 0$) can be constructed from the connected sum of previous three graphs.
3-valent torus graphs

Theorem

\((\Gamma, A)\) (induced from 6-dim simply con torus mfds with \(H^{odd}(M) = 0\)) can be constructed from the connected sum of previous three graphs.

Key step of the proof.

\((\Gamma, A)\) has multiple edges \(\Leftrightarrow (\Gamma, A)\) can be split into (2) and (3):

![Diagram](image-url)
Therefore, we have

Corollary

Let M be a simply connected, 6-dim torus manifold with $H^{odd}(M) = 0$. Then,

$$M \cong M_1 \# \cdots \# M_\ell$$

where M_i is one of the followings:

1. S^6;
2. 6-dim quasitoric manifold;
3. S^4-bundle over S^2.
4. Main Result 2

By using the classification results as above (geometric topological classification), we also have the following algebraic topological classification:

Theorem

Let M, M' be simply con. $2n$-dim torus manifolds (for $n \leq 3$) with $H^{odd}(M) = 0$. Then, $H^*_T(M) \simeq_{alg}^w H^*_T(M') \iff (M, T) \simeq_{diff}^w (M', T)$.

Here, $H^*_T(M)$ is an equivariant cohomology $H^*(BT)$-algebra defined by taking the cohomology of $ET \times_T M \to ET / T = BT$, i.e.,

$$H^*(BT) \to H^*(ET \times_T M) = H^*_T(M).$$
Remarks on Main thm 2

Remark

Let $W = M \#_T (hS^3 \times T^3)$. Then, $H^*_T (M) \cong_{alg} H^*_T (W)$, however $M \not\cong W$ unless $hS^3 = S^3$. Therefore, Main thm 2 does not hold if we do not assume simply connected.
Remarks on Main thm 2

Remark

Let \(W = M \# T(hS^3 \times T^3) \).
Then, \(H^*_T(M) \cong_{\text{alg}} H^*_T(W) \), however \(M \not\cong W \) unless \(hS^3 = S^3 \).
Therefore,
Main thm 2 does not hold if we do not assume simply connected.

Remark

There are infinitely many \(T^n \)-actions on \(S^{2n} \) if \(n \geq 4 \) (distinguished by their orbit spaces \(S^{2n}/T^n \) (by Wiemeler)).
However, all \(H^*_T(S^{2n}) \) are isomorphic (because torus graphs are the same).
Therefore, Main thm 2 does not hold for the case when \(\dim M \geq 8 \).
Proposition (Top. classification)

Let \(M(a, b) = S^3 \times_{S^1} S(\mathbb{C}_a \oplus \mathbb{C}_b \oplus \mathbb{R}) \). Then,

1. \(H^*(M(a, b)) \cong H^*(S^2 \times S^4) \);
2. \(p(M(a, b)) = 1 \);
3. \(w(M(a, b)) = 1 + (a + b)x \), where \(x \in H^2(M(a, b); \mathbb{Z}_2) \).

Therefore, (by using Jupp’s result) there are only two topological types of \(M(a, b) \). More precisely,

- \(M(a, b) \cong S^2 \times S^4 \) if \(a + b \equiv_2 0 \);
- \(M(a, b) \) is a non-trivial \(S^4 \)-bdl over \(S^2 \) if \(a + b \equiv_2 1 \).
Proposition (Top. classification)

Let $M(a, b) = S^3 \times_{S^1} S(C_a \oplus C_b \oplus \mathbb{R})$. Then,

1. $H^*(M(a, b)) \cong H^*(S^2 \times S^4)$;
2. $p(M(a, b)) = 1$;
3. $w(M(a, b)) = 1 + (a + b)x$, where $x \in H^2(M(a, b); \mathbb{Z}_2)$.

Therefore, (by using Jupp’s result) there are only two topological types of $M(a, b)$. More precisely,

- $M(a, b) \cong S^2 \times S^4$ if $a + b \equiv_2 0$;
- $M(a, b)$ is a non-trivial S^4-bdl over S^2 if $a + b \equiv_2 1$.

Remark

This is NOT cohomologically rigid.
Proposition (Top. classification)

Let \(M(a, b) = S^3 \times S^1 S(\mathbb{C}_a \oplus \mathbb{C}_b \oplus \mathbb{R}) \). Then,

1. \(H^*(M(a, b)) \cong H^*(S^2 \times S^4) \);
2. \(p(M(a, b)) = 1 \);
3. \(w(M(a, b)) = 1 + (a + b)x \), where \(x \in H^2(M(a, b); \mathbb{Z}_2) \).

Therefore, (by using Jupp’s result) there are only two topological types of \(M(a, b) \). More precisely,

- \(M(a, b) \cong S^2 \times S^4 \) if \(a + b \equiv_2 0 \);
- \(M(a, b) \) is a non-trivial \(S^4 \)-bundle over \(S^2 \) if \(a + b \equiv_2 1 \).

Remark

This is NOT cohomologically rigid.

Problem (Cohomological rigidity problem for dim= 6 (Masuda-Suh))

Are 6-dim quasitoric mfds cohomologically rigid?
Happy 60th birthday to Prof. Yamazaki and Prof. Nagata!