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Polytopes

By a polytope P we mean a combinatorial convex
3-dimensional polytope.

A polytope P is simple, if any its vertex belongs to exactly 3
faces.
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k -belts

A k -belt (k > 3) is a cyclic sequence of k faces such that faces
are adjacent if and only if they follow each other and no three
faces have a common vertex.

3-belt 4-belt 5-belt

Proposition

Any simple 3-polytope P 6= ∆3 has a 3-, 4-, or 5-belt.
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Flag polytopes

A simple polytope is called flag if any its set of pairwise
intersecting faces has a nonempty intersection.

Proposition

A simple polytope P is flag iff P 6= ∆3 and P has no 3-belts;

A flag polytope with the smallest number of faces is the cube.
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Pogorelov polytopes

Problem (A.V. Pogorelov, 1967)
To characterize polytopes realizable in the Lobachevsky space
L3 as bounded polytopes with right dihedral angles.

We call such polytopes Pogorelov polytopes.

Motivation

Such polytopes produce «regular» partitions of L3 into equal
polytopes.

(figures by Ya.V. Kucherinenko)
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Pogorelov polytopes

Theorem (A.V. Pogorelov, 1967, E.M. Andreev, 1970)

A polytope P is a Pogorelov polytope iff it is a flag polytope
without 4-belts. The realization is unique up to isometries.

A Pog-polytope with the smallest number of faces is the
dodecahedron.
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Cohomological rigidity

A family of manifolds is called cohomologically rigid over the
ring R, if for any two manifolds from the family a graded
isomorphism of cohomology rings over R implies
a diffeomorphism of manifolds.

Pogorelov polytopes give rise to cohomologically rigid families:
(m + 3)-dimensional moment-angle manifolds ZP over Z,
where m is the number of faces of P
(F. Fan, J. Ma, X. Wang, 2015);
6-dimensional quasitoric manifolds M(P,Λ) over Z, and
3-dimensional hyperbolic manifolds R(P,Λ2) over Z2
(V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda,
T. E. Panov, S. Park, 2017)
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Example of Pogorelov polytopes: k -barrels

k-gon

A k -barrel is a Pogorelov polytope for k > 5;

In 1931 F. Löbell glued 8 copies of the 6-barrel to construct the
first example of a closed three-dimensional hyperbolic manifold.

In 1987 A. Yu. Vesnin constructed hyperbolic manifolds of
«Löbell type» for all k -barrels, k > 5.
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Fullerenes

A (mathematical) fullerene is a simple polytope with
all faces pentagons and hexagons.

Buckminsterfullerene C60 Truncated icosahedron

Theorem (T. Došlić, 1998, 2003)
Any fullerene is a Porogelov polytope.
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Cyclic k -edge-connectivity (ck -connectivity)

Definition

A simple polytope P 6= ∆3 is ck -connected, if it has no
l-belts, l < k .
A simple polytope P 6= ∆3 is strongly ck -connected
(c∗k -connected), if it is ck -connected and any k -belt
surrounds a face (is trivial).
By definition ∆3 is c∗3-connected, but not c4-connected.
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Families of ck -connected polytopes

Any simple polytope is c3-connected, but at most
c∗5-connected.
We obtain a chain of nested families of polytopes:

Ps ⊃ Paflag ⊃ Pflag ⊃ PaPog ⊃ PPog ⊃ PPog∗

c3-connected Ps – all simple polytopes;
c∗3-connected Paflag – almost flag polytopes;
c4-connected Pflag – flag polytopes;
c∗4-connected PaPog – almost Pogorelov polytopes ;
c5-connected PPog – Pogorelov polytopes;
c∗5-connected PPog∗ – strongly Pogorelov polytopes.

Theorem (G.D. Birkhoff, 1913)
The Four Colour Problem for planar graphs can be reduced
only to Pog∗ polytopes.
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n-disk-fullerenes

Definition (M. Deza, M. Dutour Sikirić and M. I. Shtogrin, 2013)

An n-disk-fullerene is a simple polytope with marked n-gonal
face such that all other faces are pentagons and hexagons.

A unique 7-disk-fullerene with the minimal number of faces

Theorem (V. M. Buchstaber, N. Yu. Erokhovets, 2015-2018)
Any 3-disk fullerene is almost flag.
Any 4-disk-fullerene is almost Pogorelov.
Any 7-disk-fullerene is Pogorelov.
For any n > 8 there exist n-disk-fullerenes P and Q, where
P is not almost flag, and Q is Pog∗.
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Andreev’s theorem I

Theorem (E.M. Andreev, 1970)

A polytope P 6= ∆3 can be realized as a bounded polytope in L3

with dihedral angles ϕi,j ∈ (0, π2 ] at edges Fi ∩ Fj if and only if
P is simple;
ϕi,j + ϕj,k + ϕk ,i > π for any vertex Fi ∩ Fj ∩ Fk ;
ϕi,j + ϕj,k + ϕk ,i < π for any 3-belt (Fi ,Fj ,Fk );
ϕi,j + ϕj,k + ϕk ,l + ϕl,i < 2π for any 4-belt (Fi ,Fj ,Fk ,Fl);
if P = ∆2 × I, then there is an edge at a base with the
dihedral angle < π

2 .
The realization is unique up to isometries.
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Corollaries of Andreev’s theorem I

Corollary 1

A simple polytope P 6= ∆3 can be realized in L3 as a bounded
polytope with equal non-obtuse dihedral angles (∈ (π3 ,

π
2 ])⇔ P

is flag.

Corollary 2

A simple polytope P 6= ∆3 can be realized in L3 as a bounded
polytope with right dihedral angles⇔ P is flag and has no
4-belts.

Idea (T.E. Panov, 2018)
Andreev’s result imply that almost Pogorelov polytopes ≈
right-angled polytopes of finite volume in L3.
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Andreev’s theorem II (1970)

A polytope P 6= ∆3 can be realized as a polytope of finite
volume in L3 with dihedral angles ϕi,j ∈ (0, π2 ] if and only if

P has vertices of valency of 3 and 4;
ϕi,j + ϕj,k + ϕk ,i > π for any 3-valent vertex Fi ∩ Fj ∩ Fk ;
ϕi,j = π

2 for each edge at a 4-valent vertex;
ϕi,j + ϕj,k + ϕk ,i < π for any 3-belt (Fi ,Fj ,Fk );
ϕi,j + ϕj,k + ϕk ,l + ϕl,i < 2π for any 4-belt (Fi ,Fj ,Fk ,Fl);
if P = ∆2 × I, then there is an edge at a base with the
dihedral angle < π

2 ;
ϕj,k + ϕk ,i < π, if faces Fi and Fj intersect at a 4-valent
vertex and Fk is adjacent to both of them and does not
contain their common vertex.

The intersection with the absolute consists of the 4-valent
vertices and the 3-valent vertices with the sum of dihedral
angles equal to π.
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Corollaries of Andreev’s theorem

There is nothing about a uniqueness of the realization.

A polytope P can be realized as a polytope of finite volume in
L3 with right dihedral angles⇔ P

has vertices of valency 3 and 4;
has no 3- and 4-belts;
has no pair of faces intersecting at a 4-valent vertex and
adjacent simultaneously to a face not containing it.

The intersection with the absolute consists of 4-valent vertices.

Strong (Mostow) rigidity⇒ uniqueness of realization.

Theorem (N.Yu. Erokhovets, 2018)
Cutting off 4-valent vertices gives a bijection between
right-angled polytopes of finite volume in L3 and almost
Pogorelov polytopes different from the cube I3 and the
pentagonal prism M5 × I.
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Ideal right-angled polytopes

A medial graph of a plane graph G is another graph M(G) that
represents the adjacencies between edges in the faces of G.

For any polytope P its medial graph G(P) is the graph of
an ideal right-angled polytope;
The graph of any ideal right-angled polytope is the medial
graph for exactly two (possibly equal) polytopes. Moreover,
these polytopes are dual to each other.
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k -antiprisms

The graph of the ideal octahedron is the medial graph of
the tetrahedron.
The medial graph of a k -gonal pyramid is the graph of a
k -antiprism.

a) b)

k-gon

a) a k -gonal pyramid and its medial graph; b) a k -antiprism
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The Koebe-Andreev-Thurston theorem

The correspondence between ideal right-angled polytopes and
medial graphs plays a fundamental role in the well-known
theorem.

Any polytope P has a geometric realization in R3 such that all
its edges are tangent to a sphere.
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Construction of simple polytopes

Theorem (V. Eberhard, 1891)
A polytope P is simple iff it is can be obtained from the simplex
∆3 by a sequence of operations of cutting off a vertex, an edge,
or two adjacent edges ((2, k)-truncations) by one hyperplane.
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Construction of almost flag polytopes

Proposition (N.Yu. Erokhovets, 2018)
A polytope P is almost flag if and only if one of the equivalent
conditions holds

P can be obtained from P = ∆3 with at most two vertices
cut by a sequence of operations of cutting off a vertex, an
edge, or a pair of adjacent edges not equivalent to a
cutting off a vertex of a triangle.
P is obtained by a simultaneous cutting off a disjoint set of
vertices of ∆3 or a flag polytope.
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Construction of flag polytopes

Theorem (A. Kotzig, 1967; V. Volodin, 2012+V.M. Buchstaber,
N.Yu. Erokhovets, 2015)

A polytope is flag iff it can be obtained from the cube I3 by a
sequence of edge-truncations and (2, k)-truncations, k > 6.
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Construction of almost Pogorelov polytopes

Theorem (follows from the paper by D. Barnette, 1974)
A simple polytope P is almost Pogorelov iff either P is the cube,
or the 5-gonal prism, or it can be obtained from the
3-dimensional associahedron (Stasheff polytope) by cuttings off
edges not lying in 4-gons, and (2, k)-truncations, k > 6.
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«Resolution of singularities»

For any quadrangle of a flag polytope P there is a flag
polytope Q such that P is obtained from Q by cutting off an
edge producing the prescribed quadrangle.
For almost Pogorelov polytopes analogous fact is not true.

Theorem (N.Yu. Erokhovets, 2018)

Any almost Pogorelov polytope P 6= I3,M5 × I is obtained by
cutting off a disjoint set of edges (a matching) of an almost
Pogorelov polytope Q or the polytope P8, producing all its
quadrangles.

Polytope P8
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«Resolution of singularities»

Proposition
Any ideal right-angled polytope is obtained by a contraction of
edges of a perfect matching of an almost Pogorelov polytope or
the polytope P8 containing exactly one edge of each
quadrangle.

Problem
To characterize almost Pogorelov polytopes obtained by cutting
off matchings of Pogorelov polytopes.

Necessary condition
Each quadrangle is adjacent by a pair of opposite edges to
faces with at least six sides.
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Connected sum along k -gonal faces

A connected sum of two simple polytopes P and Q
along k -gonal faces F and G is a combinatorial analog
of glueing of two polytopes along congruent faces orthogonal to
adjacent faces.

Connected sum with the dodecahedron along 5-gons.
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Construction of Pogorelov and Pogolelov∗ polytopes

Theorem (D. Barnette, 1977+V.M. Buchstaber-E., 2017)
A polytope P is Pog iff either P is a q-barrel, q > 5, or it can be
constructed from the 5- or the 6-barrel by a sequence of
(2, k)-truncations, k > 6, and connected sums with the 5-barrel.

Theorem (D. Barnette+V. M. Buchstaber, N. Yu. Erokhovets)
A polytope P is Pog∗ iff either P is a q-barrel, q > 5, or it can
be constructed from the 6-barrel by a sequence of
(2, k)-truncations, k > 6.

27 / 41



Non-Pog∗ fullerenes=(5,0)-nanotubes

1 Take patch C of the dodecahedron drawn on the left;
2 add k > 0 five-belts of hexagons;
3 glue up by the patch C again to obtain the fullerene D5k .

Proposition
A fullerene has the form D5k iff it contains a patch C.

Th. (F. Kardoš, R. Škrekovski vs K. Kutnar, D. Marušič, 2008)
A fullerene is not Pog∗ if and only if it is D5k , k > 1.
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Construction of fullerenes

Theorem (V.M. Buchstaber, N.Yu. Erokhovets, 2017)
Any Pogorelov∗ fullerene either is the dodecahedron or can be
obtained from the 6-barrel by a sequence of (2,6)- and
(2,7)-truncations such that intermediate polytopes are
fullerenes or 7-disk-fullerenes with the heptagon adjacent to a
pentagon.
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Construction of ideal right-angled polytopes

In the survey [Right-angled polyhedra and hyperbolic
3-manifolds, Russian Math. Surveys, 72:2 (2017), 335–374]
A.Yu. Vesnin comparing results by

I. Rivin (1996) on ideal polytopes, and
G. Brinkmann, S. Greenberg, C. Greenhill, B.D. McKay,
R. Thomas, and P. Wollan (2005) on graph theory

formulated theorem

Any ideal right-angled polytope can be obtained from some
k -antiprism, k > 3, by operations of edge-twist.

Edge-twist. The edges belong to one face and are not adjacent.

30 / 41



Construction of ideal right-angled polytopes

Theorem (N.Yu. Erokhovets, 2019)
A polytope P is ideal right-angled if and only if either P is a
k -antiprism, k > 3, or P can be obtained from the 4-antiprism
by a sequence of restricted edge-twists.

Restricted edge-twist. Edges are adjacent to the same edge.
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Rigid properties

Definition
A property is rigid for the family of manifolds, if any isomorphism
of graded rings ϕ : H∗(M1)→ H∗(M2), M1,M2 ∈ F implies that
both manifolds either have or do not have this property.

We say that a property is rigid for the class of polytopes, if it
rigid for the corresponding family of moment-angle manifolds.

Proposition (F. Fan, J. Ma, X. Wang, 2015)

A property to be a flag polytope is rigid in the class of simple
3-polytopes.

Proof: The polytope P 6= ∆3 is flag if and only if

Hm−2(ZP) ⊂ (H̃∗(ZP))2.
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Rigid properties

Proposition (F. Fan, J. Ma, X. Wang, 2015)

A property to be Pogorelov polytope is rigid in the class of
simple 3-polytopes.

Proof: The flag polytope P is Pogorelov if and only if the
multiplication

H3(ZP)⊗ H3(ZP)→ H6(ZP)

is trivial.

Conjecture
The property to be almost Pogorelov polytope is rigid it the
class of simple 3-polytopes.
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Rigid sets

Let P be a simple 3-polytope. Then the cohomology rings
H∗(ZP) and H∗(M(P,Λ)) have no torsion.

Assume that for any manifold M from a family F a set
SM ⊂ H∗(M) is given.

Definition
A set SM is rigid for the family F if ϕ(SM1) = SM2 for any
isomorphism of graded rings ϕ : H∗(M1)→ H∗(M2),
M1,M2 ∈ F .

The group H3(ZP) is a group with the basis {ai,j}
corresponding to pairs of non-adjacent faces Fi and Fj .

Lemma (F. Fan, J. Ma, X. Wang, 2015)

The set {±ai,j} is rigid for the class of Pogorelov polytopes.
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Rigidity for belts (F. Fan, J. Ma, X. Wang, 2015)

Each k -belt corresponds to an element Hk+2(ZP).

The free abelian subgroup in Hk+2(ZP) with the basis
corresponding to k -belts is rigid for the class of all simple
3-polytopes.

The subset in Hk+2(ZP) of ±elements corresponding to k -belts
is rigid for the class of Pogorelov polytopes.

The subset in Hk+2(ZP) of ±elements corresponding to k -belts
around faces is rigid for the class of Pogorelov polytopes.

Thus, any isomorphism of graded rings ϕ : H∗(ZP)→ H∗(ZQ)
for Pogorelov polytopes P and Q defines a bijection between
sets of faces.

This bijection sends adjacent faces to adjacent faces.
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Rigidity for quasitoric manifolds
(V.M. Buchstaber, N.Yu. Erokhovets, M. Masuda,
T.E. Panov, S. Park, 2016)

Each face Fi corresponds to the element vi in H2(M(P,Λ)).

The set of elements {±vi : Fi is a face} is rigid for the class of
Pogorelov polytopes.

Thus, any isomorphism of graded rings
ϕ : H∗(M(P,ΛP))→ H∗(M(Q,ΛQ)) for Pogorelov polytopes P
and Q defines a bijection between sets of faces.

This bijection sends adjacent faces to adjacent faces.
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Toric topology of almost Pogorelov polytopes

The image of H3(ZP)⊗ H3(ZP)→ H6(ZP) is the subgroup with
the basis consisting of elements corresponding to 4-belts.

Proposition

The subset in H6(ZP) of ± elements corresponding to 4-belts is
rigid for the class of almost Pogorelov polytopes different from
the cube I3 and the pentagonal prism M5 × I.

Problem
Is the set of

1 ±ai,j ⊂ H3(ZP);
2 ± elements corresponding to belts;
3 ± elements corresponding to belts around faces;
4 ±vi in H2(M(P,Λ))

rigid for the class of almost Pogorelov polytopes 6= I3,M5 × I?
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