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I. Hamiltonian circle actions
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Definition. A symplectic form ω on a manifold M is a differential 2-form such that

dω = 0,

ωp : TpM × TpM → R is non-degenerate for every p ∈ M.

 dimR M is even.

Equivalently, ω is symplectic if and only if

[ω] ∈ H2(M;R),

ωn := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

is nowhere vanishing on M
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Symplectic form is a “device” producing

function H : M → R  vector field XH on M

such that each integral curves of XH obey the law of the “conservation of energy H’’

By non-degeneracy of ω, we have

ω : TM '−→ T∗M

X 7→ ω(X, ·)

XH ←[ dH (exact 1-form)

Definition: For any H : M → R, we call XH a Hamiltonian vector field where

dH = ω(XH , ·).

(Law of the conservation of H : dH(XH) = ω(XH ,XH) = 0.)
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Example :

−→

(x, y) 7→ 1
2 (x2 + y2)

H

R

x

y
XH = y ∂

∂x − x ∂
∂y

dx ∧ dy (XH , ·) = xdx + ydy = dH

In this case, we say that H generates a Hamiltonian S1-action.
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Definition : Assume S1 acts on a compact symplectic manifold (M, ω). Let

Xp :=
d
dt

∣∣∣∣
t=0

eit · p

The action is called Hamiltonian if X is Hamiltonian, i.e.,

dH = ω(X, ·)

for some H : M → R (called a moment map).
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Useful facts :

Since dH = ω(X, ·), we have that

dH(p) = 0 ⇔ Xp = 0 (i.e., p is a fixed point).

Thus, p is a critical point of H if and only if p is a fixed point.

For each fixed point p, the action locally looks like

t · (z1, · · · , zn) = (tk1 z1, · · · , tkn zn), H(z) =
1
2

n∑
i=1

ki|zi|2 + H(p)

Thus, H is a Morse (or Morse-Bott) function and

ind(p) = 2× (# negative ki’s)

This implies that

dim H2k(M) = dim H2k(M) = # fixed points of index 2k



8 / 30

Example : Consider M = P3 with

t · [z0, · · · , z3] = [z0, tz1, t2z2, t3z3]

Then the weights at each fixed points are

[1, 0, 0, 0] : wt = (1, 2, 3) H0(M) = Z

[0, 1, 0, 0] : wt = (−1, 1, 2) H2(M) = Z

[0, 0, 1, 0] : wt = (−2,−1, 1) H4(M) = Z

[0, 0, 0, 1] : wt = (−3,−2,−1) H6(M) = Z
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Suppose (M2n, ω) be a closed Hamiltonian S1-manifold with only isolated fixed points.

Conjecture 1. (M, ω) is Kähler.

Conjecture 2. (Hard Lefschetz property) The map

[ω]n−k : Hk(M;R)→ H2n−k(M;R)

is an isomorphism for every 0 ≤ k ≤ n.

Conjecture 3. The sequence b0(M) = 1, b2(M), · · · , b2n(M) is unimodal, i.e.,

bk−2 ≤ bk for ∀k ≤ n.

Conj. 1 ⇒ Conj. 2 ⇒ Conj. 3

Note : Conj. 2 and 3 are about topology of (M, ω). (algebraic structure of H∗(M))
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(Delzant 1988) There is one-to-one correspondence{
compact Ham. Tn-mfds (M2n, ω)

} 1:1←→ {integral simple polytopes}
(M, ω) H(M)

Moreover, every such manifold (M, ω) is Kähler (toric variety)

(Karshon 1999) : 4-dim. compact Hamiltonian S1-manifolds are Kähler

(Tolman 2007 & McDuff 2008) : There are exactly four 6-dim. monotone Hamiltonian
S1-manifolds with b2(M) = 1 and they are Kähler

(Knop 2010) Classification of multiplicity-free Hamiltonian G-spaces
(Proof of Delzant’s conjecture)

(Karshon - Tolman 2014) Classification of complexity-one spaces
(under assumption : every fixed component is two-dimensional)

(C. 2019) Classification of 6-dim. monotone semifree S1-actions
(There are finitely many and all such manifolds are Kähler)
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II. Equivariant Cohomology
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Definition : Consider S2n−1 ⊂ Cn with a free S1-action :

t · (z1, · · · , zn) = (tz1, · · · , tzn).

Let S∞ := limn→∞ S2n−1 be the direct limit with the induced topology and S1-action.
(It is known that S∞ is contractible.)

H∗S1 (M) := H∗(M ×S1 S∞)

is called an S1-equivariant cohomology
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Fiber bundle structure :

π : M × S∞ → S∞ ⇒ π : M ×S1 S∞ → P∞ = S∞/S1

Thus M ×S1 S∞ is an M-bundle over P∞.

Theorem (equivariant formality) : H∗
S1 (M) ∼= H∗(M)⊗ H∗(P∞)

(i.e., free H∗(P∞)-module)

Note :

H∗(P∞) ∼= R[x]. (deg x = 2)

dim H2k
S1 (M) = b0 + b2 + · · ·+ b2k (b2k = dim H2k(M))
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Ring structure of H∗
S1 (M) :

For each fixed point p and an inclusion ip : p ↪→ M,

ip : p×S1 S∞ ↪→ M ×S1 S∞

induces a map (called restriction to p)

i∗p : H∗S1 (M)→ H∗S1 (p) = H∗(P∞) ∼= R[x]

Collecting all such maps, we have

i∗ : H∗
S1 (M) →

⊕
p∈MS1 H∗

S1 (p) =
⊕

p∈MS1 R[x]

α 7→ i∗(α) := (i∗p (α))
p∈MS1 .

Theorem (Kirwan) The map i∗ is a ring monomorphism.
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Canonical basis of H∗
S1 (M) :

Recall that H∗
S1 (M) ∼= H∗(M)⊗ H∗(P∞) is a free H∗(P∞)-module.

Theorem (McDuff-Tolman) There exists a basis

{αp}p∈MS1 degαp = ind(p)

of H∗
S1 (M) such that

i∗q (αp) = 0 when p 6= q and either

{
H(q) ≤ H(p) or

ind(q) ≤ ind(p)

i∗p (αp) = xλ(p) where λ(p) := 1
2 ind(p).
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

M = P1 × P1 × P1
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

E.g. Weights at (S, S, S) : (1, 1, 1) ⇒ index = 0
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

1

1

1

1

1

1

1

1

Canonical class αS,S,S ∈ H0
S1 (M)
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

wt = 2

E.g. Weights at (N, S, S) : (−1, 1, 1) ⇒ index = 2
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

x

0

0

0

*

*

*

*

Canonical class αN,S,S ∈ H2
S1 (M)
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

E.g. Weights at (N,N, S) : (−1,−1, 1) ⇒ index = 4
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

0

0

0

0

x

*

0

0

Canonical class αN,N,S ∈ H4
S1 (M)
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

E.g. Weights at (N,N,N) : (−1,−1,−1) ⇒ index = 6
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Visualizing canonical basis : M = P1 × P1 × P1, ω = aωFS ⊕ bωFS ⊕ cωFS

t · ([z0,w0], [z1,w1], [z2,w2]) = ([z0, tw0], [z1, tw1], [z2, tw2])

(S, S, S)

(S, S,N)(N, S, S)

(S,N, S)

(N,N, S)

(N,N,N)

(S,N,N)

(N, S,N)

0

0

0

0

0

x3

0

0

Canonical class αN,N,N ∈ H6
S1 (M)
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Localization Theorem (Atiyah-Bott, Berline-Vergne): Let M be a compact
S1-manifold with only isolated fixed points. For any α ∈ H∗

S1 (M), we have∫
M
α =

∑
p∈MS1

i∗p (α)∏n
i=1 wi(p)x

where w1(p), · · · ,wn(p) is the weights of the S1-action at p. In particular,

∑
p∈MS1

i∗p (α)∏n
i=1 wi(p)

= 0

for every α with deg α < 2n.

Example : For αN,N,S ∈ H4
S1 (M), we have

0 =
x2

1
+
∗
−1

So, ∗ = x2.
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Equivariant symplectic class: For a fixed moment map H, there exists

[ωH ] ∈ H2
S1 (M) i∗p ([ωH ]) = H(p)x ∈ R[x]

If we choose H such that Hmax = 0, then

[ωH ]|p = H(p)x < 0

for every p 6= max.
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III. Main Theorem
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Theorem (C.) Let (M, ω) be a compact Hamiltonian S1-manifold with isolated fixed
points.

1 For dim M = 8n or 8n + 4,

b2 + · · ·+ b2+4(n−1) ≤ b4 + · · ·+ b4+4(n−1)

E.g. If dim M = 8, then b2 ≤ b4 (so that unimodality holds)

2 If the moment map is index-increasing, then the unimodality conjecture holds.
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Exercise : Show that there is no compact Hamiltonian S1-manifolds with isolated fixed

points such that

b0 = b8 = 1, b2 = b6 = 2, b4 = 1

(That is, the sequence of Betti numbers is (1,2,1,2,1) which is not unimodal.)

Proof: Let

p1, p2 : fixed points of index 2, q of index 4, r1, r2 of index 6, and s of index 8

Consider αp1 , αp2 ∈ H2
S1 (M). Then there exists some nonzero

α := aαp1 + bαp2 ∈ H2
S1 (M) s.t. i∗q (α) = 0

Then α only survives at p1, p2, r1, r2,and s

(Symplectic class) There exists [ω] ∈ H2
S1 (M) such that i∗p ([ω]) = H(p)x.

Adjusting H so that H(s) = 0, we obtain a contradiction

0 =

∫
M
α2 · [ω] =

∑
p

i∗p (α)2 · H(p)x

wi(p)x
=
∑ −
−
6= 0
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Proof of Theorem : Assume that dim M = 8n. Note that

dimR H4n−2
S1 (M;R) ∼= b0 + b2 + · · · b4n−2

{u2n−1−λ(p) · αp | p ∈ MS1
, λ(p) ≤ 2n− 1} is a basis of H4n−2

S1 (M;R)

(as an R-vector space)

Assume dim = 8n and

b2 + · · ·+ b2+4(n−1) > b4 + · · ·+ b4+4(n−1)

Now, consider the following map

Φ : H4n−2
S1 (M;R) →

(
Rb0 ⊕ Rb4 ⊕ · · · ⊕ Rb4(n−1)

)
⊕
(
Rb4n ⊕ · · · ⊕ Rb8n−4

)
α 7→ (α0, · · · , α4n−4, α4n, · · · , α8n−4)

with the identification

Rb4i =
⊕

ind(p)=4i

R · u2n−1 and α4i := (α|p)ind(p)=4i ∈
⊕

ind(p)=4i

R · u2n−1

By dimensional reason, Φ has a non-trivial kernel α ∈ H2
S1 (M). Then

α2 · [ωH ] ∈ H8n−4(M) only survives at fixed points of index 2, 6, · · · , 8n− 6, 8n− 2. This
contradicts the localization theorem.


