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Abstract. The main purpose of this paper is to introduce the main result of [6] and apply
it to show a ring structure of the equivariant cohomology of a certain class of torus orbifolds

which have exactly two fixed points. We also show that a torus orbifold over the suspension
of an (n− 1)-dimensional simplex is equivariantly homeomorphic to the 2n-dimensional sphere
quotiented by a product of cyclic groups.

1. Introduction

The relationship between the equivariant cohomology of certain smooth manifolds M2n, with
half-dimensional torus actions Tn = S1×· · ·×S1, and the combinatorics of their quotient spaces is
well-known. A toric manifold, defined as a compact non-singular toric variety, admits the locally
standard action of a half-dimensional torus. This implies that its quotient space is a manifold with
faces (see Definition 2.3). The equivariant cohomology is then simply given as the face-ring of this
quotient space. This can also be realized as the face-ring of the complete regular fan associated
to the toric variety. A quasitoric manifold, first defined in [9], is a topological generalization of a
toric manifold whose quotient space is a simple polytope (an example of a manifold with faces)
but which is more general than a projective toric variety. Its equivariant cohomology is then given
by the face-ring associated to the simple polytope.

Torus manifolds, appearing in [14], are a wider class of manifolds M2n, with half-dimensional
torus action, that contain both toric and quasitoric manifolds. The main example of a torus
manifold that is neither a toric nor a quasitoric manifold is the even-dimensional sphere S2n ⊂
Cn ⊕R, where the torus acts coordinatewise on the first n coordinates. To any torus manifold we
can associate a combinatorial object, called a torus graph (see [17]), which is an n-valent graph
whose vertices correspond to the fixed points of M and whose edges are labelled by irreducible
torus representations. The underlying graph for S2n is the one with exactly two vertices and n
edges between them. We can then calculate the graph equivariant cohomology of the torus graph,
which is a ring of piecewise polynomials on the graph. When the ordinary cohomology of M is
trivial in all odd degrees, then the torus action is locally standard and the equivariant cohomology
of M is isomorphic to the graph cohomology of the associated torus graph. It is also possible to
give explicit generators and relations for this ring via Thom classes of the torus graph and we can
see that this is isomorphic to the face-ring of the quotient space which is, in this case, a manifold
with faces.

When we move from manifolds to orbifolds the picture slightly changes. In the case of singular
toric varieties, including toric varieties having orbifold singularities, it was proved in [10] that its
equivariant cohomology with integer coefficients is given by the piecewise polynomials on its fan if
its ordinary odd degree cohomology vanishes. For toric manifolds the ring of piecewise polynomials
on the fan is isomorphic to the face-ring of its quotient but this is not true for orbifolds in general.
In [5] it is shown that the equivariant cohomology of projective toric orbifolds and quasitoric
orbifolds, under the condition of vanishing odd degree cohomology, can be realized as a subring of
the usual face-ring of the orbit space/fan that satisfies an intergrality condition.
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In this paper we give the main result from [6] where we focus on torus orbifolds. Let Tn be
an n-dimensional torus, i.e., an n-dimensional commutative, compact, connected Lie group. A
torus orbifold is a 2n-dimensional, closed, oriented orbifold with an effective Tn-action whose
fixed point set is non-empty. This notion is a generalization of torus manifolds as introduced by
Hattori-Masuda in [14].

In Section 2 we introduce some basic definitions that we need including that of an orbifold
with group action which our main objects, torus orbifolds, are an example of. We then give a
constructive definition of an orbifold over a combinatorial object known as a manifold with faces.
These will be examples of torus orbifolds and their quotient spaces are manifolds with faces. We
restrict out attention to these cases.

The suspension of an (n− 1)-simplex gives the simplest example of an n-dimensional manifold
with faces – one with exactly two vertices. In Section 3 we show that every manifold with exactly
two vertices is equivalent, in a combinatorial sense, to the suspension of a simplex and then show
that a torus orbifold over it is equivariantly homeomorphic to the quotient of an even dimensional
sphere by a product of cyclic groups.

In Section 4 we give the main result from [6] which computes the equivariant cohomology of
a torus orbifold X whose odd degree ordinary cohomology is trivial. To do this we associate to
each torus orbifold over a manifold with faces a labelled graph, called a torus orbifold graph, which
generalizes the torus graphs of [17]. We can then describe the equivariant cohomology of X as the
ring of piecewise polynomials on the associated torus orbifold graph if Hodd(X) = 0. We show
that this is isomorphic to a weighted face ring that gives us a description of H∗

T (X) in terms of
generators and relations. Restricting to torus orbifolds X over the suspension of a simplex we
compute these ring structures explicitly.

2. Torus orbifolds over manifolds with faces

In this section, we introduce 2n-dimensional torus orbifolds over a manifold with faces Q. We
first prepare some notation.

We set

[n] := {1, . . . , n}
and

Rn
+ := {(x1, . . . , xn) ∈ Rn | xi ≥ 0, for all i = 1, . . . , n}.

A compact, connected, commutative, Lie group is called a torus, often denoted by T . We use the
following symbols for a torus T :

• t := Lie(T ), the Lie algebra of T ;
• tZ := exp−1(e) ⊂ t is the lattice, where e ∈ T is the identity element and exp : t → T is
the exponential map;

• tQ := tZ ⊗Z Q.

We also use the following symbol as the standard n-dimensional torus:

Tn := {(z1, . . . , zn) ∈ Cn | |z1| = · · · = |zn| = 1}.
This is nothing but the product of n unit circles in C. It is well-known that every n-dimensional
torus T is isomorphic to Tn.

In this paper, we often identify t∗Z := Hom(tZ,Z) with H2(BT ;Z) ∼= Zn. This identification is
canonically defined as follows. It is well-known that elements in H2(BT ;Z) are given by the first
Chern classes of line bundles ET×T Cρ → BT , where Cρ is the 1-dimensional representation space
defined by ρ : T → S1. Moreover, the representation ρ lifts to the Lie algebra homomorphism
ρ̂ : t → R; therefore, ρ̂ ∈ t∗. Since T and S1 are abelian groups, we can take ρ̂ ∈ t∗Z. This
gives a homomorphism from H2(BT ;Z) to t∗Z. By comparing their dimensions, we can check this
homomorphism is isomorphism.

Moreover, in this paper, we use the symbol ∼= for the equivalence between two algebraic objects
(i.e. group isomorphism or algebra isomorphism) and the symbol ≃ for the equivalence between
two geometric objects (i.e. homeomorphism or equivariant homeomorphism).
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2.1. Torus orbifolds. We first briefly recall the notion of a torus orbifold defined in [14, Section
12]. Let X = (X,U) be a 2n-dimensional orbifold whose underlying topological space is X and
whose (maximal) orbifold atlas is U = {(Uα, Vα, Hα, pα)}, i.e., U satisfies the following conditions:

• {Uα} is an open covering of X;
• Vα is an open subset in R2n;
• Hα is a finite subgroup of O(2n) acting on Vα;
• a continuous map pα : Vα → Uα which is an Hα-equivariant map that induces a homeo-
morphism Vα/Hα ≃ Uα, where Hα acts on Uα trivially.

We often denote X by X and call (Uα, Vα, Hα, pα) an orbifold chart of X. A continuous map
f : X → X ′ from an orbifold X to another orbifold X ′ is called an orbifold map if for every x ∈ X
there are two orbifold charts (Uα, Vα,Hα, pα) for X around x and (U ′

α, V
′
α,H

′
α, p

′
α) for X

′ around
f(x) and a continuous map fα : Vα → V ′

α such that the following diagram commutes:

Vα

pα

��

fα // V ′
α

p′
α

��
Uα

f |Uα // U ′
α

If fα can be taken as a smooth map for every orbifold chart, then we call an orbifold map f a
smooth map.

Let G be a Lie group. A G-action on an orbifold X is a smooth map φ : G ×X → X which
satisfies the usual rules of being a group action. We often denote an orbifold (or any topological
space) X with G-action by (X,G) or (X,G,φ) if we emphasize the action φ : G × X → X. A
2n-dimensional closed oriented orbifold (X,T ) with an effective n-dimensional torus T -action is
called a torus orbifold if it has a nonempty fixed point set XT .

Remark 2.1. In this paper, an equivariant map f : (X,G,φ) → (X ′, G′, φ′) means a weak equivari-
ant map, i.e., there is a group homomorphism h : G → G′ such that f(φ(g, x)) = φ′(h(g), f(x))
for all (g, x) ∈ G×X.

Let (X,T ) be a torus orbifold. A special orbifold chart (Ux, Vx,Hx, px), (also called a good local
chart, see e.g. [1]), around x ∈ X is an orbifold chart satisfying the condition that p−1

x (x) is a
single point x̃ ∈ Vx. The following fact is well-known (see, for instance, [11, Proposition 2.12]).

Lemma 2.2. Let x ∈ X be a fixed point in a torus orbifold (X,T ). Then, there exists a T -
invariant open neighborhood Ux of x and a special orbifold chart (Ux, Vx, Hx, px) around x which
satisfies the following conditions:

(1) there is a finite covering T̃x of T such that T̃x/Hx ≃ T and T̃x acts on Vx;

(2) the continuous map px is an equivariant map between (Vx, T̃x) and (Ux, T ) which induces

an equivariant homeomorphism between (Vx/Hx, T̃x/Hx) and (Ux, T ).

A connected component of the fixed point set of a circle subgroup Si of T is a suborbifold,
say Xi. This suborbifold Xi is called a characteristic suborbifold if Xi is a (2n − 2)-dimensional
orbifold and contains at least one fixed point of the T -action. In the definition of torus orbifolds in
[14], we also need to choose an “invariant normal orientation” for every characteristic suborbifold
Xi. We will explain this in Section 2.3 for the case of torus orbifolds over manifolds with faces.

2.2. Manifolds with faces. In order to define a torus orbifold overQ, we next recall the definition
of an n-dimensional manifold with faces, also called a face acyclic nice manifold with corners (see
[7, Chapter 10], [18, Section 5] or [16, Section 2.2] for more details). Let Qn(= Q) be an n-
dimensional topological manifold with boundary (we will always assume that Q is connected). A
chart with corners, or simply a chart, for Qn is a pair (V, ψV ), where V is an open subset of Qn

and

ψV : V → Rn
+
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is a homeomorphism from V to an open subset ΩV ⊂ Rn
+. Two charts with corners (V, ψV ), (W,ψW )

are said to be compatible if the transition function ψV ◦ψ−1
W : ψW (V ∩W ) → ψV (V ∩W ) is a strata-

preserving homeomorphism. We call a collection of compatible charts with corners {(V, ψV )} which
covers Qn an atlas. A maximal atlas is called the structure with corners of Qn. A topological
manifold with boundary together with a structure with corners is called a (topological) manifold
with corners.

Let p ∈ Qn be a point of an n-dimensional manifold with corners Qn. If an element p ∈ V
is in a chart (V, ψV ), then we can assign a number, say d(p) ∈ [n] ∪ {0}, to p by the number of
zero-coordinates of ψV (p) ∈ Rn

+. This number d(p) is called the depth of p. We call the closure of
a connected component of d−1(k) (0 ≤ k ≤ n) a codimension-k face. The codimension 1, (n− 1)
and n faces are called facets, edges and vertices, respectively. The set of all edges and vertices
is called the one-skeleton (or the graph) of Qn. By restricting the structure with corners on Qn

to faces, we may regard each codimension-k face as an (n − k)-dimensional (sub)manifold with

corners. If each face F of a manifold with corners Qn is acyclic, i.e. H̃∗(F ) = {0}, then we call
Qn a face acyclic manifold with corners.

Definition 2.3 (Manifold with faces). An n-dimensional face acyclic manifold with corners Q is
said to be an n-dimensional manifold with faces (or a face acyclic nice manifold with corners) if
Q satisfies the following conditions:

(1) for every k ∈ [n], there exists a codimension-k face;

(2) a connected component of
∩k

i=1 Fi for distinct k facets is a codimension-k face whenever∩k
i=1 Fi ̸= ∅; conversely, for each codimension-k face H, there are exactly k distinct facets

F1, . . . , Fk such that H is a connected component of
∩k

i=1 Fi.

Let Q1, Q2 be manifolds with faces. If there is a homeomorphism f : Q1 → Q2 which preserves
faces for two manifolds with faces Q1 and Q2, then we call Q1 and Q2 isomorphic (in the sense of
manifolds with faces). We can also define a weaker equivalence relation called a combinatorially
equivalence among manifolds with faces as follows. We may regard the set of faces of a manifold
with faces Q as a partially ordered set by the inclusions of faces, say S(Q). If there is a bijective
map between S(Q1) to S(Q2) which preserves the order, then we call two manifolds with faces Q1

and Q2 combinatorially equivalent. It is easy to check that if Q1 and Q2 are isomorphic, then Q1

and Q2 are combinatorially equivalent. However, the converse is not true, see Remark 3.3.

2.3. Torus orbifolds over manifolds with faces. In this paper, we introduce a constructive
definition of a torus orbifold X over a manifold with faces Q (also see [9, 19] for details).

Let Q be an n-dimensional manifold with faces. We write the set of facets of Q as

F(Q) := {F1, . . . , Fm}.
Let T be an n-dimensional torus. We identify the lattice tZ of the Lie algebra of T with Zn. A
function

λ : F(Q) → tZ

is called a characteristic function if it satisfies the following condition:

• {λ(Fi1), . . . , λ(Fik)} is linearly independent whenever Fi1 ∩ · · · ∩ Fik ̸= ∅, for 1 ≤ k ≤ n.

Let us define the following quotient space:

(2.1) X(Q,λ) := (Q× T )/ ∼,
where the equivalence relation ∼ is given by

(2.2) (x, t) ∼ (y, s) if and only if x = y and t−1s ∈ TF (x),

where F (x) is the unique face ofQ containing x in its relative interior and TF (x) is the k-dimensional
torus generated by λ(Fi1), . . . , λ(Fik) ∈ tZ, where F (x) = (Fi1 ∩ · · ·∩Fik)

o is a codimension-k face
(the symbol F o denotes a connected component of the set F ). To be more precise, TF (x) is the
k-dimensional torus subgroup of T defined by

TF (x) := (Rλ(Fi1)× · · · × Rλ(Fik)) / (Zλ(Fi1)× · · · × Zλ(Fik))
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Note that if x ∈ Q is a vertex then TF (x)
∼= T .

It is easy to check that X := X(Q,λ) has the natural T -action induced from the T -action on
the second factor of Q × T , and its projection onto the orbit space X → X/T is induced from
the projection onto the first factor Q × T → Q, i.e., X/T is equipped with the structure of a
manifold with faces by the induced homeomorphism X/T ≃ Q. In this sense, we may identify
the orbit space of X with Q, and we call the projection π : X → Q the orbit projection of X.
Note that if F (x) (for x ∈ Q) is a codimension-k face then the inverse π−1(x) is an (n − k)-
dimensional orbit which is homeomorphic to T/TF (x). More precisely, one can define an orbifold
structure on X(Q,λ) similarly as in [19, Section 2.1] (also see [6] for a more precise account).
Moreover, one can see that {π−1(v) | v ∈ V (Q)} is the set of fixed points. Hence, we conclude
that X(Q,λ) is a torus orbifold. Conversely, let (X,T ) be a 2n-dimensional torus orbifold. We
assume that the orbit space X/T is isomorphic to some n-dimensional manifold with faces Q and
that the projection π : X → X/T ≃ Q can be regarded as an orbit projection, i.e., π−1(Fi) is
a characteristic suborbifold Xi for every facet Fi ∈ F(Q). Let Si be the circle subgroup of T
fixing Xi. Then, we can define the characteristic function λ : F(Q) → tZ by a choice of a nonzero
vector vi ∈ tZ such that Si = expRvi. Note that there are infinitely many choices of such nonzero
vectors, i.e. if we take a primitive vector si such that Si = expRsi, then for any r ∈ Z \ {0} the
equality Si = expR(rsi) holds. In order to determine the nonzero vector, we need to choose a
“normal orientation” of Xi in the following way. Due to [14, Lemma 12.1], for every x ∈ Xi there
is a special chart (Ux, Vx,Hx, px) around x which satisfies the following properties:

(1) the tangent space of x̃ = p−1
x (x) in Vx, say Vx := Tx̃Vx ≃ R2n again, splits into Wix⊕W⊥

ix,
where Wix is tangent to p−1

x (Ux ∩ Xi) and W⊥
ix may be regarded as the normal vector

space of x ∈ Xi;
(2) Hx acts on W⊥

ix;

(3) there is a (connected) finite cover S̃i of Si and a lifting of the action of Si to the action of

S̃i on Vx for any point x ∈ Xi;

(4) the lifted action of S̃i preserves (acts on) the normal vector spaceW⊥
ix(⊂ Vx) non-trivially;

(5) S̃i acts on Vx =Wix ⊕W⊥
ix effectively.

We choose an orientation of W⊥
ix for every x ∈ Xi. We call this orientation a normal orientation

of Xi. On the other hand, there are exactly two primitive vectors si and −si such that expRsi =
expR(−si) = Si. Note that the choice of signs determines the orientation of Si. We take the

orientation of Si as the orientaion whose lifted S̃i-action preserves the orientation of the given
normal orientation of Xi. Therefore, we can determine the primitive vector si ∈ tZ for Xi without
the sign ambiguity. Moreover, the continuous map px : Vx → Ux ≃ Vx/Hx is an equivariant map

with respect to the finite covering S̃i → Si ≃ S̃i/Hx, i.e., the ri(> 0)-times rotation map between

circles. Thus we may regard S̃i = expR(risi) and Si = expRsi (also see (3.2)). Consequently,
once we choose a normal orientation for each of the characteristic suborbifolds Xi in the torus
orbifold X (we call a torus orbifold with normal orientations of each Xi an omnioriented torus
orbifold), the characteristic function λ : F(Q) → tZ is uniquely determined without ambiguity of
scalar multiplications, i.e., λ(Fi) = vi := risi. We also have the following lemma:

Lemma 2.4. Given a torus orbifold (X,T ) with X/T ≃ Q, let λ be the characteristic func-
tion determined by the appropriate choice of omniorientation as above. Then, X is equivariant
homeomorphic to X(Q,λ).

We call a(n) (omnioriented) torus orbifold X a torus orbifold over Q if X is equivariantly
homeomorphic to X(Q,λ) for some characteristic function λ.

Remark 2.5. Note that a choice of scalar multiplications of the λ(Fi)’s changes the orbifold struc-
ture on X; however, it does not change the equivariant homeomorphism type of X. Namely, if
λ(Fi) = riλ

′(Fi) (Fi ∈ F(Q)) for some ri ∈ Z \ {0}, then X(Q,λ) ≃ X(Q,λ′) (equivariantly
homeomorphic).

Example 2.6 (Spindle). We denote the cyclic k-group by Ck and consider the natural surjection
pk : C → C/Ck. We define a spindle S2(m,n), for m,n ̸= 0, as follows. The underlying topological
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space of S2(m,n) is homeomorphic to the 2-dimensional sphere S2. Denote the northpole in S2 as
N and the southpole as S. The orbifold structure of S2(m,n), form,n > 0, is the maximal orbifold
atlas U = {(Uα, Vα,Hα, pα)} which contains the following two orbifold charts: (1) (US ,C, Cm, pm)
for m > 0 around S whose open neighborhood US is defined by S2 \ {N}; (2) (UN ,C, Cn, pn) for
n > 0 around N whose open neighborhood UN is defined by S2 \ {S}. The orbifold S2(m,m)
is also called a rugby ball and S2(m, 1) or S2(1, n) is also called a tear drop. If m is negative,
then we consider the orbifold chart on US as (US ,C, C−m, p−m), where C is C with the reversed
orientation, C−m acts on it by the multiplication and p−m : C → C/C−m is the natural surjection.
Similarly, we define the orbifold chart on UN when n < 0.

Note that the standard T1-action on C induces (US ,T1/Cm) ≃ (US , T
1) and (UN ,T1/Cn) ≃

(UN , T
1) by pm and pn respectively. Moreover, because the underlying space S2 has an effective T 1-

action, S2(m,n) also has an effective T 1-action. Then, there are two fixed point {N,S}. Therefore,
(S2(m,n), T 1) is a torus orbifold and its orbit space S2(m,n)/T 1 is the interval [−1, 1] such that
{−1} (resp. {1}) corresponds to S (resp. N). Then, (US ,C, Cm, pm) (resp. (US ,C, C−m, p−m))
has the natural extension of the T 1-action whose normal orientation is determined by the standard
orientation of C (resp. C) and pm : C → US ≃ C/Cm (resp. p−m : C → US ≃ C/C−m) induces the

homomorphism T̃ 1 → T 1 ≃ T̃ 1/C±m by the m-times rotation. Similarly we have the T 1-extension
on the orbifold chart on UN . Hence, the characteristic function λm,n : {−1, 1} → Z\{0} is defined
by λm,n(−1) = m and λm,n(1) = n. This means that the pair ([−1, 1], λm,n) defines the spindle
S2(m,n) (see Figure 1), i.e., S2(m,n) is a torus orbifold over the manifold with corners [−1, 1].

Note that for any m,n ∈ Z \ {0}, (S2(m,n), T 1) is equivariantly homeomorphic to (S2, T 1) ≃
(S2(1, 1), T 1). We also note that (S2(1, 1), T 1), (S2(1,−1), T 1), (S2(−1, 1), T 1), (S2(−1,−1), T 1)
are torus manifolds with four omniorientations (they give four invariant stably complex structures
on S2), also see Remark 2.5.

Figure 1. The characteristic pair of the spindle S2(m,n).

3. The topology of a torus orbifold over the suspension of a simplex

Let Q be a manifold with faces with two vertices, we call such Q a manifold with two vertices
for short. It is easy to check that there exists a characteristic function λ on Q. By definition, the
T -action on X(Q,λ) has exactly two fixed point. Conversely, if there are exactly two fixed points
on X(Q,λ) then its orbit space has exactly two vertices.

Definition 3.1. A torus orbifold X is said to be a torus orbifold with two fixed points if there is
a manifold with two vertices Q such that X is a torus orbifold over Q.

In this section, we introduce some topological properties of the special class of torus orbifolds
with two fixed points. By the definition of a manifold with faces, an n-dimensional manifold Q
with two vertices, for n ≥ 2, has the following properties:

(1) there exist exactly n facets, say F(Q) = {F1, . . . , Fn};
(2) if 0 < k < n, the intersection

∩k
j=1 Fij is connected, i.e., a codimensioin-k face of Q;

(3) conversely, for every codimensional k face H (k ̸= 0, n), there exist exactly k distinct

facets Fi1 , . . . , Fik such that H =
∩k

j=1 Fij ;

(4)
∩n

j=1 Fj = {p, q} (the set of all vertices of Q).

If n = 1, Q is nothing but the interval [−1, 1], i.e., there are only two facets {−1} and {1}.
The typical example of an n-dimensional manifold with two vertices is the suspension Σ∆n−1

of the (n− 1)-dimensional simplex ∆n−1. Here, Σ∆n−1 is defined by

∆n−1 × [−1, 1]/ ∼,



EQUIVARIANT COHOMOLOGY OF TORUS ORBIFOLDS WITH TWO FIXED POINTS 7

where [−1, 1] is the interval and the equivalence relation ∼ is defined by collapsing ∆n−1 × {−1}
(resp. ∆n−1 × {1}) to the vertex p (resp. q). Note that a codimension-k face H of Σ∆n−1, for
k = 0, . . . , n− 1, is determined by the suspension ΣF of some codimension-k face F in ∆n−1 and
codimension-n faces are the two vertices p, q in Σ∆n−1. It is easy to check the following property:

Proposition 3.2. Let Q be an n-dimensional manifold with two vertices. Then Q is combinato-
rially equivalent to Σ∆n−1.

Remark 3.3. We define the topology on ∆n−1 by the induced topology from Rn
+, i.e., ∆

n−1 :=
{(x1, . . . , xn) ∈ Rn

+ |
∑n

i=1 xi = 1}. By the connected sum with a homology sphere and Σ∆n−1,
we can construct an n-dimensional manifold with two vertices which is not isomorphic to Σ∆n−1

(also see [8]).

Remark 3.4. We also note that Σ∆n−1 can also be thought of as taking ∆n and collapsing a facet.

If n ≥ 2, the characteristic function λ : F(Σ∆n−1) → tZ ∼= Zn is often illustrated by the
following (n× n)-square matrix in GL(n;Q) ∩Mn(Z):

Λ = (λ(F1) | · · · | λ(Fn)) =

λ11 · · · λ1n
...

. . .
...

λn1 · · · λnn

(3.1)

where λ(Fi), i = 1, . . . , n, is a nonzero vector in Zn. Therefore, X(Σ∆n−1, λ) (i.e. if we fix the
topology of the manifold with two vertices) is completely determined by the above matrix Λ. We
denote the torus orbifold over Σ∆n−1 (for n ≥ 2) determined by the matrix Λ as X(Λ). The goal
of this section is to describe the equivariant topological type of a torus orbifold X(Λ).

3.1. The equivariant topological type of X(Λ). Let π : X(Λ) → Σ∆n−1 be the orbit projec-
tion of the Tn-action on X(Λ) and Xi be the (2n − 2)-dimensional torus suborbifold defined by
π−1(Fi), for i = 1, . . . , n, i.e. the characteristic suborbifold associated to Fi. Since the character-
istic function λi := λ(Fi) is a vector in tZ, one can define the circle subgroup expRλi ⊂ Tn, say
Si. Then Xi = X(Λ)Si is the fixed point set of the restricted Si-action.

Note that the integer square matrix Λ defined as in (3.1) induces the isomorphism Λ : Rn → Rn;
therefore, this induces the isomorphism Rn/Zn → Rn/Λ(Zn), which we also call Λ. Hence, we can
define the following surjective homomorphism:

Tn = Rn/Zn Λ
∼=

/ / Rn/Λ(Zn) ∼= t/Λ(tZ) =
∏n

i=1 Si
ι // // Tn = t/tZ(3.2)

where Tn is the standard n-dimensional torus in Cn and the surjective homomorphism ι is induced
from the product of the injective homomorphisms ιi : Si → Tn. Put

T̃n :=
n∏

i=1

Si,

then via the isomorphism Λ we may regard T̃n as the standard torus Tn. By this identification,

the standard T̃n-action on the unit 2n-dimensional sphere S2n(⊕n
i=1Cλi ⊕R) may be regarded as

the standard Tn-action on S2n := S2n(Cn⊕R), where the symbol S2n(V (ρ)⊕R) for a complex n-
dimensional Tn-representation space V (ρ) represents the unit sphere (with respect to the standard
metric) in Cn×R ≃ V (ρ)⊕R with the torus action induced from the representation ρ : Tn → Tn.
This is known as one of the torus manifolds with two fixed points, and its characteristic submanifold
Mi ⊂ S2n, i = 1, . . . , n, is defined as

Mi = {(z1, . . . , zn, r) ∈ S2n ⊂ Cn ⊕ R | zi = 0}.(3.3)

Therefore, its normal orientaion can be canonically determined by the orientation of the ith
complex space. Denote

G(Λ) := ker ι ◦ Λ ⊂ Tn.
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We also denote the complex one-dimensional representation ιi ◦ Λ by

µi := ιi ◦ pi ◦ Λ : Tn → T̃n → Si ↪→ Tn.

It is well-known that the following group is a product of cyclic groups, i.e., a finite abelian group
(see Remark 3.11):

G(Λ) =
n∩

i=1

kerµi
∼= tZ/Λ(tZ).

Then, we can consider the following action induced from the standard action (S2n,Tn):

(S2n/G(Λ),Tn/G(Λ)) ≃ (S2n/G(Λ), Tn).

It is easy to check that there are exactly two fixed points in this action and that the characteristic
suborbifolds Xi ⊂ S2n/G(Λ), i = 1, . . . , n, are given by

Xi =Mi/G(Λ),

where the Mi’s are defined in (3.3). Since only the ith factor of Tn fixes Mi, Xi is fixed by
µi(Tn) = Si = expRλi ⊂ Tn. Here, we define the normal orientation of Xi as the normal
orientation of Mi. This shows that the characteristic function of (S2n/G(Λ), Tn) coincides with
that of (X(Λ), Tn). Hence by using Lemma 2.4, we have the following theorem:

Theorem 3.5. Assume n ≥ 2. Let X(Λ) be a torus orbifold over Q = Σ∆n−1 with a characteristic
function Λ. Then, (X(Λ), Tn) is equivariantly homeomorphic to (S2n/G(Λ),Tn/G(Λ)).

Remark 3.6. If G(Λ) is the identity group, then (S2n/G(Λ),Tn/G(Λ))) is the torus manifold
(S2n,Tn).

If n = 1, then G(Λ) is the cyclic group Cm. Therefore, (S2/G(Λ),T1/G(Λ))) is the rugby ball
with T 1-action (S2(m,m), T 1). It is well-known that the spindle S2(m,n) for |m| ̸= |n| is a bad
orbifold, i.e., it can not be obtained by the global quotient of S2. This shows that Theorem 3.5
does not hold for n = 1.

Theorem 3.5 leads us to the following corollary which can be obtained by applying Lemma 2.2
to the case of a torus orbifold over Q:

Corollary 3.7. Let Ux = X(Rn
+, λ|Rn

+
) be the open invariant neighborhood around a fixed point

x of a torus orbifold X(Q,λ), i.e., the λ restricts to a facet around x, say λ|Rn
+
. Let Λ be the

(n × n)-matrix as in (3.1) which defines the characteristic function λ|Rn
+
. Then, the following

holds:

(Ux, T
n) ≃ (Cn/G(Λ),Tn/G(Λ)),

where ≃ represents an equivariant homemorphism. Furthermore, there is the following special
orbifold chart around x:

(Ux, Vx,Hx, px) = (Ux,Cn, G(Λ), px : Cn → Cn/G(Λ) ≃ Ux).

Note that G(Λ) acts on S2n−1 = {(z1, . . . , zn, 0) ∈ S2n(Cn ⊕ R)}. Denote its orbit space by

L(Λ) := S2n−1/G(Λ),

which is called an orbifold lens space in [5]. We note that this orbifold L(Λ) has a natural Tn-action.

Remark 3.8. When G(Λ) is isomorphic to a cyclic group Cp and acts freely on S2n−1, then L(Λ)
is a lens space. Kawasaki [15] considers the case when a cyclic group Cp acts almost freely on
S2n−1 and calls the quotient space S2n−1/Cp the twisted lens space which is an orbifold in general
(in [2, 4], a twisted lens space is also called a weighted lens space).

We also have the following:

Corollary 3.9. The torus orbifold (X(Λ), Tn) is equivariantly homeomorphic to (ΣL(Λ), Tn),
where the Tn-action on the suspension ΣL(Λ) is the natural extension of the Tn-action on L(Λ).

Moreover, we have the following lemma:
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Lemma 3.10. Assume n ≥ 2. Let N be the smallest subgroup of G(Λ) which contains all those
elements of G(Λ) that fix points in S2n−1. Then H3(X(Λ)) ∼= G(Λ)/N .

Proof. Because n ≥ 2, S2n−1 is simply connected. Moreover, G(Λ) acts on S2n−1 effectively.
Therefore, by [3], we have that π1(S

2n−1/G(Λ)) ∼= G(Λ)/N ∼= H1(L(Λ)). This shows that
H1(L(Λ)) is torsion if G(Λ)/N is not the identity group; namely, G(Λ) ̸= N . By using the
universal coefficient theorem, we have H1(L(Λ)) ∼= H2(L(Λ)). Therefore, it follows from the
Mayer-Vietoris exact sequence that H2(L(Λ)) ∼= H3(ΣL(Λ)) = H3(X(Λ)). □

In particular, if (S2n−1)G(Λ) ̸= ∅, then H3(X(Λ)) = 0. Moreover, Hodd(X(Λ)) = 0 if G(Λ) =
{e}. Namely, if det Λ = ±1, then Hodd(X(Λ)) = 0.

Remark 3.11. By using the Smith normal form, there are P,Q ∈ GL(n;Z) such that the sequence
(3.2) can be written as follows:

Tn = Rn/Zn

P

��

Λ
∼=

// Rn/Λ(Zn) ∼= T̃n

Q

��

ι // // Tn = t/tZ

∼=
��

Rn/P (Zn)
Λ′

∼=
// Rn/(r1Z⊕ · · · ⊕ rnZ)

ι // // Tn/(Cr1 × · · · × Crn)

(3.4)

where

Λ′ = QΛP−1 =

r1 . . .

rn


for some positive integers r1, . . . , rn such r1|r2| · · · |rn, and Cr

∼= Z/rZ is the cyclic subgroup in
T1. Here, we can compute ri, i = 1, . . . , n, as

ri =
mi(Λ)

mi−1(Λ)
,

where m0(Λ) := 1 and mi(Λ) is the ith determinant divisor, i.e., the greatest common divisor of
all i× i minors of Λ.

Remark 3.12. As X(Λ) is simply connected, H1(X(Λ)) = 0.
Suppose that the product of cyclic groups G = Cr1 × · · · × Crn acts on S2n−1 ⊂ Cn coordi-

natewise. Let N be the smallest subgroup in G which contains all those elements of G which have
fixed points. Then, N = G. Therefore, by Lemma 3.10, H3(S2n/G) = 0.

4. The equivariant cohomology of X(Λ) with Hodd(X(Λ)) = 0

In this section, we compute the equivariant cohomology of X(Λ) with Hodd(X(Λ)) = 0 by using
the formula in [6].

4.1. Orbifold torus graph of (Q,λ) and its equivariant graph cohomology. Let (Q,λ) be
a pair of a manifold with faces and its characteristic function. We shall define an orbifold torus
graph ((n, n)-type GKM-graph with rational axial function) Γ(Q,λ) := (Γ, α) of (Q,λ) as follows.
Let Γ = (V (Γ), E(Γ)) be the one-skeleton of Q. By the definition of a manifold with faces, this
becomes an n-valent graph. Moreover, we see that each edge e is a connected component of the
intersection of exactly (n − 1) facets, say Fk1 , . . . , Fkn−1 ; and we also denote one of the normal
facets of e by Fkn , i.e., Fkn ∩ e contains the initial vertex i(e) with the appropriate orientation.
Now, we define a function

α : E(Γ) → t∗Q

by the following system of equations:

(4.1)

{
⟨α(e), λ(Fk1)⟩ = · · · =

⟨
α(e), λ(Fkn−1)

⟩
= 0;

⟨α(e), λ(Fkn)⟩ = 1,
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where ⟨ , ⟩ denotes the natural paring between a vector space tQ and its dual space t∗Q. Note that
λ(Fi) ∈ tZ ⊂ tQ. We call such a labeled graph (Γ, α) an orbifold torus graph of (Q,λ) and often
denote it by Γ(Q,λ).

Remark 4.1. In [6], we define an abstract orbifold torus graph like [17] without (Q,λ).

Example 4.2. The spindle S2(m,n) is defined by ([−1, 1], λm,n) in Example 2.6. Set the generator
of t∗Z by x, i.e., t∗Z = Zx and t∗Q = Qx. In this case, [−1, 1] itself, say e, is the edge in this manifold
with corners and the two vertices i(e) = {−1} and t(e) = {1} are the only facets. It follows from
the definition of Γ([−1, 1], λm,n) that we have the following axial function (see Figure 2):

α(e) =
1

m
x, α(e) =

1

n
x.

Figure 2. The orbifold torus graph of ([−1, 1], λm,n).

Example 4.3. Assume n ≥ 2. Suppose that Q = Σ∆n−1 and consider the torus orbifold X(Λ)

over Q. Let Λ̃ be the transpose of the cofactor matrix of Λ, i.e., Λ̃Λ = (detΛ)In. We may put

Λ̃ =

µ1

...
µn

 ,(4.2)

where µi ∈ t∗Z is the one-dimensional representation of Tn defined by ιi ◦Λ as in Section 3.1. Then,
by equation (4.1), the vector µi ∈ t∗Z satisfies the following equation:

α(ei) =
1

detΛ
µi,(4.3)

where ei is the edge of Σ∆n−1 which is not contained in the facet Fi (see Figure 3).

Figure 3. The case when n = 2. The left figure is (Σ∆1, λ) and the right one is
its orbifold torus graph, where µ1 = 5x−y and µ2 = −3x+y for some generators
x, y in t∗Z.

For an orbifold torus graph (Γ, α), we define the following rings.

Definition 4.4 (Graph equivariant cohomology). The following ring is said to be the (integral)
graph equivariant cohomology ring:

(4.4) H∗
T (Γ, α) = {f : V (Γ) → Sym(t∗Z) | f(i(e)) ≡ f(t(e)) mod reα(e)} ,

where re is the minimal positive integer such that reα(e) ∈ Sym(t∗Z)
∼= H∗(BT ;Z) and i(e)

(resp. t(e)) is the initial (resp. terminal) vertex of a directed edge e.
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Here, H∗
T (Γ, α) may be regarded as an H∗(BT ;Z)-subalgebra of

⊕
v∈V (Γ)H

∗(BT ;Z) by identi-

fying Sym(t∗Z) with H
∗(BT ;Z) ∼= Z[x1, . . . , xn]. Then, reα(e) ∈ H2(BT ;Z) and there is a natural

grading in H∗
T (Γ, α) induced by the grading of H∗(BT ;Z).

Denote by e the reversed oriented edge of e, i.e., i(e) = t(e) and t(e) = i(e). Note that all
edges satisfy reα(e) = ±reα(e) (see [6]). We may define the cohomology of (Γ, α) over rational
coefficients as follows:

(4.5) H∗
T (Γ, α;Q) =

{
f : V (Γ) → Sym(t∗Q) | f(i(e)) ≡ f(t(e)) mod α(e)

}
.

Similarly, this has the natural Sym(t∗Q)
∼= H∗(BT ;Q)-algerbra structure. This coincides with the

definition of the cohomology ring of a GKM graph (of a symplectic orbifold) in [13, Section 1.7].
One can see that H∗

T (Γ, α) is a subring of H∗
T (Γ, α;Q). We call H∗

T (Γ, α;Q) the rational graph
equivariant cohomology.

The next theorem is a consequence of applying the main result of [6] restricted to the case of
torus orbifolds with two fixed points.

Theorem 4.5. Assume X := X(Q,λ) satisfies Hodd(X) = 0. Then, there is an isomorphism

H∗
T (X) ∼= H∗

T (Γ, α),

where (Γ, α) is the orbifold torus graph of (Q,λ) and H∗
T (X) := H∗(ET×TX;Z) is the equivariant

cohomology of X.

Remark 4.6. The above theorem also holds for more general GKM orbifolds with vanishing odd
degree cohomology (see [6]).

4.2. Weighted face ring. Given an n-valent orbifold torus graph (Γ, α) of (Q,λ) and an (n−k)-
dimensional face F in Q, there is an (n − k)-valent subgraph ΓF which is the one-skeleton of F .
We also call this subgraph an (n − k)-dimensional face of (Γ, α). Each face F defines a rational
Thom class τF ∈ H2k

T (Γ, α;Q) as follows:

(4.6) τF (v) :=


∏

i(e)=v
e/∈E(ΓF )

α(e) if v ∈ V (ΓF );

0 otherwise.

Note that deg τF = 2k for the codimension-k face F .
We formally define

τ∅ = 0, τΓ = 1.

Note that deg τ∅ = deg τΓ = 0.

Example 4.7. The following two figures (Figure 4 and Figure 5) are the examples of rational
Thom classes of the orbifold torus graph in Figure 3.

Figure 4. The rational Thom classes of the facet F in Figure 3, i.e., τF (p) =
τF (q) = − 3

2x+ 1
2y.

Let Fall(Q) be the set of all faces in Q and and ZQ := Z[τF | F ∈ Fall(Q)] be the integer
(graded) polynomial ring generated by the rational Thom classes. Set the graded subring of ZQ

as

ZQ,λ :=
{
f ∈ ZQ

∣∣ ∀v ∈ V (Γ), f(v) ∈ H∗(BTn;Z)
}
.
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Figure 5. The rational Thom classes of the vertex p in Figure 3, i.e., τp(p) =
( 52x− 1

2y)(−
3
2x+ 1

2y) and τp(q) = 0.

Then, it is easy to see that the elements in ZQ of the form

τEτF − τE∨F

∑
G∈E∩F

τG(4.7)

are 0 for all vertices v ∈ V (Q), where the summation runs through all connected components in
E ∩ F . Here the symbol E ∨ F represents the minimal face which contains both E and F ; note
that if E ∩ F ̸= ∅ then the face E ∨ F can be uniquely determined (also see [17]). Therefore, we
can define the ideal I of ZQ,λ generated by all elements defined by (4.7). Set

Z[Q,λ] := ZQ,λ/I.

We call this ring the weighted face ring of (Q,λ).
The following theorem is one of the main theorems in [6]:

Theorem 4.8. Let (Γ, α) be the orbifold torus graph induced from (Q,λ). Then the following
graded rings are isomorphic:

H∗
T (Γ, α)

∼= Z[Q,λ].

Therefore, together with Theorem 4.5, we have the following corollary:

Corollary 4.9. If the torus orbifold X(Q,λ) satisfies Hodd(X(Q,λ)) = 0, then its equivariant
cohomology satisfies

H∗
T (X(Q,λ)) ∼= Z[Q,λ].

4.3. The equivariant cohomology of X(Λ) when Hodd(X(Λ)) = 0. Now we may compute
the equivariant cohomology of X(Λ) when Hodd(X(Λ)) = 0. Due to Section 4.1, the graph
Γ = (V (Γ), E(Γ)) of Σ∆n−1 is given by

V (Γ) = {p, q}, E(Γ) = {e1, . . . , en, e1, . . . , en}

where i(ei) = p and t(ei) = q for i = 1, . . . , n, and the axial function α : E(Γ) → H2(BT ;Q) is
given by the equation (4.3), i.e.,

α(ei) = α(ei) =
1

detΛ
µi.

In this subsection, we assume that

G(Λ) = {e}.

Then, because X(Λ) is a genuine manifold, i.e., S2n, we have Hodd(X(Λ)) = 0. Since |G(Λ)| =
| detΛ| = 1, we have that

α(ei) = α(ei) = ±µi

for each i = 1, . . . , n. As detΛ = ±1, we also have det Λ̃ = ±1, where Λ̃ is defined in (4.2). Hence,
µi is a (primitive) vector in t∗Z. Therefore, the rational Thom class τi := τFi corresponding to a
facet Fi, i = 1, . . . , n, is an element in ZQ,λ. Indeed,

τi(p) = τi(q) = ±µi ∈ H2(BT ;Z).
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Set τp and τq as the Thom classes of the vertices, i.e.,

τp(p) =

n∏
i=1

(±µi) ∈ H2n(BT ;Z), τp(q) = 0;

τq(q) =
n∏

i=1

(±µi) ∈ H2n(BT ;Z), τq(p) = 0.

We first prove the following theorem:

Theorem 4.10. Let Q(∼= Σ∆n−1) be a manifold with two vertices and λ a characteristic function
on Q such that |detΛ| = 1. Then,

Z[Q,λ] ∼= Z[τ1, . . . , τn, τp, τq]/⟨τ1 · · · τn − (τp + τq), τpτq⟩.

Proof. Due to the combinatorial structure of a manifold with two vertices Q (see Section 3),
for every codimension-k face H (0 < k < n), there is a subset I ⊂ [n] such that |I| = k and
H =

∩
i∈I Fi. In this case, we write H = FI and denote its rational Thom class by τI . In

particular, we denote the rational Thom class of a facet Fi by τi, for convenience.
Note that in Z[Q,λ] the following relation holds for i ̸= j:

τiτj = τΓτ{i,j} = τ{i,j}.

Moreover, for h ∈ [n] \ {i, j}, we have

τhτ{i,j} = τ{i,j,h} = τiτjτh.

Similarly we have that

τI =
∏
i∈I

τi,

for all non-empty proper subsets I ⊊ [n]. This shows that we can reduce the generators in Z[Q,λ]
to τ1, . . . , τn and τp, τq. Namely, the ring homomorphism

φ : Z[τ1, . . . , τn, τp, τq] → Z[Q,λ] = ZQ,λ/I,

induced from the injection ρ : Z[τ1, . . . , τn, τp, τq] → ZQ,λ, is a surjective ring homomorphism. In
this case, one can easily see that kerφ ∼= Imρ ∩ I = ⟨τ1, · · · , τn − (τp + τq)⟩ which establishes the
statement. □

Remark 4.11. Because Z[Q,λ] does not depend on the topology of Q, this theorem also holds for
any manifold with two vertices Q (which may not be Σ∆n−1).

Consequently, we have the following corollary:

Corollary 4.12. If Hodd(X(Λ)) = 0 then

HT (X(Λ)) ∼= Z[τ1, · · · , τn, τp, τq]/⟨τ1 · · · τn − (τp + τq), τpτq⟩
where deg τi = 2, i = 1, . . . , n, and deg τp = deg τq = 2n.

Remark 4.13. If G(Λ) = {e} then X(Λ) = S2n, i.e., the torus manifold. Therefore, we can also
obtain the above fact by using the main theorem of [17].

4.4. The equivariant cohomology of S2(m,n). In this final subsection, we apply Corollary 4.9
to the case when |detΛ| > 1.

Recall the spindle S2(m,n). This is homeomorphic to S2, therefore, Hodd(S2(m,n)) = 0. The
orbifold torus graph of S2(m,n) is the one defined in Figure 2.

In this case, the rational Thom classes for the two vertices p and q are defined as follows:

τp(p) =
1

m
x, τp(q) = 0 and τq(p) = 0, τq(q) =

1

n
x, respectively.

Therefore, we have that

Zm,n := Z([−1,1],λm,n)
∼= Z[mτp, nτq, f(τp, τq)τpτq | f(τp, τq) ∈ Z[τp, τq]].
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(Note that the generators are duplicated.) Hence, with the method similar to the one demonstrated
in Section 4.1, it is easy to show the following theorem:

Theorem 4.14. The T 1-equivariant cohomology of the spindle S2(m,n) is isomorphic to the
following ring:

H∗
T (S

2(m,n)) ∼= Zm,n/I ∼= Z[mτp, nτq]/⟨mnτpτq⟩,

where deg τp = deg τq = 2.

It is well-known that the T 1-action on S2(m,n) is equivariantly homeomorphic to the standard
T1-action on S2. Therefore, for any m,n(̸= 0), their equivariant cohomologies are isomorphic. We
finally remark the following proposition; the proposition may be regarded as the generalization of
this fact for S2(m,m) = S2/Cm.

Proposition 4.15. If Λ is the diagonal matrix (see Λ′ in Remark 3.11) then the torus orbifold
X(Λ) is equivariantly homeomorphic to the torus manifold obtained by Λ = In, i.e., the standard
2n-dimensional sphere S2n with Tn-action.

Proof. If Λ is the diagonal matrix Λ′ in Remark 3.11 then X(Λ) is the orbifold S2n/Cr1×· · ·×Crn ,
where Cr1 ×· · ·×Crn acts on the complex coordinates in S2n ⊂ Cn⊕R standardly. Then, because
the scalar products on the characteristic functions does not change the topological type of the
underlying topological space, this is equivariantly homeomorphic to the torus manifold obtained
by Λ = In. This establishes the statement. □
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