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Abstract. This paper investigates the projective bundles over small covers. We first give a
necessary and sufficient condition for the projectivization of a real vector bundle over a small

cover to be a small cover. Then associated with moment-angle manifolds, we further study the
structure of such a projectivization as a small cover by introducing a new characteristic function
on simple convex polytopes. As an application, we characterize the real projective bundles
over 2-dimensional small covers by interpreting the fibre sum operation to some combinatorial

operation. We next study when the projectivization of Whitney sum of the tautological line
bundle and the tangent bundle over real projective space is diffeomorphic to the product of two
real projective spaces.

1. Introduction

A real projectivization P (ξ) over a closed manifold M is defined by a vector bundle ξ over M
via antipodal maps on fibers of associated sphere bundle S(ξ) (we also call a real projective bundle
over M in this paper). In [2], Borel and Hirzebruch computed the total Stiefel-Whitney class of
P (ξ), which has been applied to the study of the equivariant cobordism (see [9]). In his paper [28],
Stong introduced a special kind of real projective bundles (i.e., Stong manifolds, also see Section
4), which can be used as generators in the Thom unoriented cobordism ring N∗.

As the topological version of real toric manifolds, Davis and Januszkiewicz introduced and stud-
ied a class of particularly nicely behaving manifoldsMn (called small covers), each of which admits
a locally standard Zn

2 -action such that its orbit space is a simple convex n-polytope Pn, where
Zn
2 = {−1, 1}n is a real torus. This establishes a direct connection among topology, combinatorics

and commutative algebra etc. In this paper, we first consider the following natural questions:

Problem 1. Let P (ξ) be a real projective bundle over a small cover. When is also P (ξ) a small
cover? If so, how can we characterize its topology?

With respect to Problem 1, we have

Theorem 1.1. Let P (ξ) be a real projective bundle over a small cover. P (ξ) is a small cover if
and only if the equivariant vector bundle ξ decomposes into the Whitney sum of equivariant line
bundles, i.e., ξ ≡ γ1 ⊕ · · · ⊕ γk−1 ⊕ γk.

Associated with moment-angle manifolds, we further study the structure of a real projective
bundle P (ξ) as a small cover. As an application, we characterize the real projective bundles (as
small covers) over 2-dimensional small covers. The 1st main result is stated as follows:

Theorem 1.2. Let P (ξ) be a real projective bundle over 2-dimensional small cover M2 with its
fibre RP k−1. If P (ξ) is a small cover, then P (ξ) can be constructed from real projective bundles

P (κ) over RP 2 and P (ζ) over T 2 by using the fibre sum ♯∆
k−1

.

The 2nd main result is about the projectivization of a real vector bundle ξ over RPn which
might not be a small cover. Let τRPn be the tangent bundle over RPn. The following relation is
well-known:

ϵ⊕ τRPn ≡ (n+ 1)γ,(1.1)
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where ϵ is the trivial line bundle over RPn and (n+1)γ represents the (n+1)-times Whitney sum
of the tautological line bundle γ. This relation (1.1) shows that

P (ϵ⊕ τRPn) ∼= P ((n+ 1)γ) ∼= P ((n+ 1)(γ ⊗ γ)) ∼= P ((n+ 1)ϵ) ∼= RPn × RPn.

Therefore, the projectivization of ϵ ⊕ τRPn always satisfies bundle triviality, so it also is a small
cover. Since there are exactly two line bundles over RPn, i.e., the trivial bundle ϵ and the
tautological line bundle γ, a question arises, saying how about the projectivization of γ ⊕ τRPn .
(Note that this might not be a small cover). This is just the question asked by Richard Montgomery
motivated from his interest of the study of singularities [5], which is stated as follows:

Problem 2 (R. Montgomery). When does P (γ ⊕ τRPn) have the trivial bundle structure? In
other wards, when is P (γ ⊕ τRPn) diffeomorphic (or homeomorphic) to RPn × RPn?

The answer is given as follows:

Theorem 1.3. Let γ be the tautological line bundle and τRPn be the tangent bundle over RPn.
Then, the following two statements are equivalent:

(1) P (γ ⊕ τRPn) is diffeomorphic to RPn × RPn;
(2) n = 0, 2, 6.

In particular, we also have that if n = 0, 2, 6 then P (γ ⊕ τRPn) is a small cover.
The organization of this paper is as follows. In Sections 2 and 3, we recall the basic facts about

small covers and projective bundles. In Section 4, we give a proof of Theorem 1.1, and we also give
the following two characterizations of projective bundles of small covers: (1) the characterization
by the twisted product with real moment-angle manifolds; (2) the combinatorial characterization
using simple convex polytopes and some function, like Davis-Januszkiewicz’s small cover. In
particular, to do (2), we introduce a new characteristic function on simple convex polytopes,
called projective characteristic functions. In Section 5, we prove Theorem 1.2. To do this, we use
the characterization (2) and introduce a new combinatorial operation which is the combinatorial
analogue of the fibre sum, called a projective fibre sum. In Section 6, we classify all topological
types of projective bundles over RP 2 and T 2. In Section 7, we prove Theorem 1.3 and propose a
question which we call bundle triviality problem. This problem is motivated by the question asked
by Richard Montgomery. This paper gives the detailed proof for the results stated in [15] and also
adds some results about the topological triviality problem.

Throughout this paper, all cohomologies and equivariant cohomologies will work on Z/2Z coeffi-
cients. For a convenience, H∗(−) means H∗(−;Z/2Z), and similarly for equivariant cohomologies.

2. Basic properties of small cover

In this section, we recall the notion of a small cover and the basic facts of its equivariant
cohomology.

2.1. Definition of small covers. Let Mn be an n-dimensional, smooth, compact, connected
manifold, and Pn a simple convex n-polytope, i.e., precisely n facets (codimension-1 faces) of Pn

meet at each vertex. Put Z2 = {−1, 1}. A Zℓ
2-action on M (for some 1 ≤ ℓ ≤ n) is said to

be locally standard if M is covered by Zℓ
2-invariant open charts {(Ui, φi)} such that each chart

φi : Ui → Rn induces weakly equivariant homeomorphism from Ui to an open subset Ω ⊂ Rn with
the standard Zℓ

2-action, i.e., the action induced from an injection Zℓ
2 → Zn

2 , where the Zn
2 action

on Rn is standard. We call Mn a small cover if M admits a Zn
2 -action such that

(a): the Zn
2 -action is locally standard, and

(b): its orbit space has the structure of a simple convex polytope Pn, i.e., the corresponding
orbit projection map π : Mn → Pn is constant on Zn

2 -orbits and maps every rank k orbit
(i.e., every orbit isomorphic to Zk

2) to an interior point of a k-dimensional face of the
polytope Pn, k = 0, 1, . . . , n.

It is easy to see that π sends Zn
2 -fixed points in Mn to vertices of Pn by using the above condition

(b). We often call Pn an orbit polytope of M .
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Let M1 and M2 be two small covers and π1 and π2 be their orbit projections. If there is an orbit
preserving equivariant homeomorphism between M1 and M2, i.e., there is a Zn

2 -homeomorphism
f : M1 →M2 such that the following diagram commutes

M1
f //

π1
  B

BB
BB

BB
B M2

π2
~~||

||
||

||

P

then we call M1 and M2 are Davis-Januszkiewicz equivalent (or simply, D-J equivalent), see [6].

2.2. Construction of small covers. Conversely, for a given simple polytope Pn, the small cover
Mn with orbit projection π : Mn → Pn can be reconstructed by using the characteristic function
λ : F → (Z/2Z)n, where F is the set of all facets in P and Z/2Z = {0, 1}. In this subsection, we
recall this construction (see [3], [10] for details).

Following the definition of a small cover π : M → P , we have that π−1(int(Fn−1)) consists
of (n − 1)-rank orbits, in other words, the isotropy subgroup at x ∈ π−1(int(Fn−1)) is K ⊂ Zn

2

such that K ≃ Z2, where int(Fn−1) is the relative interior of the facet Fn−1. Hence, the isotropy
subgroup at x is determined by a primitive vector v ∈ (Z/2Z)n such that (-1)v generates the
subgroup K, where (-1)v = ((−1)v1 , . . . , (−1)vn) for v = (v1, . . . , vn) ∈ (Z/2Z)n. In this way, we
obtain a function λ from the set F to vectors in (Z/2Z)n, which is called a characteristic function
or a coloring on Pn. We often describe λ as the (m× n)-matrix

Λ = (λ(F1) · · ·λ(Fm))

for F = {F1, . . . , Fm} with a given ordering, and we call this matrix a characteristic matrix. Since
the Zn

2 -action is locally standard, a characteristic function has the following property:

(⋆): if Fi1 ∩ · · · ∩ Fin ̸= ∅ for Fij ∈ F (j = 1, . . . , n), then {λ(Fi1), . . . , λ(Fin)} spans
(Z/2Z)n.

An interesting thing is that one can also construct small covers by using a given n-dimensional
simple convex polytope P and a characteristic function λ with the property (⋆). Let P be an
n-dimensional simple convex polytope. Suppose that a characteristic function λ : F → (Z/2Z)n
with the above property (⋆) is defined on P . Then a small cover can be constructed from P and
λ as the quotient space Zn

2 × P/ ∼λ, where the equivalence relation ∼λ on Zn
2 × P is defined as

follows: (t, x) ∼λ (t′, y) if and only if x = y ∈ P and

t = t′ if x ∈ int(P );
t−1t′ ∈ ⟨(-1)λ(Fi1 ), · · · , (-1)λ(Fir )⟩ ≃ Zr

2 if x ∈ int(Fi1 ∩ · · · ∩ Fir ),

where ⟨(-1)λ(Fi1 ), · · · , (-1)λ(Fir )⟩ ⊂ Zn
2 denotes the subgroup generated by (-1)λ(Fij

) for j =
1, . . . , r with r ≤ n. The small cover Zn

2 × P/ ∼λ defined by this way is usually denoted by
M(P, λ).

Summing up, there is the following bijective correspondence:

Small covers
with Zn

2 -actions
−→
←−

Simple convex polytopes
with characteristic functions

2.3. Equivariant cohomology and ordinary cohomology of small cover. In this subsection,
we recall the equivariant cohomology and ordinary cohomology of the small covers (see [3], [10]
for details). Let M = M(P, λ) be an n-dimensional small cover. We denote an ordered set of
facets of P by F = {F1, . . . , Fm} such that ∩ni=1Fi ̸= ∅. Due to [10], M(P, λ1) is D-J equivalent to
M(P, λ2) if and only if there is an automorphism X ∈ GL(n;Z/2Z) such that λ1 = X ◦ λ2 (such
(P, λ1) and (P, λ2) (or their characteristic matrix Λ1 and Λ2) are said to be equivalent). Therefore,
up to D-J equivalence (or equivalently, equivalence of (P, λ)), we may assume the values of the
characteristic function λ on F1, . . . , Fn as

λ(Fi) = ei
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where e1, . . . , en are the standard basis vectors of (Z/2Z)n. Then we can write the characteristic
matrix as

Λ = (In | Λ′),

where In is the (n× n)-identity matrix and Λ′ is an (l × n)-matrix, where l = m− n.
The equivariant cohomology of a G-manifold X is defined by the ordinary cohomology of the

Borel construction EG×G X, where EG is the total space of a universal G-bundle, and denoted
by H∗

G(X). In this paper, we have assumed the coefficient group of cohomology is Z/2Z. Due to
[10], the equivariant cohomology of a small cover M is given by

H∗
Zn
2
(M) ≃ Z/2Z[τ1, . . . , τm]/I,

where the symbol Z/2Z[τ1, . . . , τm] represents the polynomial ring generated by the degree 1
elements τi (i = 1, . . . ,m), and the ideal I is generated by the following monomial elements:∏

i∈I

τi

where I runs through every subset of {1, . . . ,m} such that ∩i∈IFi = ∅. On the other hand, the
ordinary cohomology ring of M is given by

H∗(M) ≃ H∗
Zn
2
(M)/J ,

where the ideal J is generated by the following degree 1 homogeneous elements:

τi + λi1x1 + · · ·λilxl,

for i = 1, . . . , n. Here, (λi1 · · ·λil) is the ith row vector of Λ′ (i = 1, . . . , n), and xj = τn+j

(j = 1, . . . , l).
Note that the above ideal J coincides with the ideal generated by π∗(H+(BZn

2 )) = Im π+, i.e.,

J = ⟨Im π+⟩,

where H+(BZn
2 ) = H∗(BZn

2 ) \H0(BZn
2 ) and π∗ : H∗(BZn

2 )→ H∗
Zn
2
(M) is the induced homomor-

phism from the natural projection EZn
2 ×Zn

2
M → BZn

2 , where BZn
2 = (RP∞)n.

3. General facts of projective bundles

In this section, we recall some general notations and basic facts for projective bundles (see
e.g. [9], [23] for details). We first recall the definition of the projective bundle. Let ξ be a
k-dimensional, real vector bundle over M . We will denote the total space of ξ by E(ξ), the
projection from E(ξ) onto M by ρ̃, and the fibre on x ∈ M by Fx(ξ), i.e., Fx(ξ) = ρ̃−1(x). Put
ξ0 the bundle induced by ξ removing the 0-section. Then each fibre of ξ0 has the multiplicative
action of R∗ = R \ {0}. Taking its orbit space, we have the fibre bundle ρ : P (ξ)→M whose fibre
is the (k− 1)-dimensional real projective space RP k−1. We call P (ξ) the real projective bundle of
ξ. We often denote the fibre of P (ξ) on x ∈M by Px(ξ), i.e., Px(ξ) = ρ−1(x) ≃ RP k−1.

We next recall the properties of cohomology of projective bundles. Let ι : RP k−1 ≃ Px(ξ) →
P (ξ) be the natural embedding. As is well known, the induced ring homomorphism

H∗(P (ξ))
ι∗−→ H∗(RP k−1)(3.1)

is surjective. On the other hand, the induced ring homomorphism

H∗(M)
ρ∗

−→ H∗(P (ξ))(3.2)

is injective. Moreover, we have the kernel of ι∗ is the ideal generated by Im ρ+, where Im ρ+ =
ρ∗(H+(M)), where H+(M) = H∗(M) \ {0}. Now we want to consider the ring structure of the
cohomology H∗(P (ξ)). In order to do this, we define the following line bundle over P (ξ) associated
from ξ:

γξ = ⊔x∈M{(L, r) ∈ Px(ξ)× Fx(ξ) | r ∈ L},(3.3)
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where we regard L ∈ Px(ξ) as the line in the fibre Fx(ξ) of ξ. We call γξ the tautological (real)
line bundle of P (ξ). Note that we have the following diagram:

E(γξ)

R $$J
JJJJJJJJ
// E(ρ∗ξ)

Rk

��

// E(ξ)

ρ̃Rk

��
RP k−1

ι // P (ξ)
ρ // M

(3.4)

where ρ∗ξ is the pull-back of ξ by ρ. Let wi(ξ) ∈ Hi(M) be the ith Stiefel-Whitney class of the
k-dimensional vector bundle ξ for i = 1, . . . , k, and w1(γξ) ∈ H1(P (ξ)) be the 1st Stiefel-Whitney
class of γξ. Then ι∗(w1(γξ)) is the ring generator of H∗(RP k−1). Because

H∗(RP k−1) ≃ Z/2Z[a]/⟨ak⟩(3.5)

with deg a = 1, we have ι∗(w1(γξ)
k) = 0 in H∗(RP k−1). However, w1(γξ)

k might not be zero
in Hk(P (ξ)). The following formula, called the Borel-Hirzebruch formula, gives us the explicit
expression of this element (see [2] or [9, (23.3)]):

w1(γξ)
k =

k∑
i=1

ρ∗(wi(ξ))w1(γξ)
k−i.(3.6)

Therefore, together with (3.2), H∗(P (ξ)) is isomorphic to

H∗(M)[x]/⟨
k∑

i=0

ρ∗(wi(ξ))x
k−i⟩(3.7)

as the H∗(M)-algebra, where x = w1(γξ) and ρ∗(wi(ξ)) is regarded as the element in H∗(M)
(because of the injectivity of ρ∗). Moreover, by using the Borel-Hirzebruch formula, we have the
following proposition.

Proposition 3.1. Let M be a compact, connected manifold, and ξ a k-dimensional real vector
bundle, where k > 1. Then, the following two statements are equivalent:

(1) H∗(P (ξ)) ≃ H∗(M × RP k−1);
(2) w(ξ) = (1 +X)k for some X ∈ H1(M).

Proof. Because M is a compact, connected manifold, its cohomology ring H∗(M) is finitely gen-
erated. Therefore, we may assume that

H∗(M) = Z/2Z[η1, · · · , ηm]/⟨fj | j = 1, . . . , l⟩(3.8)

for some polynomial fj = fj(η1, · · · , ηm) and generators η1, . . . , ηm. Because ρ∗ : H∗(M) →
H∗(P (ξ)) is injective, we may regard η1, . . . , ηm as the generators in H∗(P (ξ)). Moreover, since
ι∗(w1(γξ)) is the generator of H∗(RP k−1), we may denote the cohomology ring of H∗(P (ξ)) as
follows:

Z/2Z[η1, . . . , ηm, w1(γξ)]/⟨fj , w1(γξ)
k −

k∑
i=1

ρ∗(wi(ξ))w1(γξ)
k−i | j = 1, . . . , l⟩(3.9)

by using the Borel-Hirzebruch formula (3.6).
Assume that the statement (1) holds, that is, H∗(P (ξ)) ≃ H∗(M ×RP k−1). Then, we may put

H∗(P (ξ)) ≃ Z/2Z[η1, . . . , ηm, A]/⟨fj , Ak | j = 1, . . . , l⟩,(3.10)

for some A ∈ H1(P (ξ)). Comparing (3.9) and (3.10), we may write

A = w1(γξ) + ϵ1η1 + · · ·+ ϵmηm(3.11)

= w1(γξ) +X
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for some ϵi ∈ Z/2Z (i = 1, . . . , m). Therefore, we have

Ak (3.11)
= (w1(γξ) +X)k ≡2 w1(γξ)

k +
k∑

i=1

(
k
i

)
Xiw1(γξ)

k−i(3.12)

(3.6)
≡2

k∑
i=1

ρ∗(wi(ξ))w1(γξ)
k−i +

k∑
i=1

(
k
i

)
Xiw1(γξ)

k−i

(3.10)
≡2 0.

Based upon theH∗(M)-algebraic structure ofH∗(P (ξ)) in (3.7), we have that w1(γξ)
0, . . . , w1(γξ)

k−1

are the H∗(M)-module generators of H∗(P (ξ)). Therefore, the equation (3.12) implies that

ρ∗(wi(ξ)) ≡2

(
k
i

)
Xi.

Furthermore, because ρ∗ is injective, we may write

w(ξ) = (1 +X)k,

where k ≡2 0 or 1, and w(ξ) is the total Stiefel-Whitney class of ξ. This establishes the statement
(2).

Assume that the statement (2) holds, that is, w(ξ) = (1+X)k for some X ∈ H1(M). By using
(3.6) and the injectivity of ρ∗, one can easily show that (w1(γξ)+X)k = 0. Using (3.5) and (3.8),
we may put

H∗(M × RP k−1) = Z/2Z[η1, . . . , ηm, a]/⟨fj , ak | j = 1, . . . , l⟩,(3.13)

for some a ∈ H1(M ×RP k−1). Therefore, using (3.9) and the above (3.13), there is the following
isomorphism from H∗(M × RP k−1) to H∗(P (ξ)):

φ : ηi 7→ ηi (i = 1, . . . , m);

φ : a 7→ w1(γξ) +X.

This establishes the statement (1). �

4. Projective bundles over small covers

In this section, we introduce some notations and basic facts for projective bundles over small
covers. We first recall the definition of a G-equivariant vector bundle over G-space M (also see
the notations in Section 3). A G-equivariant vector bundle is a vector bundle ξ over G-space M
together with a lift of the G-action to E(ξ) by fibrewise linear transformations, i.e., E(ξ) is also a
G-space, the projection E(ξ) → M is G-equivariant and the induced fibre isomorphism between
Fx(ξ) and Fgx(ξ) is linear, for all x ∈M and g ∈ G.

Example 4.1 (Generalized real Bott manifold). A generalized real Bott manifold of height m is
an iterated real projective fibration defined as a sequence of real projective fibrations

RBm
πm // RBm−1

πm−1 // · · · π2 // RB1
π1 // RB0 = {a point}

where RBi = P (γi1 ⊕ · · · ⊕ γil) is the projectivization of a Whitney sum of line bundles over
RBi−1. Note that RB1 is just the real projective space. If the dimension of each fibre is exactly
1, then this is called a real Bott manifold. See [19] for details.

Example 4.2 (Stong manifold ([28])). Let πi : B = RPn1 × · · · × RPnl → RPni be the natural
projection, for i = 1, . . . , l. We define the line bundle γi over B by the pull-back of the tauto-
logical line bundle over RPni along πi. Then, a Stong manifold S is defined by the following
projectivization over B:

S = P (γ1 ⊕ · · · ⊕ γl)→ B.

It is easy to check that this is a generalized real Bott manifold.
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4.1. Necessary and sufficient conditions of when P (ξ) is a small cover. We first prove the
following general fact:

Theorem 4.3. Let M be an n-dimensional, compact, connected manifold. Assume that M has
a locally standard Zℓ

2-action for some 1 ≤ ℓ ≤ n, and this Zℓ
2-action is a maximal real torus

action, i.e., there is no effective Zℓ+1
2 -action which is an extension of this Zℓ

2-action. Let ξ be a
k-dimensional, Zℓ

2-equivariant vector bundle over M . The projective bundle P (ξ) of ξ admits a

locally standard Zℓ
2 × Zk−1

2 -action if and only if the equivariant vector bundle ξ decomposes into
the Whitney sum of line bundles, i.e., ξ ≡ γ1 ⊕ · · · ⊕ γk−1 ⊕ γk.

Proof. Assume that P (ξ) admits a locally standard Zℓ
2×Zk−1

2 -action. Because ξ is a Zℓ
2-equivariant

vector bundle over M with k-dimensional fibers, the projection ρ : P (ξ) → M is Zℓ
2-equivariant.

Note that the Zk−1
2 -factor acts trivially on M because the Zℓ

2-action on M is maximal. It follows

from this fact that ρ : P (ξ)→M is also (Zℓ
2×Zk−1

2 )-equivariant, where Zk−1
2 acts on M trivially.

Therefore, each fibre Px(ξ) over x ∈ M has an effective Zk−1
2 -action. This implies that there is

the Zk
2-action on Fx(ξ) such that (Fx(ξ) \ {0})/R∗ is Zk−1

2 -equivariantly homeomorphic to Px(ξ),
where Fx(ξ) ∼= Rk is the fibre of E(ξ) over x ∈M . Hence, the total space E(ξ) of ξ has a (Zℓ

2×Zk
2)-

action and the restricted Zℓ
2-action is induced from the lift of the Zℓ

2-action on M . Let {Ui}i∈I be
a Zℓ

2-equivariant open covering of M . Then, by using the local triviality condition of the vector
bundle, we may denote ξ as the gluing of Ui × Rk for i ∈ I, say ⨿i∈I(Ui × Rk)/ ∼. Here, the
symbol ∼ represents the identification (u, x) ∼ (u, y) for u ∈ Ui ∩Uj by x = A(u)y ∈ Rk for some
transition function A(u) ∈ GL(k;R). Here, because M is a smooth closed manifold, we may reduce
the structure group into the orthogonal group O(k) and we can take A(u) ∈ O(k). Therefore, if
the Zk

2-action on the Rk-factor in Ui × Rk extends to the global action on ⨿(Ui × Rk)/ ∼, then
the transition function A(u) ∈ O(k) must commute with Zk

2 for all u ∈ Ui ∩ Uj . Note that we
may regard Zk

2 as the diagonal subgroup in O(k) up to conjugation. Because the centralizer of Zk
2

(the diagonal subgroup) in O(k) is Zk
2 (the diagonal subgroup) itself, we have A(u) ∈ Zk

2 ⊂ O(k)
for all u ∈ Ui ∩ Uj . This implies that the structure group of ξ is Zk

2 . This is nothing but
ξ ≡ γ1 ⊕ · · · ⊕ γk−1 ⊕ γk.

Conversely, if ξ ≡ γ1⊕· · ·⊕ γk−1⊕ γk, then we can easily check that this vector bundle has the
Zk
2-action along fibre and P (ξ) has the induced locally standard (Zℓ

2 × Zk−1
2 )-action. �

As a corollary of this theorem, we have the following criterion for the projective bundle P (ξ)
to be a small cover:

Corollary 4.4 (Theorem 1.1). Let P (ξ) be a real projective bundle over a small cover. P (ξ) is
a small cover if and only if the equivariant vector bundle ξ decomposes into the Whitney sum of
equivariant line bundles, i.e., ξ ≡ γ1 ⊕ · · · ⊕ γk−1 ⊕ γk.

As is well known, P (ξ ⊗ γ) ∼= P (ξ) (homeomorphic) for all line bundle γ (e.g. see [20]). Hence,
by using the above Corollary 4.4, the following corollary holds.

Corollary 4.5. Let M be a small cover, and ξ be a Whitney sum of k line bundles over M . Then
the small cover P (ξ) is homeomorphic to

P (γ1 ⊕ · · · γk−1 ⊕ ϵ),

where ϵ is the trivial line bundle over M .

Proof. Assume ξ ≡ γ′
1 ⊕ · · · ⊕ γ′

k−1 ⊕ γ′
k. Then we have that

P (γ′
1 ⊕ · · · ⊕ γ′

k−1 ⊕ γ′
k)
∼= P ((γ′

1 ⊗ γ′
k)⊕ · · · ⊕ (γ′

k−1 ⊗ γ′
k)⊕ ϵ),

because γ′
k ⊗ γ′

k ≡ ϵ. This establishes the statement. �
In this paper, the projective bundle in Corollary 4.5 (also see Section 1) is said to be the

projective bundle over small cover.
In addition, by Corollary 4.4, we also have the following two corollaries:

Corollary 4.6. Each generalized real Bott manifold is a small cover. In particular, each Stong
manifold is a small cover.
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The generalized Bott manifold is defined in [8] as a special class of toric manifolds. The
generalized real Bott manifold is its real analogue. It was shown in [28] that Stong manifolds can
be chosen as generators of N∗.

Corollary 4.7. Each class of N∗ contains a small cover as its representative.

The fact of Corollary 4.7 has been proved in [4] with a different argument, and in addition, the
fact that each class of complex cobordism contains a quasitoric manifold as its representative was
also proved in [4]. For the equivariant case, see [16], [17].

From the next subsection to Section 6, we assume that M is an n-dimensional small cover, and
ξ is a k-dimensional, Zn

2 -equivariant vector bundle over M .

4.2. Structures of projective bundles over small covers. In this subsection, we show the
quotient construction of the projective bundles of small covers. First, we recall the general facts
on the (real) moment-angle manifolds of simple convex polytopes (see [3], [10]). Let P be a simple,
convex polytope and F the set of its facets {F1, · · · , Fm}. We denote by ZP the manifolds

ZP = Zm
2 × P/ ∼,

where (t, p) ∼ (t′, p) is defined by t−1t′ ∈
∏

p∈Fi
Z2(i) (Z2(i) ⊂ Zm

2 is the rank 1 subgroup

generated by the i-th factor), and we call it a (real) moment-angle manifold over P . We note that
if P = Mn/Zn

2 (i.e., there is a small cover Mn over P ), then there is the subgroup K ⊂ Zm
2 such

that K ≃ Zm−n
2 and K acts freely on ZP . Therefore, in this case we can denote the small cover

M = ZP /Zl
2 by the free Zl

2-action on ZP for l = m− n.
Now assume that there is a small cover M over P . Since [M, BZ2] = H1(M ; Z2) ≃ Zl

2 (see
[10], [27]), we see that all line bundles γ can be written as follows:

γ ≡ ZP ×Zl
2
Rα,

where Zl
2 acts on Rα = R by some representation α : Zl

2 → Z2. Moreover, its total Stiefel-
Whitney class is w(ZP ×Zl

2
R) = 1 + δ1x1 + · · ·+ δlxl, where (δ1, · · · , δl) ∈ {0, 1}l is induced by

a representation Zl
2 → Z2, i.e.,

(ϵ1, · · · , ϵl) 7→ ϵδ11 · · · ϵ
δl
l ,

for ϵi ∈ Z2, and x1, . . . , xl are the degree 1 generators of H∗(M) introduced in Section 2.3.
Therefore, by using Corollary 4.5, all projective bundles over the small cover M are as follows:

P (ξ) = ZP ×Zl
2
(Rk \ {0})/R∗ = ZP ×Zl

2
RP k−1,(4.1)

where

ξ = ZP ×Zl
2
Rk

with the Zl
2-representation space Rk = Rα1 ⊕ · · · ⊕ Rαk

such that

αi : Zl
2 → Z2

where i = 1, · · · , k and αk is the trivial representation. Then, we may denote each projective
bundle over the small cover M by

ZP ×Zl
2
RP k−1 = P (γ1 ⊕ · · · γk−1 ⊕ ϵ),

where γi = ZP×Zl
2
Rαi (i = 1, · · · , k−1) satisfies w(γi) = 1+δ1ix1+· · ·+δlixl for (δ1i, · · · , δli) ∈

(Z/2Z)l, which is induced by the representation αi : Zl
2 → Z2. This is also denoted by the following

form:

ZP ×Zl
2
P (Rα1 ⊕ · · · ⊕ Rαk

).

Let ΛP ∈ M(m,n;Z/2Z) be the characteristic matrix of M (see Section 2.2, 2.3), where
M(m,n;Z/2Z) is the set of (n × m)-matrices with Z/2Z entries. Due to the arguments in
Section 2.3, up to D-J equivalence, ΛP is equivalent to (In|Λ) ∈ M(m,n;Z/2Z) for some Λ ∈
M(l, n;Z/2Z), where l = m− n. Using the above constriction of projective bundles and comput-
ing their characteristic functions, we have the following proposition.
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Proposition 4.8. Let P (γ1 ⊕ · · · ⊕ γk−1 ⊕ ϵ) be the projective bundle over M . Then its orbit
polytope is Pn ×∆k−1, and its characteristic matrix can be written by(

ΛP O
Λ′
P Y

)
∈M(m+ k, n+ k − 1;Z/2Z)(4.2)

for some Λ′
P ∈M(m, k − 1;Z/2Z) and a characteristic matrix Y ∈M(k, k − 1;Z/2Z) of RP k−1,

where Pn = M/Zn
2 , ∆

k−1 = RP k−1/Zk−1
2 (i.e., (k − 1)-dimensional simplex). Moreover, up to

D-J equivalence (and taking an appropriate order of facets), this is equivalent to the following
characteristic matrix: (

In Λ O 0
O Λξ Ik−1 1

)
,(4.3)

with

Λξ =

 δ11 · · · δl1
...

. . .
...

δ1,k−1 · · · δl,k−1

 ,

where 0 ∈M(1, n;Z/2Z) is the 0 vector, 1 ∈M(1, k− 1;Z/2Z) is the vector whose all entries are
1 and δij’s are coefficients appeared in w(γi) = 1 + δ1ix1 + · · ·+ δlixl for i = 1, . . . , k − 1.

Therefore, we have the following corollary by using Proposition 3.1.

Corollary 4.9. Let M be a small cover, and ξ a Whitney sum of k line bundles over M . Then
the following two statements are equivalent:

(1) H∗(P (ξ)) ≃ H∗(M × RP k−1);

(2) w(ξ) = w(γ1 ⊕ · · · ⊕ γk−1 ⊕ ϵ) =
∏k−1

j=1 (1 +
∑l

i=1 δijxi) = (1+X)k for some X ∈ H1(M).

4.3. New characteristic function of projective bundles over small covers. In order to
show the construction theorem of projective bundles over 2-dimensional small covers, we introduce
a new characteristic function (matrix). By using Proposition 4.8, the characteristic matrix of
P (γ1 ⊕ · · · ⊕ γk−1 ⊕ ϵ) is (

ΛP O
Λ′
P Y

)
(4.4)

which satisfies that there exists A ∈ GL(n+ k − 1;Z/2Z) such that

A

(
ΛP

Λ′
P

)
=

(
In Λ
O Λξ

)
.(4.5)

Here, we may put (
ΛP

Λ′
P

)
=

(
a1 · · · am
b1 · · · bm

)
,

for some ai ∈ {0, 1}n and bi ∈ {0, 1}k−1 (i = 1, · · · , m). Therefore, in order to characterize
the projective bundles over Mn, it is sufficient to attach the following ((n + k − 1) ×m)-matrix
which satisfies (4.5) (

ΛP

Λ′
P

)
(4.6)

on the facets of P . Namely, it is sufficient to consider the following function on facets: for P and
its facets F with the fixed appropriate order, the function

λP : F = {F1, · · · , Fm} → {0, 1}n × {0, 1}k−1

which satisfies that the projection to the 1st factor pa : {0, 1}n × {0, 1}k−1 → {0, 1}n satisfies
that

det(pa ◦ λP (Fi1) · · · pa ◦ λP (Fin)) = 1(4.7)
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if Fi1 ∩ · · · ∩Fin ̸= ∅, i.e., pa ◦ λP is the usual characteristic function on Pn. We call this function
λP a projective characteristic function over Pn; or a (k − 1)-dimensional projective characteristic
function when we emphasize the dimension of the fibre. One can easily show that the ((n + k −
1)×m)-matrix (λP (F1) · · ·λP (Fm)) is identified with the matrix (4.6). We call this matrix a ((k-
1)-dimensional) projective characteristic matrix over P . Figure 1 is an illustration of projective
characteristic functions over 2-dimensional small covers.

Figure 1. The examples of (k − 1)-dimensional projective characteristic func-
tions. Here, e1 = (1, 0)× 0 and e2 = (0, 1)× 0 are the generators of (Z/2Z)2 × 0.
For the left triangle, we may take an arbitrary element b ∈ (0, 0) × (Z/2Z)k−1

and one can easily show that each of those corresponds with a projective bundle
over RP 2 whose fibre is RP k−1. For the right square, a1, a2 are elements in
(Z/2Z)2 × 0 which satisfy (4.7) on each vertex, and b1, b2 ∈ (0, 0) × (Z/2Z)k−1

determine the bundle structure.

Note that in Figure 1, if we put b = 0 and b1 = b2 = 0 ∈ Zk−1
2 , then this gives ordinary

characteristic functions on the triangle and the square. It is easy to check that this is the general
fact for any projective characteristic functions. Therefore, we may regard that such a forgetful
map of the (Z/2Z)k−1 part, say f : (Pn, λP ) → (Pn, pa ◦ λP ), as the equivariant projection
P (ξ)→M(P, pa ◦ λP ).

Using Proposition 4.8 and the construction method of small covers (see Section 2.2), one can
easily show that the pair (Pn, λP ) corresponds with the projective bundle over the n-dimensional
small cover whose orbit polytope is Pn. More precisely, for the projective bundle P (ξ) over the
small cover M(P, λ), there exists the projective characteristic function (P, λP ) such that pa ◦λP =
λ. On the other hand, for the projective characteristic function (P, λP ) there exists the projective
bundle ZP ×Zl

2
RP k−1 = P (γ1⊕· · ·⊕γk−1⊕ ϵ) over Zp/Zl

2 = M(P, pa ◦λP ), where the line bundle

γi is determined by the ith column vector of Λξ appeared in (4.5) (also see Section 4.1).
Summing up, we have the following bijective correspondence:

Projective bundles
over small cover Mn

−→
←− Pn with projective characteristic functions λP

5. New operations and main theorem

Before stating our main theorem, we introduce a new operation in this section.

5.1. Combinatorial interpretation of the fibre sum. For two polytopes with projective char-
acteristic functions, we can do the connected sum operation which is compatible with projective
characteristic functions as indicated in Figure 2. Then we get a new polytope with the projective
characteristic function. We call this operation a projective fibre sum and denote it by ♯∆k−1 .

More precisely, the operation is defined as follows. Let p and q be vertices in n-dimensional
polytopes with (k − 1)-dimensional projective characteristic functions (P, λP ) and (P ′, λP ′), re-
spectively. Here, we assume that the target spaces of the maps λP and λP ′ are the same
(Z/2Z)n × (Z/2Z)k−1, i.e., the corresponding projective bundles have the same fibre RP k−1.
Moreover, we assume that λP (Fi) = λP ′(F ′

i ) for all facets {F1, . . . , Fn} around p and {F ′
1, . . . , F

′
n}

around q, i.e., ∩ni=1Fi = {p} and ∩ni=1F
′
i = {q}. Then we can do the connected sum of two

polytopes P and P ′ at these vertices by gluing each pair of facets Fi and F ′
i . Thus, we get a com-

binatorial object (might not be a convex polytope) with a function (P♯∆k−1P ′, λP♯
∆k−1P ′) from
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(P, λP ) and (P ′, λP ′) (also see Figure 2). Note that P1♯∆k−1P2 is a combinatorial simple convex
polytope if n ≤ 3 by using the Steinitz’ theorem: the graph Γ is a graph of the 3-dimensional
polytope P if and only if Γ is 3-connected and planer (see [29, Chapter 4]). Moreover, it is easy
to check that the function λP♯

∆k−1P ′ is a projective characteristic function, i.e., it satisfies (4.7).

By following the converse of the above definition, we may define the inverse operation ♯−1
∆k−1 .

Figure 2. The projective fibre sum ♯∆k−1 along the same labeled vertices.

From the geometric point of view, the inverse image of vertices of polytopes with projective
characteristic functions corresponds to the projective space RP k−1. Therefore, this operation is
nothing but an equivariant gluing along the fibre RP k−1, i.e., fibre sum of two fibre bundles.

Remark 5.1. If k = 1, then the projective characteristic function is the ordinary characteristic
function, i.e., the dimension of fibres is 0. Therefore, we can regard the 0-dimensional projective
fibre sum ♯∆0 as the ordinary (equivariant) connected sum ♯ appeared in [13], [14], [18], [25].

If P♯∆k−1P ′ is a convex simple polytope, then (P♯∆k−1P ′, λP♯
∆k−1P ′) defines the (k − 1)-

dimensional projective bundle over M♯M ′ (connected sum), where M = M(P, pa ◦ λP ) and M ′ =
M(P ′, pa ◦ λP ′). We note that if λP and λP ′ are(

X a1 · · · an
Y b1 · · · bn

)
,

(
X ′ a1 · · · an
Y ′ b1 · · · bn

)
,

respectively, then λP♯
∆k−1P ′ is (

X a1 · · · an X ′

Y b1 · · · bn Y ′

)
,

where the same n column vectors above correspond to the projective characteristic functions on
{F1, . . . , Fn} and {F ′

1, . . . , F
′
n}.

5.2. Construction theorem of projective bundles over 2-dimensional small covers. In
this subsection, we prove one of the main results of this paper. The standard Zn

2 -action on RPn

is defined by

(t1, . . . , tn) · [r0 : r1 · · · : rn] 7→ [r0 : t1r1 · · · : tnrn]

where (t1, . . . , tn) ∈ Zn
2 and [r0 : r1 · · · : rn] ∈ RPn, and we regard T 2 as the product of two RP 1

with the standard Z2-actions (and we call it the standard Z2
2-action on T 2). Put P (κi) and P (ζj)

equivariant projective bundles over RP 2 and T 2 with the standard Z2
2-actions, respectively (also

see Proposition 6.1 and 6.2). Here, κi and ζj are products of k line bundles, i.e., P (κi) and P (ζj)
have the same fibre RP k−1 (for i, j = 1, 2, . . .). Then, we have the following theorem.
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Theorem 5.2. Let P (ξ) be a projective bundle over 2-dimensional small cover M . Then, P (ξ) is
D-J equivalent to

P (κ1)♯∆k−1 · · · ♯∆k−1P (κl1)♯∆k−1P (ζ1)♯∆k−1 · · · ♯∆k−1P (ζl2),

for some vector bundles κ1, . . . , κl1 and ζ1, . . . , ζl2 .

Proof. Let P be the orbit polytope of M . Because dimM = 2, we may assume that P is an m-gon
for some m ≥ 3, where m is the number of facets in P and we may put them {F1, . . . , Fm} such
that Fi ∩ Fi+1 ̸= ∅ (i = 1, . . . ,m− 1) and F1 ∩ Fm ̸= ∅.

We first claim that, in m-gon for m ≥ 5, there are two separated facets F and F ′ whose
projective characteristic functions satisfy (4.7). Assume m ≥ 5. Put the projective characteristic
function λP on Fi and Fj (where Fi ∩ Fj = ∅) as follows:(

ai
bi

)
and

(
aj
bj

)
,

respectively, where ai, aj ∈ {0, 1}2 = (Z/2Z)2 and bi, bj ∈ {0, 1}k−1. Because the projection
pa◦λP is nothing but the “ordinary” characteristic function λ on P induced from the 2-dimensional
small cover M , we have that ai ̸= 0 for all i = 1, . . . ,m. Therefore, we see that det(ai,aj) = 1
if and only if ai ̸= aj . If det(ai,aj) = 1, we can take Fi and Fj as F and F ′ we want. Assume
det(ai,aj) = 0, i.e, ai = aj . Since m ≥ 5, we may assume that the facet Fj+1 which is next to Fj ,
i.e, Fj+1 ∩ Fj ̸= ∅, satisfies that Fj+1 ∩ Fi = ∅. Therefore, by ai = aj , we have det(aj+1,aj) =
det(aj+1,ai) = 1. Thus, we can take Fi and Fj+1 as F and F ′ we want. This establishes the
claim.

For such facets F and F ′, we can do ♯−1
∆k−1 , because there are two m1-gon P1 and m2-gon P2

(where m = m1 +m2 − 2) with vertices generated by two facets which have the same projective
characteristic functions of F and F ′ (see Figure3). This implies that (P, λP ) can be constructed

Figure 3. We can do ♯−1
∆k−1 always for m-gon P (m ≥ 5). This figure illustrates

the 8-gon P decomposes into the 4-gon P1 and the 6-gon P2. Here, each F (resp.
F ′) has the same projective characteristic function, and every corresponding facets
also have the same projective characteristic functions.

from (P1, λP1) and (P2, λP2) by using ♯∆k−1 , where P is an m-gon (m ≥ 5), P1 is an m1-gon and
P2 is an m2-gon. Note that m1 and m2 are strictly less than m. Iterating this argument, finally
we have the finite number of 3-gons and 4-gons (see Figure 4).

It is easy to see that we can not do ♯−1
∆k−1 for 3-gons any more. However, there are two 4-gons;

one can not do ♯−1
∆k−1 (such as the left in Figure 5, because det(e1, e1) = 0 and det(e2, e2) = 0),

and another can do ♯−1
∆k−1 (such as the right in Figure 5). If we can do ♯−1

∆k−1 on a 4-gon, then
we get two 3-gons (see the right in Figure 5). Consequently, we get 3-gons and 4-gons which
we can not do ♯−1

∆k−1 any more from an m-gon (m ≥ 3). We can easily classify such 3-gons and
4-gons are equivalent (i.e. up to D-J equivalence) to the characteristic functions illustrated in
Figure 6. Here, the “ordinary” characteristic functions obtained from the projections pa ◦ λP of
the projective characteristic functions λP in Figure 6 are nothing but those of RP 2 and T 2 with
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Figure 4. Iterating ♯−1
∆k−1 , finally, we have finite 3-gons and 4-gons; P1, . . . , P4

in this case.

Figure 5. We can not do ♯−1
∆k−1 for the left 4-gon; however, we can do ♯−1

∆k−1 for
the right 4-gon.

Figure 6. Characteristic functions on 3-gons ∆2 and 4-gons I2 in the final step.

the standard Z2
2-actions. Therefore, by using the finite times ♯−1

∆k−1 , the projective bundle over M

can be decomposed into projective bundles over RP 2 and T 2. It follows from the converse of this
argument that we establish the statement of this theorem. �

By using Remark 5.1 and Theorem 5.2, we have the following well-known fact.

Corollary 5.3. Let M2 be a 2-dimensional small cover. Then M2 is equivariantly homeomorphic
to an equivariant connected sum of finite RP 2’s and T 2’s with the standard Z2

2-actions.

Remark 5.4. Recall that the one-dimensional small cover is just RP 1 ∼= S1, and its real line
bundle over can be written as the quotient space S1 ×Z2 Rα by the free Z2 action on S1 and
the representation α : Z2 → Z2 ∈ (Z/2Z) (i.e., trivial or non-trivial) and that all vector bundles
over S1 can be split into line bundles. Therefore, all projectivization of vector bundles over S1 is
homeomorphic to

S1 ×Z2
P (Rα1

⊕ · · · ⊕ Rαk−1
⊕ R)
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for some vector (α1, . . . , αk−1) ∈ (Z/2Z)k−1, where S1 ×Z2 R = S1 × R (i.e., the trivial bundle).
This implies that in the case of 1-dimensional small cover there is not the construction theorem
such as Theomre 5.2 but the direct classification explained as above.

6. Topological classification of projective bundles over RP 2 and T 2

In this section, we give the topological classification of P (κ) and P (ζ) appeared in Theorem
5.2, i.e., the classification of the topological types of projective bundles over RP 2 and T 2. As we
assumed before, all vector bundles in this section are split into the Whitney sum of line bundles.

6.1. Topological classification of projective bundles over RP 2. The classification of pro-
jective bundles over RP 2 is known by Masuda’s paper [19]. Due to [19], we have q ≡ q′ or k − q′

(mod 4) if and only if S2 ×Z2 P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (q′γ ⊕ (k − q′)ϵ), where Z2 acts on
S2 diagonally and γ represents the tautological line bundle over RP 2, i..e, E(γ) ≡ S2 ×Z2 R such
that Z2 acts on R standardly. Note that a line bundle over RP 2 is γ or the trivial line bundle
ϵ. By using this fact (and comparing the cohomology rings), we can easily check the following
proposition:

Proposition 6.1. Let P (κ) ∼= P (qγ ⊕ (k − q)ϵ) be a projective bundle over RP 2. Then, it is
homeomorphic to one of the following distinct manifolds.

(1) The case k ≡ 0 (mod 4):
(a) if q ≡ 0 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= RP 2 × RP k−1;
(b) if q ≡ 1, 3 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (γ ⊕ (k − 1)ϵ);
(c) if q ≡ 2 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2

P (2γ ⊕ (k − 2)ϵ).
(2) The case k ≡ 1 (mod 4):

(a) if q ≡ 0, 1 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= RP 2 × RP k−1;
(b) if q ≡ 2, 3 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (2γ ⊕ (k − 2)ϵ).

(3) The case k ≡ 2 (mod 4):
(a) if q ≡ 0, 2 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= RP 2 × RP k−1;
(b) if q ≡ 1 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (γ ⊕ (k − 1)ϵ);
(c) if q ≡ 3 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (3γ ⊕ (k − 3)ϵ).

(4) The case k ≡ 3 (mod 4):
(a) if q ≡ 0, 3 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= RP 2 × RP k−1;
(b) if q ≡ 1, 2 (mod 4), then P (qγ ⊕ (k − q)ϵ) ∼= S2 ×Z2 P (γ ⊕ (k − 1)ϵ).

Note that the moment-angle manifold over ∆2 is S2.

6.2. Topological classification of projective bundles over T 2. Next we classify projective
bundles over T 2. Let γi be the pull back of the canonical line bundle over S1 by the ith factor
projection πi : T

2 → S1 (i = 1, 2). We can easily show that line bundles over T 2 is completely
determined by its 1st Stiefel-Whitney classes via [T 2, BZ2] ≃ H1(T 2; Z/2Z) ≃ (Z/2Z)2. There-
fore, all of the line bundles over T 2 are ϵ, γ1, γ2 and γ1⊗ γ2. By the definition of γi, we can easily
show that

γi ⊕ γi = π∗
i (γ ⊕ γ) = π∗

i (2ϵ) = 2ϵ.(6.1)

Therefore, we also have

(γ1 ⊗ γ2)⊕ (γ1 ⊗ γ2) = γ1 ⊗ (γ2 ⊕ γ2) = γ1 ⊗ 2ϵ = γ1 ⊕ γ1 = 2ϵ.(6.2)

Let ζ be a k-dimensional vector bundle (k ≥ 2). Because dimT 2 = 2, if k ≥ 2 then ζ is in the
stable range. Therefore, we have that

ζ ≡ ζ2 ⊕ (k − 2)ϵ,
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where ζ2 is a 2-dimensional vector bundle over T 2. Hence, if ζ is a Whitney sum of k line bundles
then ζ is isomorphic to one of the followings by computing the Stiefel-Whitney class:

kϵ;

γ1 ⊕ (k − 1)ϵ;

γ2 ⊕ (k − 1)ϵ;

(γ1 ⊗ γ2)⊕ (k − 1)ϵ;

γ1 ⊕ γ2 ⊕ (k − 2)ϵ;

γ1 ⊕ (γ1 ⊗ γ2)⊕ (k − 2)ϵ;

γ2 ⊕ (γ1 ⊗ γ2)⊕ (k − 2)ϵ.

By using this classification, we can prove the following proposition.

Proposition 6.2. Let P (ζ) be a projective bundle over T 2. Then it is homeomorphic to one of
the following manifolds:

(1) The trivial bundle T 2 × RP (k − 1);

(2) The non-trivial bundle of type T 2 ×Z2
2
P (Rρ1 ⊕ Rρ2 ⊕ Rk−2);

(3) The non-trivial bundle of type T 2 ×Z2
2
P (Rρ1 ⊕ Rk−1) ∼= T 2 ×Z2

2
P (Rρ2 ⊕ Rk−1),

where ρi : Z2
2 → Z2 is the ith projection and R is the trivial representation space.

When k > 2, each manifold above has different topological types; however, when k = 2, both of
two non-trivial bundles above are isomorphic to the non-trivial bundle T 2 ×Z2

2
P (Rρ1 ⊕ R).

Proof. Recall that P (ζ ⊗ γ) = P (ζ) for all line bundles γ. Therefore, by using the classification
of vector bundles over T 2 just before this proposition and the relations (6.1), (6.2), it is easy to
check that the topological types of P (ζ) are one of the followings.

(1) The case k ≡ 0 (mod 2):
(a) P (kϵ) ∼= T 2 × RP (k − 1);

(b) P ((γ1 ⊗ γ2)⊕ (k − 1)ϵ) ∼= P (γ1 ⊕ γ2 ⊕ (k − 2)ϵ) ∼= T 2 ×Z2
2
P (Rρ1 ⊕ Rρ2 ⊕ Rk−2);

(c) P (γ1 ⊕ (k − 1)ϵ) ∼= P ((γ1 ⊗ γ2)⊕ γ2 ⊕ (k − 2)ϵ) ∼= T 2 ×Z2
2
P (Rρ1 ⊕ Rk−1);

(d) P (γ2 ⊕ (k − 1)ϵ) ∼= P ((γ1 ⊗ γ2)⊕ γ1 ⊕ (k − 2)ϵ) ∼= T 2 ×Z2
2
P (Rρ2 ⊕ Rk−1);

(2) The case k ≡ 1 (mod 2):
(a) P (kϵ) ∼= T 2 × RP (k − 1);

(b) P ((γ1⊗γ2)⊕ (k−1)ϵ) ∼= P (γ1⊕ (k−1)ϵ) ∼= P (γ2⊕ (k−1)ϵ) ∼= T 2×Z2
2
P (Rρ1⊕Rk−1);

(c) P ((γ1⊕γ2)⊕ (k−2)ϵ) ∼= P ((γ1⊗γ2)⊕γ1⊕ (k−2)ϵ) ∼= P ((γ1⊗γ2)⊕γ2⊕ (k−2)ϵ) ∼=
T 2 ×Z2

2
P (Rρ1 ⊕ Rρ2 ⊕ Rk−2).

By using the Borel-Hirzebruch formula, we have the cohomology ring of P (ζ) as the following list:

P (ζ) H∗(·)
T 2 × RP (k − 1) Z/2Z[x, y, z]/⟨x2, y2, zk⟩

T 2 ×Z2
2
P (Rρ1 ⊕ Rρ2 ⊕ Rk−2) Z/2Z[x, y, z]/⟨x2, y2, zk + zk−1(x+ y) + zk−2xy⟩

T 2 ×Z2
2
P (Rρ1 ⊕ Rk−1) Z/2Z[x, y, z]/⟨x2, y2, zk + zk−1x⟩

T 2 ×Z2
2
P (Rρ2

⊕ Rk−1) Z/2Z[x, y, z]/⟨x2, y2, zk + zk−1y⟩

for deg x = deg y = deg z = 1. This implies that the bundles as above are not homeomorphic to
each other except (1)-(c) and (1)-(d) when k > 2. It is easy to check that

T 2 ×Z2
2
P (Rρ1 ⊕ Rk−1) ∼= S1 × (S1 ×Z2 P (Rρ ⊕ Rk−1)) ∼= T 2 ×Z2

2
P (Rρ2 ⊕ Rk−1),

where S1 ×Z2 Rρ is the canonical line bundle over RP (1). This establishes the statement except
the case when k = 2.

When k = 2, we have that

T 2 ×Z2
2
P (Rρ1 ⊕ Rρ2)

∼= T 2 ×Z2
2
P (Rρ′ ⊕ R),
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where ρ′ : T 2 → S1 is the representation (t1, t2) 7→ t1t2. By using the kernel of this representation
∆ = {(t, t−1) | t ∈ S1}, we also have the following homeomorphism:

T 2 ×Z2
2
P (Rρ′ ⊕ R) ∼= ∆× (S1 ×Z2

P (Rρ ⊕ R)) ∼= S1 × (S1 ×Z2
P (Rρ ⊕ R)),

where S1 ×Z2 Rρ is the canonical line bundle over RP (1). Similarly, we have the following home-
omorphisms:

T 2 ×Z2
2
P (Rρ1 ⊕ R) ∼= S1 × (S1 ×Z2 P (Rρ ⊕ R)) ∼= T 2 ×Z2

2
P (Rρ2 ⊕ R).

This also establishes the case when k = 2. �
Note that the moment-angle manifold over ∆1 ×∆1(= I2) is T 2 itself.
It also follows from the proof of Proposition 6.2 that the following corollary holds.

Corollary 6.3. Let P(T 2) be the set of all projective bundles over T 2 and P (ζ1), P (ζ2) ∈ P(T 2).
Then, H∗(P (ζ1)) ≃ H∗(P (ζ2)) if and only if P (ζ1) ∼= P (ζ2) (homeomorphic), i.e., P(T 2) satisfies
cohomological rigidity.

Remark 6.4. Let P(RP 2) be the set of all projective bundles over RP 2. Due to [19, Theorem
3.3], P(RP 2) also satisfies cohomological rigidity.

7. Bundle triviality of some projective bundles over real projective spaces

In this final section, we shall prove the following theorem:

Theorem 7.1. The projectivization P (γ ⊕ τRPn) is diffeomorphic to RPn × RPn if and only if
n = 0, 2 or 6.

In order to prove Theorem 7.1, we first show when cohomology ring of P (γ⊕τRPn) is isomorphic
to that of RPn × RPn:

Lemma 7.2. The Z/2Z-cohomology ring of P (γ ⊕ τRPn) is isomorphic to that of RPn × RPn if
and only if n+ 2 = 2r for some r ∈ N.

Proof. Because of (1.1), γ ⊕ τRPn ⊕ ϵ = (n+ 2)γ. Therefore, we have that

ω(γ ⊕ τRPn) = (1 + x)n+2 ≡
n∑

i=0

(
n+ 2
i

)
xi

for x ∈ H1(RPn). Together with the Borel-Hirzebruch formula, we see that the cohomology ring
of P (γ ⊕ τRPn) is as follows:

H∗(P (γ ⊕ τRPn)) ≃ Z/2Z[x, y]/⟨xn+1, Y ⟩.
Here,

Y =
n∑

i=0

(
n+ 2
i

)
yn+1−ixi

Note that n+2 = 2r if and only if Y = yn+1 (e.g. see [20, Corollary 4.6]). Therefore, if n+2 = 2r

then Y = yn+1 and the cohomology ring is isomorphic to H∗(RPn × RPn). On the other hand,
if the cohomology ring is isomorphic to H∗(RPn ×RPn), then it is easy to check that Y must be
yn+1 or (x+ y)n+1. However, if Y = (x+ y)n+1 then

Y =
n∑

i=0

(
n+ 2
i

)
yn+1−ixi =

n∑
i=0

(
n+ 1
i

)
yn+1−ixi.

This gives a contradiction. Therefore, Y = yn+1 and n + 2 = 2r. This establishes the statement
of this lemma. �

Lemma 7.2 tells us that if n + 2 ̸= 2r for all r ∈ N then P (γ ⊕ τRPn) is not homeomorphic to
RPn × RPn.

Assume n+2 = 2r for some r ∈ N. If r = 1 then n = 0, so this case is the trivial case. We may
assume r ≥ 2.
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7.1. “if” part of Theorem 7.1. We next discuss when γ ⊕ τRPn is the trivial bundle. To show
this, we need the fact about the stable KO group in [1] (also see [19]). Before we state Lemma 7.4,
we need to prepare some notation. Let k(2r−1) = #{s ∈ N | 0 < s ≤ 2r−2, s ≡ 0, 1, 2, 4 (mod 8)}.
For example, k(3) = 2 when r = 2, k(7) = 3 when r = 3, k(15) = 7 when r = 4, k(31) = 15 when
r = 5, e.t.c. We have the following lemma:

Lemma 7.3. If r = 2 or 3, then k(2r − 1) = r. If r ≥ 4, then k(2r − 1) = 2r−1 − 1.

Proof. The first statement is easy. The 2nd statement is proved by induction. When r = 4, then
k(15) = 7. Assume the statement is true until r − 1, i.e., k(2r−1 − 1) = 2r−2 − 1. Because of the
definition of k(2r − 1), the number of s such that 0 < s ≤ 2r − 2 and s ≡ 0, 1, 2, 4 (mod 8) is

k(2r − 1) = (2r−2 − 1) + 4 · 2r−4 = 2r−1 − 1.

This establishes the statement. �

Together with the stable KO group of real projective space proved in [1], we have the following
lemma:

Lemma 7.4. When r = 2, 3, K̃O(RP 2r−2) is a cyclic group generated by γ − ϵ with order 4, 8,

respectively. When r ≥ 4, K̃O(RP 2r−2) is a cyclic group generated by γ − ϵ with order 2(2
r−1−1).

Note that γ ⊕ τRPn is in the stable range, i.e., the dimension of fibre is strictly greater than
n. Because of the stable range theorem (i.e., for vector bundles κ and η in the stable range,
κ⊕ ϵa ≡ η⊕ ϵa if and only if κ ≡ η, see [11, Chapter 9]), γ⊕ τRPn is the trivial bundle if and only

if it is the trivial bundle in K̃O(RPn). By this fact, we have the following proposition:

Lemma 7.5. Assume n = 2r − 2. Then γ ⊕ τRPn ≡ (n+ 1)ϵ if and only if n = 2, 6.

Proof. By using (1.1), we have that

γ ⊕ τRPn ⊕ ϵ ≡ 2rγ.(7.1)

It follows from Lemma 7.4 that when r ≥ 4

2(2
r−1−1)γ ≡ 2(2

r−1−1)ϵ.(7.2)

Because r < 2r−1 − 1, together with (7.1), this case is not the trivial bundle. On the other hand,
when r = 2, 3, we have that

2(2
r−1−1)γ = 2rγ ≡ 2(2

r−1−1)ϵ = 2rϵ.

Therefore, by (7.1) and the stable range theorem, γ ⊕ τRPn is the trivial bundle. This establishes
the statement. �

Hence, by Lemma 7.5, the projectivization P (γ ⊕ τRPn) is the trivial bundle when n = 2, 6.
This establishes the “if” part of Theorem 7.1.

7.2. “only if” part of Theorem 7.1. We next prove the “only if” part of Theorem 7.1. The
idea of this proof is based on the idea of the proof of Theorem 3.2 in [19]. Assume that there
exists the following diffeomorphism:

f : P = P (γ ⊕ τRPn)→ RPn × RPn(= P ((n+ 1)ϵ)) = T,

and we put the projections to the 1st and 2nd factor by π1 : P → RPn, π2 : T → RPn, respectively.

Now f∗(τT ) = τP in K̃O(P ). Recall the following theorem proved in [19, Lemma 3.1]:

Lemma 7.6. Let E → X be a real smooth vector bundle over a smooth manifold X. Let π :
P (E) → X be its projectivization and η be the tautological real line bundle of P (E). Then the
tangent bundle τP (E) of P (E) with ϵ1 added is isomorphic to Hom(η, π∗E)⊕ π∗τX .
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By this lemma and (1.1), we have that

τP ⊕ ϵ1 ⊕ ϵ1 ≡ Hom(ηP , π
∗
1(γ ⊕ τRPn))⊕ π∗

1τRPn ⊕ ϵ1 ≡ Hom(ηP , γP ⊕ π∗
1τRPn)⊕ (n+ 1)γP

and

τT ⊕ ϵ1 ⊕ ϵ1 ≡ Hom(ηT , π
∗
2((n+ 1)ϵ))⊕ π∗

2τRPn ⊕ ϵ1 ≡ Hom(ηT , (n+ 1)ϵ)⊕ (n+ 1)γT ,

where γP = π∗
1γ and γT = π∗

2γ for the tautological line bundle γ over RPn, and ηP and ηT are
the tautological line bundles over P = P (γ⊕ τRPn) and T = P (ϵn+1), respectively. Together with
f∗τT = τP , we have the following isomorphism:

f∗ (Hom(ηT , (n+ 1)ϵ)⊕ (n+ 1)γT ) ≡ Hom(ηP , γP ⊕ π∗
1τRPn)⊕ (n+ 1)γP(7.3)

By the cohomology ring computed in Lemma 7.2, f∗w1(γT ) = w1(γP ), i.e., f
∗γT = γP . Therefore,

by (7.3), in K̃O(P ) we have

Hom(f∗ηT , (n+ 1)ϵ) ≡ Hom(ηP , γP ⊕ π∗
1τRPn).(7.4)

By taking the zero section to τRPn , we have the cross section σ of π1 : P → RPn. The induced

homomorphism of σ∗ : K̃O(P )→ K̃O(RPn) sends this identity (7.4) to K̃O(RPn). Because σ∗ηP
is the trivial bundle over RPn, we have that

Hom(σ∗f∗ηT , (n+ 1)ϵ) ≡ Hom(ϵ, γ ⊕ τRPn) ≡ γ ⊕ τRPn .(7.5)

Now, by the cohomology ring computed in Lemma 7.2 again, we also have the two cases f∗w1(ηT ) =
w1(ηP ) and w1(γP ) + w1(ηP ); these correspond to f∗ηT = ηP and γP ⊗ ηP , respectively. If
f∗ηT = ηP , then by (7.5), we have that

(n+ 1)ϵ ≡ γ ⊕ τRPn

in K̃O(RPn). By Lemma 7.5, such case is the only n = 2 or 6. If f∗ηT = γP ⊗ ηP , then

σ∗f∗ηT = σ∗γP ⊗ σ∗ηP ≡ γ ⊗ ϵ ≡ γ.

Therefore, by (7.5), we have that (n + 1)γ ≡ γ ⊕ τRPn . By taking the tensor of γ, we also have
that

(n+ 1)ϵ ≡ ϵ⊕ (γ ⊗ τRPn).(7.6)

Because γ ⊕ (γ ⊗ τRPn) ≡ (n + 1)ϵ, the vector bundle γ ⊗ τRPn is the normal bundle γ⊥ of γ in
(n+ 1)ϵ. Therefore, the Stiefel-Whitney class satisfies

w(γ ⊗ τRPn) = 1 + x+ · · ·+ xn.

Hence, by (7.6), such case is just n = 0. Because this case is the trivial case, we establish the
“only if” part.

Finally, we ask the following general question by motivating the above fact.

Problem 3 (the projective bundle triviality problem). Let ξ be a rank k vector bundle over a
smooth manifold M . When is its projectivization P (ξ) diffeomorphic to RP k−1 ×M?
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