On group actions with codimension one orbits

Shintarô Kuroki

kuroki@kaist.ac.kr
KAIST

12th Aug. 2010
57th Topology Symposium (Okayama)
Table of Contents

1 Introduction

2 General cases

3 Torus manifolds with codimension one extended actions

4 Applications
Definitions and Examples

Definition

We say $\varphi : G \times M \to M$ a G-action on M if φ satisfies the following two conditions:

1. $\varphi(e, x) = x$;
Definitions and Examples

Definition

We say \(\varphi : G \times M \rightarrow M \) a \(G \)-action on \(M \) if \(\varphi \) satisfies the following two conditions:

1. \(\varphi(e, x) = x \);
2. \(\varphi(g, \varphi(h, x)) = \varphi(gh, x) \).
Definitions and Examples

Definition

We say $\varphi : G \times M \to M$ a G-action on M if φ satisfies the following two conditions:

1. $\varphi(e, x) = x$;
2. $\varphi(g, \varphi(h, x)) = \varphi(gh, x)$.

Definition

We say the set $G(x) = \{\varphi(g, x) = gx \mid g \in G\}$ a G-orbit of x. The set of G-orbits is said to be an orbit space and denote it by M/G.
Example

Let \((X, r) \in S^n \subset \mathbb{R}^n \oplus \mathbb{R}\) and \(A \in SO(n)\). The following map gives an \(SO(n)\)-action on \(S^n\):

\[
(X, r) \xrightarrow{A} (AX, r).
\]
Example

Let \((X, r) \in S^n \subset \mathbb{R}^n \oplus \mathbb{R}\) and \(A \in SO(n)\). The following map gives an \(SO(n)\)-action on \(S^n\):

\[
(X, r) \xrightarrow{A} (AX, r).
\]
On group actions with codimension one orbits

Introduction

Codimension one group actions

In this talk, we assume \(\exists x \in M \) such that

\[
\dim M - \dim G(x) = 1.
\]

Classifications of such actions have been studied by many mathematicians: Wang (1960), Bredon(1972), Uchida(1979), Asoh(1981), Alekseevskii-Alekseevskii(1992), Hambleton-Hausmann(2003), etc.
Introduction

Codimension one group actions

In this talk, we assume \(\exists x \in M \) such that

\[
\dim M - \dim G(x) = 1.
\]

Classifications of such actions have been studied by many mathematicians: Wang (1960), Bredon (1972), Uchida (1979), Asoh (1981), Alekseevskii-Alekseevskii (1992), Hambleton-Hausmann (2003), etc.

Today’s talk

I will introduce how to classify such actions (in particular, Wang-Uchids’s classification method for Hattori-Masuda’s torus manifolds).
On group actions with codimension one orbits

Basic facts

Theorem (slice theorem)

For every orbit \(G(x) \cong G/K \) of \(x \in M \), there is a \(G \)-invariant closed neighborhood \(X \) such that

\[
X \cong G \times_K D_x,
\]

where

- \(D_x \) is a closed \(k_x \)-dim disk, where \(k_x = \dim M - \dim G(x) \).
Basic facts

Theorem (slice theorem)

For every orbit $G(x) \cong G/K$ of $x \in M$, there is a G-invariant closed neighborhood X such that

$$X \cong G \times_K D_x,$$

where

- D_x is a closed k_x-dim disk, where $k_x = \dim M - \dim G(x)$;
- K acts on D_x by the slice representation $\sigma : K \to O(k_x)$.

On group actions with codimension one orbits

- General cases

Slice theorem

For every $G(x) = G/K$, \exists a tubular neighborhood $X \cong G \times_K D_x$.

\[\text{Diagram showing the slice theorem: } G/K \rightarrow X \]
On group actions with codimension one orbits

General cases

Four cases

Because

1. the slice theorem,
On group actions with codimension one orbits

General cases

Four cases

Because

1. the slice theorem,
2. $\dim M - \dim G(x) = 1$,
On group actions with codimension one orbits

General cases

Four cases

Because

1. the slice theorem,
2. $\dim M - \dim G(x) = 1$,

there are 4 topological types of M/G:
Four cases

Because

1. the slice theorem,
2. \(\dim M - \dim G(x) = 1 \),

there are 4 topological types of \(M/G \):

Case 1 \(M/G = \mathbb{R} \);
Four cases

Because

1. the slice theorem,
2. \(\dim M - \dim G(x) = 1 \),

there are 4 topological types of \(M/G \):

Case 1 \(M/G = \mathbb{R} \);

Case 2 \(M/G = \mathbb{R}^+ \);
Four cases

Because

1. the slice theorem,
2. $\dim M - \dim G(x) = 1$,

there are 4 topological types of M/G:

Case 1 $M/G = \mathbb{R}$;
Case 2 $M/G = \mathbb{R}^+$;
Case 3 $M/G = S^1$;
On group actions with codimension one orbits

General cases

Four cases

Because

1. the slice theorem,
2. \(\dim M - \dim G(x) = 1 \),

there are 4 topological types of \(M/G \):

Case 1 \(M/G = \mathbb{R} \);
Case 2 \(M/G = \mathbb{R}^+ \);
Case 3 \(M/G = S^1 \);
Case 4 \(M/G = [0, 1] \).
Case 1; $M/G = \mathbb{R}$

Using the slice theorem, $M \cong G/K \times \mathbb{R}$.
Case 1; \(M/G = \mathbb{R} \)

Using the slice theorem, \(M \cong G/K \times \mathbb{R} \).

Case 1

Classification of homogeneous spaces \(G/K \).
(Theory of Lie group).
Case 2; $M/G = \mathbb{R}^+$

Using the slice theorem, $M \cong G \times_K V$, where K acts on V via $\sigma: K \to O(V)$ such that K acts on $S(V) \cong K/H$ transitively.
On group actions with codimension one orbits

General cases

Case 2; \(M/G = \mathbb{R}^+ \)

Using the slice theorem, \(M \cong G \times_K V \), where \(K \) acts on \(V \) via \(\sigma : K \to O(V) \) such that \(K \) acts on \(S(V) \cong K/H \) transitively.

Case 2

Classification of transitive, linear actions on spheres.

(Borel, Montgomery-Samelson, Poncet in 1940’s–1950’s).
Case 3; $M/G = S^1$

In this case, there is the following fibre bundle:

$$G/K \hookrightarrow M \twoheadrightarrow S^1,$$

s.t. its structure group is $N_G(K)/K = \{f : G/K \xrightarrow{G} G/K\}$.
On group actions with codimension one orbits

General cases

Case 3; \(M/G = S^1 \)

In this case, there is the following fibre bundle:

\[
G/K \leftrightarrow M \rightarrow S^1,
\]

s.t. its structure group is \(N_G(K)/K = \{ f : G/K \rightarrow G/K \} \).

Case 3

Classification of fibre bundles.
(Theory of fibre bundle)
On group actions with codimension one orbits

Case 4; $M/G = [0, 1]$

In this case, M can be constructed by attaching X_1 and X_2 s.t. $X_i/G = \mathbb{R}^+$ (Case 2).

The well-known classification cannot be used for Case 4.
Case 4; $M/G = [0, 1]$

In this case, M can be constructed by attaching X_1 and X_2 s.t. $X_i/G = \mathbb{R}^+$ (Case 2).

The well-known classification cannot be used for Case 4.

Case 4

The essential case!
Torus manifolds

Definition

Let M be a $2n$-dimensional, compact, connected, oriented manifold and T an n-dimensional torus. We say (M, T) a torus manifold if (M, T) satisfies the following two conditions:

1. T acts on M effectively;
Torus manifolds

Definition

Let M be a $2n$-dimensional, compact, connected, oriented manifold and T an n-dimensional torus. We say (M, T) a torus manifold if (M, T) satisfies the following two conditions:

1. T acts on M effectively;
2. $M^T \neq \emptyset$.
Let \((z_1, \ldots, z_n, r) \in S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R}\) and \((t_1, \ldots, t_n) \in T^n\). The following map gives a \(T^n\)-action on \(S^{2n}\):

\[
(z_1, \ldots, z_n, r) \mapsto (t_1 z_1, \ldots, t_n z_n, r).
\]
Example

1. Let \((z_1, \ldots, z_n, r) \in S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R}\) and \((t_1, \ldots, t_n) \in T^n\). The following map gives a \(T^n\)-action on \(S^{2n}\):

\[
(z_1, \ldots, z_n, r) \mapsto (t_1z_1, \ldots, t_nz, n, r).
\]

2. Let \([z_0 : \cdots : z_n] \in \mathbb{C}P(n) = \mathbb{C}^{n+1} - \{o\}/\mathbb{C}^*\). The following map gives a \(T^n\)-action on \(\mathbb{C}P^n\):

\[
[z_0 : z_1 : \cdots : z_n] \mapsto [z_0 : t_1z_1 : \cdots : t_nz_n].
\]
The previous examples are induced by the following actions:

1. $X \in U(n)$ (or $X \in SO(2n)$) acts on $S^{2n} \cap \mathbb{C}^n$ (or $S^{2n} \cap \mathbb{R}^{2n}$), i.e.,

$$S^{2n} \ni (z, r) \mapsto (Xz, r) \in S^{2n}.$$
The previous examples are induced by the following actions:

1. $X \in U(n)$ (or $X \in SO(2n)$) acts on $S^{2n} \cap \mathbb{C}^n$ (or $S^{2n} \cap \mathbb{R}^{2n}$), i.e.,

 $S^{2n} \ni (z, r) \mapsto (Xz, r) \in S^{2n}$.

2. $X \in PU(n + 1)$ acts on $\mathbb{C}P^n$ naturally, i.e.,

 $\mathbb{C}P^n \ni [z] \mapsto [Xz] \in \mathbb{C}P^n$.
The previous examples are induced by the following actions:

1. $X \in U(n)$ (or $X \in SO(2n)$) acts on $S^{2n} \cap \mathbb{C}^n$ (or $S^{2n} \cap \mathbb{R}^{2n}$), i.e.,

 $$S^{2n} \ni (z, r) \mapsto (Xz, r) \in S^{2n}.$$

2. $X \in PU(n + 1)$ acts on $\mathbb{C}P^n$ naturally, i.e.,

 $$\mathbb{C}P^n \ni [z] \mapsto [Xz] \in \mathbb{C}P^n$$

Remark

The 1st action has codimension one orbits $S^{2n} - 1$;

The 2nd action has the codimension zero orbit $\mathbb{C}P^n$.
The previous examples are induced by the following actions:

1. $X \in U(n)$ (or $X \in SO(2n)$) acts on $S^{2n} \cap \mathbb{C}^n$ (or $S^{2n} \cap \mathbb{R}^{2n}$), i.e.,

 $$S^{2n} \ni (z, r) \mapsto (Xz, r) \in S^{2n}.$$

2. $X \in PU(n + 1)$ acts on $\mathbb{C}P^n$ naturally, i.e.,

 $$\mathbb{C}P^n \ni [z] \mapsto [Xz] \in \mathbb{C}P^n.$$

Remark

1. The 1st action has **codimension one orbits** S^{2n-1};
The previous examples are induced by the following actions:

1. \(X \in U(n) \) (or \(X \in SO(2n) \)) acts on \(S^{2n} \cap \mathbb{C}^n \) (or \(S^{2n} \cap \mathbb{R}^{2n} \)), i.e.,
 \[S^{2n} \ni (z, r) \mapsto (Xz, r) \in S^{2n} \].

2. \(X \in PU(n + 1) \) acts on \(\mathbb{C}P^n \) naturally, i.e.,
 \[\mathbb{C}P^n \ni [z] \mapsto [Xz] \in \mathbb{C}P^n \].

Remark

1. The 1st action has \textit{codimension one orbits} \(S^{2n-1} \);
2. The 2nd action has the \textit{codimension zero orbit} \(\mathbb{C}P^n \).
Problem

Classify torus manifolds \((M, T)\) with codimension 0 or 1 extended actions \((M, G)\).
Problem

Classify torus manifolds \((M, T)\) with codimension 0 or 1 extended actions \((M, G)\).

Definition

An extended action \((M, G)\) of \((M, T)\) is an action which commutes the following diagram:

\[
\begin{array}{ccc}
G \times M & \xrightarrow{\bar{\varphi}} & M \\
\cup & \rightarrow & \varphi \\
T \times M & &
\end{array}
\]

where \(T\) is a maximal torus of a compact, connected Lie group \(G\).
Wang-Uchida’s method for $M/G = [0, 1]$

Assumption

A $2n$-dimensional torus manifold (M, T) extends to an (M, G) with codimension one orbits G/K, i.e., $\dim G/K = 2n - 1$.
Wang-Uchida’s method for $M/G = [0, 1]$

Assumption

A $2n$-dimensional torus manifold (M, T) extends to an (M, G) with codimension one orbits G/K, i.e., $\dim G/K = 2n - 1$.

- Let $p \in M^T$ (fixed point).
Wang-Uchida’s method for $M/G = [0, 1]$

Assumption

A 2n-dimensional torus manifold (M, T) extends to an (M, G) with **codimension one orbits** G/K, i.e., $\dim G/K = 2n - 1$.

- Let $p \in M^T$ (fixed point).
- The orbit $G(p) \cong G/G_p$ satisfies that $\mathcal{T} \subset G_p \subset G$.

On group actions with codimension one orbits

Torus manifolds with codimension one extended actions

Wang-Uchida’s method for $M/G = [0, 1]$

Assumption

A $2n$-dimensional torus manifold (M, T) extends to an (M, G) with **codimension one** orbits G/K, i.e., $\dim G/K = 2n - 1$.

- Let $p \in M^T$ (fixed point).
- The orbit $G(p) \cong G/G_p$ satisfies that

 $T \subset G_p \subset G$.

- Therefore, $\dim G(p)$ is even, i.e.,

 $\dim G(p) < 2n - 1$.

Wang-Uchida’s method for $M/G = [0, 1]$

Assumption

A $2n$-dimensional torus manifold (M, T) extends to an (M, G) with codimension one orbits G/K, i.e., $\dim G/K = 2n - 1$.

- Let $p \in M^T$ (fixed point).
- The orbit $G(p) \cong G/G_p$ satisfies that $T \subset G_p \subset G$.
- Therefore, $\dim G(p)$ is even, i.e., $\dim G(p) < 2n - 1$.
- Because M is compact, we have $M/G = [0, 1]$.
Moreover, we have $G(p)$ is a homogeneous torus manifold, i.e., a torus manifold with codimension 0 extended action.
Moreover, we have $G(p)$ is a **homogeneous torus manifold**, i.e., a torus manifold with codimension 0 extended action.

Assumption

To simplify the argument, we assume two singular orbits G/K_i $(i = 1, 2)$ are (simply connected) homogeneous torus manifolds.
Step 1 – Two singular orbits –

Moreover, we have $G(p)$ is a homogeneous torus manifold, i.e., a torus manifold with codimension 0 extended action.

Assumption

To simplify the argument, we assume two singular orbits G/K_i ($i = 1, 2$) are (simply connected) homogeneous torus manifolds.
Homogeneous torus manifolds

Using Lie group theory (Borel-deSiebental), we have

Theorem

Let G/K_i ($i = 1, 2$) be a (simply connected) homogeneous torus manifold. Then G and K_i are one of the followings:

$$G \approx \prod_{j=1}^{a} PU(\ell_j + 1) \times \prod_{h=1}^{b} SO(2m_h + 1) \times G'_i,$$

$$K_i \approx \prod_{j=1}^{a} P(U(\ell_j) \times U(1)) \times \prod_{h=1}^{b} SO(2m_h) \times G'_i.$$

Hence, we have

$$G/K_i \cong \prod_{j=1}^{a} \mathbb{C}P(\ell_j) \times \prod_{h=1}^{b} S^{2m_h}.$$
Step 2 – Two tubular neighborhoods –

Next, we compute slice representations $\sigma_i : K_i \rightarrow SO(2k_i)$ s.t. $G'_i (\subset K_i)$ acts transitively on S^{2k_i-1}, where $2k_i = 2n - \dim G/K_i$.

Then, there are three cases:

1. $G'_i \simeq SU(k_i) \times T^1$;

Moreover, we have

for each case.
Step 2 – Two tubular neighborhoods –

Next, we compute slice representations \(\sigma_i : K_i \rightarrow SO(2k_i) \) s.t. \(G'_i(\subset K_i) \) acts transitively on \(S^{2k_i-1} \), where
\[
2k_i = 2n - \dim G / K_i.
\]
Then, there are three cases:

1. \(G'_i \simeq SU(k_i) \times T^1; \)
2. \(G'_i \simeq SO(2k_i). \)

Moreover, we have

for each case.
Step 2 – Two tubular neighborhoods –

Next, we compute slice representations $\sigma_i : K_i \to SO(2k_i)$ s.t. $G'_i(\subset K_i)$ acts transitively on S^{2k_i-1}, where $2k_i = 2n - \dim G/K_i$.

Then, there are three cases:

1. $G'_i \simeq SU(k_i) \times T^1$;
2. $G'_i \simeq SO(2k_i)$.

Moreover, we have

- $K \simeq \sigma_i^{-1}(SO(2k_i - 1))$;

for each case.
Next, we compute slice representations $\sigma_i : K_i \to SO(2k_i)$ s.t. $G'_i \subseteq K_i$ acts transitively on S^{2k_i-1}, where $2k_i = 2n - \dim G/K_i$.

Then, there are three cases:

1. $G'_i \cong SU(k_i) \times T^1$;
2. $G'_i \cong SO(2k_i)$.

Moreover, we have

- $K \cong \sigma_i^{-1}(SO(2k_i - 1))$;
- $X_i \cong G \times_{K_i} D^{k_i}$,

for each case.
Step 3 – Attaching map and construction—

Next, we compute attaching maps

\[\tau : \partial X_1 \cong G/K \xrightarrow{G} \partial X_2 \cong G/K, \]

i.e., we compute \(\tau \in N_G(K)/K \).

Because we have \(X_1 \) and \(X_2 \) in Step 2, i.e., \(X_i = G \times K_i V_i \), a \(G \)-manifold \(M \) can be constructed by \(\tau \):

\[M = X_1 \cup_{\tau} X_2. \]
Uchida’s criterion

To determine equivariant diffeomorphism types of $M(\tau) = X_1 \cup_{\tau} X_2$, it is enough to use the following Uchida’s criterion:

Lemma (Uchida’s criterion)

$M(\tau)$ is equivariantly diffeomorphic to $M(\tau')$ for $\tau, \tau' \in N_G(K)/K$ if one of the followings is satisfied:
Uchida’s criterion

To determine equivariant diffeomorphism types of $M(\tau) = X_1 \cup_{\tau} X_2$, it is enough to use the following Uchida’s criterion:

Lemma (Uchida’s criterion)

$M(\tau)$ is equivariantly diffeomorphic to $M(\tau')$ for $\tau, \tau' \in N_G(K)/K$ if one of the followings is satisfied:

1. τ and τ' are G-diffeotopic;
Uchida’s criterion

To determine equivariant diffeomorphism types of $M(\tau) = X_1 \cup_\tau X_2$, it is enough to use the following Uchida’s criterion:

Lemma (Uchida’s criterion)

$M(\tau)$ is equivariantly diffeomorphic to $M(\tau')$ for $\tau, \tau' \in N_G(K)/K$ if one of the followings is satisfied:

1. τ and τ' are G-diffeotopic;
2. $\tau^{-1}\tau' : \partial X_1 \to \partial X_1$ or $\tau'\tau^{-1} : \partial X_2 \to \partial X_2$ is extendable to an equivariantly diffeomorphic on X_i.
Main theorem

If the torus manifold \((M, T)\) extends to \((M, G)\) with codimension one orbits under the assumptions above, \((M, G)\) is one of the following manifolds:

\[
\left(\prod_h S^{2m_h} \times N, \prod_h SO(2m_h + 1) \times H \right),
\]

where \((N, H)\) satisfies one of the followings:

<table>
<thead>
<tr>
<th>(N)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\prod_j S^{2\ell_j+1} \times T^a S(\mathbb{C}_\rho^k \oplus \mathbb{R}))</td>
<td>(\prod_j PU(\ell_j + 1) \times U(k))</td>
</tr>
<tr>
<td>(\prod_j S^{2\ell_j+1} \times T^a P(\mathbb{C}\rho^{k_1} \oplus \mathbb{C}\rho^{k_2}))</td>
<td>(\prod_j PU(\ell_j + 1) \times P(U(k_1) \times U(k_2)))</td>
</tr>
<tr>
<td>(\prod_j \mathbb{C}P(\ell_j) \times S(\mathbb{R}^{2k} \oplus \mathbb{R}))</td>
<td>(\prod_j PU(\ell_j + 1) \times SO(2k))</td>
</tr>
</tbody>
</table>

where \(\rho : T^a \rightarrow S^1\).
Corollary

If a (quasi) toric manifold \((M, T)\) extends to \((M, G)\) with codimension one orbits, then \((M, G)\) is

\[
\left(\prod_{j=1}^{a} S^{2\ell_j + 1} \times T^a P(\mathbb{C}^{k_1}_\rho \oplus \mathbb{C}^{k_2}), \prod_{j=1}^{a} PU(\ell_j + 1) \times P(U(k_1) \times U(k_2)) \right)
\]
Cohomological rigidity problem

Problem (Masuda-Suh ’06)

Let \((M_1, T^n)\) and \((M_2, T^n)\) be (quasi)toric manifolds (or more generally torus manifolds s.t. \(M_i/T^n\) is homotopy cell). Then,

\[
M_1 \simeq M_2 \iff H^*(M_1) \simeq H^*(M_2).
\]

This problem is still open for (quasi)toric manifolds and many partial affirmative answers are known (Choi-Masuda-Suh, Masuda-Panov, etc).
A compact manifold with corner is **nice** if there are exactly n codimension one faces meeting at each vertex, and is a **homotopy cell** if it is nice and all of its faces are contractible.
Lemma

Our manifolds appeared in Main theorem are torus manifolds whose orbit spaces are homotopy cells.

Figure: $\mathbb{C}P^3/T^3$ and S^4/T^2.
Theorem (Choi-K)

Two stage torus manifolds with codimension one extended actions, $S^{2\ell+1} \times S^1 N$, are classified by their cohomology rings, Pointrjagin classes and Stiefel-Whitney classes.
Theorem (Choi-K)

Two stage torus manifolds with codimension one extended actions, $S^{2\ell+1} \times s_1 N$, are classified by their cohomology rings, Pointrjagin classes and Stiefel-Whitney classes.

Answer

The answer of cohomological rigidity problem for torus manifolds whose orbit spaces are homotopy cells is NO.