On projective bundles over small covers

Shintarō Kuroki (KAIST)
with Zhi Lü (Fudan University)

Bratislava Topology Symposium (2009)
Comenius University
Contents

1. Basic facts of small covers

2. Motivation

3. Projective bundles over small covers

4. Main theorem
1. Basic facts of small covers
Definition and Characterization of small cover

Small cover (Davis-Januszkiewicz, 1990)

\[M^n \text{def} \leftrightarrow \text{a compact } n\text{-dimensional manifold } M^n \text{ with the following two conditions:} \]

1. \(M^n \) has an effective, locally standard \((\mathbb{Z}_2)^n\)-action, i.e., locally looks like the standard \((\mathbb{Z}_2)^n \cong \mathbb{R}^n\);

2. the orbit space is an \(n\)-dimensional simple polytope \(M^n/(\mathbb{Z}_2)^n = P^n \), i.e., each vertex is constructed by the intersection of just \(n \) facets.

\[\begin{array}{c}
\begin{array}{c}
\circ \quad 3 \\
\circ \quad 3 \\
\circ \quad 3 \\
\circ \quad 3 \\
\end{array}
\end{array} \quad \text{Simple polytope} \]

\[\begin{array}{c}
\begin{array}{c}
\circ \quad 4 \\
\circ \quad 3 \\
\circ \quad 3 \\
\circ \quad 3 \\
\end{array}
\end{array} \quad \text{Non-simple polytope} \]
Small covers can be reconstructed from the following pair \((P^n, \lambda)\).

1. \(P^n\): an \(n\)-dimensional simple polytope,

2. \(\lambda : \mathcal{F} \to \{0, 1\}^n\): a characteristic function such that

\[
\det(\lambda(F_1), \ldots, \lambda(F_n)) \equiv 1 \pmod{2} \text{ for } \bigcap_{i=1}^n F_i = \{v\},
\]

where \(\mathcal{F} = \{F_1, \ldots, F_m\}\) denotes the set of all facets (codimension-one faces) of \(P\).

The function \(\lambda\) is also denoted by the following matrix

\[
(\lambda(F_1), \ldots, \lambda(F_m)) = \begin{pmatrix} I_n & \Lambda \end{pmatrix} \in M(n, m; \mathbb{Z}_2),
\]

where \(\Lambda \in M(n, m-n; \mathbb{Z}_2)\). We call \((I_n \Lambda)\) a characteristic matrix.
Then

\[M(P, \lambda) = (\mathbb{Z}_2)^n \times P^n / \sim_\lambda \]

is small cover, where

\[(t, p) \sim_\lambda (t', p) \iff t't^{-1} \in (-1)^{\lambda(F)} \mid p \in F \supset (\mathbb{Z}_2)^n.\]
Example 1. In the following figure, the left and right pair are called by \((\Delta^2, \lambda_2)\) and \((I^2, \lambda_1^2)\) respectively (where \(e_1\) and \(e_2\) are standard basis in \(\{0, 1\}^2\)).

\[
\begin{align*}
M(\Delta^2, \lambda_2) &= \mathbb{R}P(2) \\
M(I^2, \lambda_1^2) &= T^2
\end{align*}
\]
In summary, we have the following correspondence:

Small Covers \leftrightarrow Polytopes and functions (P, λ)
2. Motivation
Cohomological rigidity problem for small cover

Assume $H^*(M; \mathbb{Z}_2) \simeq H^*(M'; \mathbb{Z}_2)$ for two small covers M and M'.

Question: Are M and M' homeomorphic?

\[\downarrow\]

Answer: No!

There are counter examples in the above class.
Masuda’s counter examples

\[M(q) = P(q\gamma \oplus (b-q)\epsilon) \]: the projective bundle over \(\mathbb{R}P(a) \), where \(\gamma \) is the canonical line bundle, \(\epsilon \) is the trivial bundle and \(0 \leq q \leq b \).

Theorem 1 (Masuda). *The following two statements hold:*

1. \(H^*(M(q); \mathbb{Z}_2) \cong H^*(M(q'); \mathbb{Z}_2) \iff q' \equiv q \text{ or } b-q \mod 2^{h(a)} \),
 where \(h(a) = \min \{ n \in \mathbb{N} \cup \{0\} \mid 2^n \geq a \} \);

2. \(M(q) \cong M(q') \iff q' \equiv q \text{ or } b-q \mod 2^{k(a)} \),
 where \(k(a) = \# \{ n \in \mathbb{N} \mid 0 < n < a \text{ and } n \equiv 0, 1, 2, 4 \mod 8 \} \).
Put $a = 10$, then we have $h(10) = 4$, $k(10) = 5$.

Put $b = 17$ and $q = 1$ and $q' = 0$.

Then $H^*(M(1)) \cong H^*(M(0))$ (by $q' \equiv 17 - q \mod 2^{h(10)} = 16$), but $M(1) \not\cong M(0)$ (by $q' \not\equiv 17 - q \mod 2^{k(10)} = 32$).

Problem: Characterize (or classify) the topological types of projective bundles over small covers.
3. Projective bundles over small covers
Let $\xi = (E(\xi), \pi, M, \mathbb{R}^k)$ be an equivariant k-dimensional vector bundle over a small cover M^n.

Put $\sigma_0(M)$ is the image of the zero section and

$$ P(\xi) = E(\xi) - \sigma_0(M) / \mathbb{R}^*, $$

then $P(\xi)$ is the $\mathbb{R}P^{k-1}$-bundle over M.

Lemma 1. $P(\xi)$ is a small cover $\iff \xi \equiv \gamma_1 \oplus \cdots \oplus \gamma_k$ where γ_i is a line bundle.

We call such $P(\xi)$ a projective bundle over small cover (or projective bundle).
Lemma 2. $P(\xi)$ has the following two properties:

1. **the orbit space** is $P^n \times \Delta^{k-1}$ (where $M/\mathbb{Z}_2^n = P^n$);

2. **the characteristic matrix** of $P(\xi)$ can be denoted by

\[
\begin{pmatrix}
I_n & O & \Lambda & 0 \\
O & I_{k-1} & \Lambda' & 1
\end{pmatrix}
\]

Therefore, in order to consider the projective bundle over small cover, we may only consider the following matrix:

\[
\begin{pmatrix}
I_n & \Lambda \\
O & \Lambda'
\end{pmatrix} \in M(n + k - 1, m; \mathbb{Z}_2)
\]
Characterization of projective bundles

Idea: Attach this matrix to the facets of P^n directly

For example, for $r = (r_1, \ldots, r_{k-1}) \in \{0, 1\}^{k-1}$,

The following matrix

$$
\begin{pmatrix}
I_2 & 1 \\
0 & r
\end{pmatrix} \in M(k + 1, 3; \mathbb{Z}_2),
$$

corresponds with

$$P(\gamma^{r_1} \oplus \cdots \oplus \gamma^{r_{k-1}} \oplus \epsilon),$$

where $\gamma^0 = \epsilon$ and $\gamma^1 = \gamma$ over $\mathbb{R}P(2)$.

$r = r_1 e'_1 + \cdots + r_{k-1} e'_{k-1}$.
Projective characteristic functions

$\lambda_P : \mathcal{F}_P \to \{0, 1\}^n \times \{0, 1\}^{k-1}$: **projective characteristic functions** such that

$$\det(\lambda_P(F_{i_1}), \ldots, \lambda_P(F_{i_n}), X_1, \ldots, X_{k-1}) = 1$$

for $F_{i_1} \cap \cdots \cap F_{i_n} \neq \emptyset$ and $\{X_1, \ldots, X_{k-1}\} \subset \{e'_1, \ldots, e'_{k-1}, 1\}$, where e'_i is the standard basis of $\{0, 1\}^{k-1}$.

Then (P, λ_P) characterizes the projective bundle over small cover.
4. Main Theorem
In order to characterize projective bundles over 2-dim small covers, we introduce a operation $\#\Delta^{k-1}$ on the projective characteristic functions as follows.

Remark: This operation corresponds with the fibre some of projective bundles (gluing along the fibres).
Main Theorem

Theorem 2. Let $P(\xi)$ be a projective bundle over 2-dimensional small cover M^2. Then $P(\xi)$ can be constructed from projective bundles $P(\zeta)$ over the real projective space $\mathbb{R}P^2$ and $P(\kappa)$ over the torus T^2 by using $\#\Delta^{k-1}$.

\[
P(\zeta) = P(\gamma r_1 \oplus \cdots \oplus \gamma r_{k-1} \oplus \epsilon) \quad \text{and} \quad P(\kappa) = P(\gamma r_1 \otimes \gamma r'_1 \oplus \cdots \oplus \gamma r_{k-1} \otimes \gamma r'_{k-1} \oplus \epsilon)
\]
Outline of proof

Step 1: Prove there are two edges F_i, F_j such that
$$\det(\lambda_P(F_i), \lambda_P(F_j), X_1, \ldots, X_{k-1}) = 1.$$

Step 2: Then we can do the converse of the operation $\#\Delta^{k-1}$ along F_i and F_j.

Step 3: Iterating the above argument, finally P decomposes into the sum of Δ^2's and I^2's.
Finally we list up all topological types of projective bundles over $\mathbb{R}P(2)$ and T^2.

Proposition 1. The topological type of $P(\zeta)$ is one of the following 4 topological types:

$$S^2 \times_{\mathbb{Z}_2} P(q\mathbb{R} \oplus (k-q)\mathbb{R}),$$

for $q = 0, 1, 2, 3$.

Proposition 2. The topological type of $P(\kappa)$ is one of the following 4 topological types:

$$T^2 \times_{\mathbb{Z}_2} P(R_1 \oplus R_2 \oplus (k-2)\mathbb{R});$$

$$T^2 \times_{\mathbb{Z}_2} P(R_1 \oplus (k-1)\mathbb{R});$$

$$T^2 \times_{\mathbb{Z}_2} P(R_2 \oplus (k-1)\mathbb{R});$$

$$T^2 \times \mathbb{R}P(k-1),$$

where $T^2 \times_{\mathbb{Z}_2} R_i$ is the canonical bundle of the i-th $S^1 \subset T^2$ ($i = 1, 2$).