Betti numbers for Hamiltonian circle actions
with isolated fixed points

Yunhyung Cho

Sungkyunkwan University

Toric Topology in Okayama
November 18, 2019

1/30



|. Hamiltonian circle actions

«O)>» «Fr «

ae



3/30

Definition. A symplectic form w on a manifold M is a differential 2-form such that
@ dw =0,
@ w, : T,M x T,M — R is non-degenerate for every p € M.

~ dimg M is even.

Equivalently, w is symplectic if and only if

o [w] € H*(M;R),
@ w":=wA--- Aw is nowhere vanishing on M
N e’

n
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Symplectic form is a “device” producing
functionH: M — R ~» vector field Xg on M
such that each integral curves of Xy obey the law of the “conservation of energy H”
By non-degeneracy of w, we have
w o TM = T*M

X —  w(X,-)
Xy + dH (exact 1-form)
Definition: Forany H : M — R, we call Xy a Hamiltonian vector field where

dH = w(Xu, ).

(Law of the conservation of H : dH(Xp) = w(Xu,XH) = 0.)



Example :

In this case, we say that H generates a Hamiltonian S'-action.

(2 +5%)

D=

(x,y) =

dx Ndy (Xu,-) = xdx + ydy = dH
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Definition : Assume S acts on a compact symplectic manifold (M, w). Let

d

— & it
o dt =0

e -p

The action is called Hamiltonian if X is Hamiltonian, i.e.,
dH = w(X, ")

for some H : M — R (called a moment map).
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Useful facts :
@ Since dH = w(X, -), we have that

dH(p) =0 <« X,=0 (i.e,pisafixed point).

Thus, p is a critical point of H if and only if p is a fixed point.

@ For each fixed point p, the action locally looks like
t(ay ) = Bz, ), H(z) = 1Zn:k*IZ'\“rH(P)
El 3 &N kl ) njs 2 P L&t

Thus, H is a Morse (or Morse-Bott) function and
ind(p) = 2 x (# negative k;’s)
This implies that

dim H* (M) = dim Hy (M) = # fixed points of index 2k
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Example : Consider M = P3 with
te (20, ,23] = [Z(),I‘Zl,tzzz,t323]
Then the weights at each fixed points are
@ [1,0,0,0] : wt=(1,2,3) H'M) =7
@ [0,1,0,0] : wt_( 1,1,2) H*(M) =17
@ [0,0,1,0] :wt=(—2,—1,1) H* M) =7
[ =(—

@ [0,0,0,1] : 3,-2,-1) HO(M) =17
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Suppose (M?*, w) be a closed Hamiltonian S!-manifold with only isolated fixed points.
Conjecture 1. (M,w) is Kahler.
Conjecture 2. (Hard Lefschetz property) The map
[w]" ™% - H*(M; R) — H"~*(M; R)
is an isomorphism for every 0 < k < n.
Conjecture 3. The sequence by(M) = 1,b,(M), - - - ,by,(M) is unimodal, i.e.,

br—y < by for vk <n.

Conj.1 = Conj.2 = Con|.3

Note : Conj. 2 and 3 are about topology of (M, w). (algebraic structure of H*(M))
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(Delzant 1988) There is one-to-one correspondence
{compact Ham. 7"-mfds (M*",w)} PN {integral simple polytopes}
(M, w) H(M)
Moreover, every such manifold (M, w) is Kéhler (toric variety)

(Karshon 1999) : 4-dim. compact Hamiltonian $!-manifolds are Kéhler

(Tolman 2007 & McDuff 2008) : There are exactly four 6-dim. monotone Hamiltonian
S'-manifolds with b,(M) = 1 and they are Kéhler

(Knop 2010) Classification of multiplicity-free Hamiltonian G-spaces
(Proof of Delzant’s conjecture)

(Karshon - Tolman 2014) Classification of complexity-one spaces
(under assumption : every fixed component is two-dimensional)

(C. 2019) Classification of 6-dim. monotone semifree S!-actions
(There are finitely many and all such manifolds are Kéahler)
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Definition : Consider s*—! C C" with a free S'-action :
t- (Zlv"' 1Z”) = (tzlv"' 7th)'

Let §°° := lim,— 00 $*~! be the direct limit with the induced topology and S!-action.
(It is known that S°° is contractible.)

% (M) := H* (M xg 5)

is called an S'-equivariant cohomology



13/30

Fiber bundle structure :
TiMXS® = 8° = 7w:Mxg S —P® =50/
Thus M x o §°° is an M-bundle over P>°.
Theorem (equivariant formality) : H{, (M) = H* (M) ® H* (P*°)
(i.e., free H*(P°°)-module)
Note :
@ H*(P>) 2 R[x]. (degx=2)

® dimH (M) = bo + by + - + by (bay = dim H?**(M))
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Ring structure of Hg, (M) :
For each fixed point p and an inclusion i, : p — M,
ip:p Xg 8 = M xg S
induces a map (called restriction to p)
iy « Hg (M) — Hg (p) = H* (P™) = R[]

Collecting all such maps, we have

P HZM) o @, HR () = @, . BRI

o > i*(c) (i (@) cpgst -

Theorem (Kirwan) The map i* is a ring monomorphism.
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Canonical basis of 1, (M) :
Recall that Hg, (M) = H* (M) ® H* (P>°) is a free H* (P°°)-module.
Theorem (McDuff-Tolman) There exists a basis
{ap}pEMS] dega, = ind(p)
of Hg, (M) such that

H(q) < H(p) or

@ i*(ap) = 0 when p # ¢ and either
altes) ind(q) < ind(p)

@ i*(ap) = x*) where A(p) := 1ind(p).
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Visualizing canonical basis : M = P! x P! x P!, w = awgs @ bwrs @ cwrs

t - ([z0, wol, [z1, w1], [z2, w2]) = ([z0, two], [z1, w1 ], [z2, tw2])

M =P x P! x P!
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Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two], [z1, tW1], [22, tW2])

(N,N,N)

(S,S,9)

E.g. Weights at (S,5,5) : (1,1,1) = index =0
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Visualizing canonical basis : M = P' x P! x P!, w = awgs ® bwps @ cwrs

t - ([z0, wol, [z1, wi], [22, w2]) = ([z0, two], [z1, tw1], [z2, tw2])

Canonical class oy 5.5 € Hgl (M)
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Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two], [z1, tW1], [22, tW2])

wt =2

E.g. Weights at (N, S,S) : (—1,1,1) = index =2
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Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two), [z1, tW1], [22, tW2])

Canonical class aw,s,s € H§1 (M)
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Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two], [z1, tW1], [22, tW2])

(N,N,N)
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Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two), [z1, tW1], [22, tW2])

Canonical class a,v,s € H} (M)



Visualizing canonical basis : M = P! x P! x P!, w = awgs ® bwrs ® cwrs

t - ([z0, wol, [z1, w1], [22, w2]) = ([z0, two], [z1, tW1], [22, tW2])

(N,N,N)

E.g. Weights at (N,N,N) : (—1,—1,—1) = index =6
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Visualizing canonical basis : M = P' x P! x P!, w = awgs ® bwps @ cwrs

t - ([z0, wol, [z1, wi], [22, w2]) = ([z0, two], [z1, tw1], [z2, tw2])

Canonical class ay,y,v € HY (M)



Localization Theorem (Atiyah-Bott, Berline-Vergne): Let M be a compact
S'-manifold with only isolated fixed points. For any o € Hg (M), we have

/ai Z B _ipla)

i=1 wi(p)x

where wy(p), - - - , wa(p) is the weights of the S'-action at p. In particular,

for every o with deg o < 2n.

Example : For ay v s € Hg, (M), we have

So, * = x2.
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Equivariant symplectic class: For a fixed moment map H, there exists

lwn] € Hy (M) iy ([wn]) = H(p)x € R[]

If we choose H such that Hy,ax = 0, then
[wallp = H(p)x <0

for every p # max.



lll. Main Theorem

<O <Fr o«

Q>
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Theorem (C.) Let (M, w) be a compact Hamiltonian S'-manifold with isolated fixed
points.

@ FordimM = 8nor8n-+4,
byt +byaoy Sba+ -+ by

E.g. If dim M = 8, then b, < by (so that unimodality holds)

@ If the moment map is index-increasing, then the unimodality conjecture holds.
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Exercise : Show that there is no compact Hamiltonian S'-manifolds with isolated fixed

points such that

(That is, the sequence of Betti numbers is (1,2,1,2,1) which is not unimodal.)

Proof: Let

p1,p2 : fixed points of index 2, g of index 4, r;, r, of index 6, and s of index 8

@ Consider ap,, ap, € Hg, (M). Then there exists some nonzero
a = aay, + bay, € H;, M) st ig(a)=0

Then « only survives at py, py, ri,r,and s
o (Symplectic class) There exists [w] € Hy (M) such that iy ([w]) = H(p)x.
@ Adjusting H so that H(s) = 0, we obtain a contradiction

= [ o pul = Z” K oS4

(p))C



30/30

Proof of Theorem : Assume that dim M = 8n. Note that

o dimg Hyj ~*(M;R) = by + by + - - ban 2

o {1 20) .y [ pe M, A(p) < 2n— 1} is a basis of Hiy~2(M;R)

(as an R-vector space)
Assume dim = 8xn and
byt +bypa1)y >ba+ -+ by

Now, consider the following map

d - H‘S“]l_z(M; R) — (Rbo OR* @ ... @Rb4(n—l)) ® (le D@ Rban)

(e = (00, Qndy Qpy v 5 Oy )

with the identification

Rb4i — @ R-uz*! and ouj 1= (all’)ind(p):4i c @ R. 21
ind(p)=4i ind(p) =4i

By dimensional reason, ® has a non-trivial kernel o € Hél (M). Then
a? - [wy] € H¥—*(M) only survives at fixed points of index 2,6, --- ,81z — 6,81 — 2. This
contradicts the localization theorem.



