Higher Whitehead products in moment-angle complexes

Daisuke Kishimoto

joint work with Kouyemon Iriye

19 Nov 2019; Okayama

Contents

1. Object of study
2. Result
3. Proof
4. Generalization

1. Object of study

Moment-angle complex

- Let K be a simplicial complex with vertex set $[m]=\{1, \ldots, m\}$.
- For $\sigma \subset[m]$, let

$$
Z_{\sigma}=X_{1} \times \cdots \times X_{m}, \quad \text { where } \quad X_{i}= \begin{cases}D^{2} & i \in \sigma \\ S^{1} & i \notin \sigma\end{cases}
$$

Def The moment-angle complex for K is defined by

$$
Z_{K}=\bigcup_{\sigma \in K} Z_{\sigma}
$$

Moment-angle complex

- Let K be a simplicial complex with vertex set $[m]=\{1, \ldots, m\}$.
- For $\sigma \subset[m]$, let

$$
Z_{\sigma}=X_{1} \times \cdots \times X_{m}, \quad \text { where } \quad X_{i}= \begin{cases}D^{2} & i \in \sigma \\ S^{1} & i \notin \sigma\end{cases}
$$

Def The moment-angle complex for K is defined by

$$
Z_{K}=\bigcup_{\sigma \in K} Z_{\sigma}
$$

Eg Let $K=\partial \Delta^{m-1}$. For $m=2$,

$$
Z_{K}=\left(D^{2} \times S^{1}\right) \cup\left(S^{1} \cup D^{2}\right)=\partial\left(D^{2} \times D^{2}\right)=S^{3}
$$

For m general,

$$
Z_{K}=\partial\left(D^{2}\right)^{m}=S^{2 m-1}
$$

Davis-Januszkiewicz space

- For $\sigma \subset[m]$ and a pointed space X, let

$$
D J_{\sigma}(X)=X_{1} \times \cdots \times X_{m}, \quad \text { where } \quad X_{i}= \begin{cases}X & i \in \sigma \\ * & i \notin \sigma\end{cases}
$$

Def Define

$$
D J_{K}(X)=\bigcup_{\sigma \in K} D J_{\sigma}(X)
$$

where $D J_{K}=D J_{K}\left(\mathbb{C} P^{\infty}\right)$ is called the Davis-Januszkiewicz space.

Davis-Januszkiewicz space

- For $\sigma \subset[m]$ and a pointed space X, let

$$
D J_{\sigma}(X)=X_{1} \times \cdots \times X_{m}, \quad \text { where } \quad X_{i}= \begin{cases}X & i \in \sigma \\ * & i \notin \sigma\end{cases}
$$

Def Define

$$
D J_{K}(X)=\bigcup_{\sigma \in K} D J_{\sigma}(X)
$$

where $D J_{K}=D J_{K}\left(\mathbb{C} P^{\infty}\right)$ is called the Davis-Januszkiewicz space.
Eg Let $K=\partial \Delta^{m-1}$. For $m=2$,

$$
D J_{K}(X)=(X \times *) \cup(* \times X)=X \vee X
$$

For m general, $D J_{K}(X)$ is the m-fold fat-wedge of X, i.e.

$$
D J_{K}(X)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X^{m} \mid x_{i}=* \text { for some } i\right\} .
$$

Whitehead product

- Let

$$
\bar{w}: Z_{K} \rightarrow D J_{K}\left(S^{2}\right)
$$

be the map induced from the pinch map $\left(D^{2}, S^{1}\right) \rightarrow\left(S^{2}, *\right)$.
Def The Whitehead product of maps $\alpha_{1}, \alpha_{2}: S^{2} \rightarrow X$, denoted by [α_{1}, α_{2}], is the composite

$$
S^{3}=Z_{\partial \Delta^{1}} \xrightarrow{\bar{w}} D J_{\partial \Delta^{1}}\left(S^{2}\right)=S^{2} \vee S^{2} \xrightarrow{\alpha_{1}+\alpha_{2}} X
$$

Rem Whitehead products of maps from suspensions are similarly defined.

Whitehead product

- Let

$$
\bar{w}: Z_{K} \rightarrow D J_{K}\left(S^{2}\right)
$$

be the map induced from the pinch map $\left(D^{2}, S^{1}\right) \rightarrow\left(S^{2}, *\right)$.
Def The Whitehead product of maps $\alpha_{1}, \alpha_{2}: S^{2} \rightarrow X$, denoted by [α_{1}, α_{2}], is the composite

$$
S^{3}=Z_{\partial \Delta^{1}} \xrightarrow{\bar{w}} D J_{\partial \Delta^{1}}\left(S^{2}\right)=S^{2} \vee S^{2} \xrightarrow{\alpha_{1}+\alpha_{2}} X
$$

Rem Whitehead products of maps from suspensions are similarly defined.
Prop The cofiber of $S^{3}=Z_{\partial \Delta^{1}} \xrightarrow{\bar{w}} D J_{\partial \Delta^{1}}\left(S^{2}\right)=S^{2} \vee S^{2}$ is $S^{2} \times S^{2}$.
Cor TFAE:

1. $\left[\alpha_{1}, \alpha_{2}\right]=0$;
2. $\alpha_{1}+\alpha_{2}: S^{2} \vee S^{2} \rightarrow X$ extends over $S^{2} \times S^{2}$.

Higher Whitehead product

- Let $\alpha_{i}: S^{2} \rightarrow X$ be maps for $i=1, \ldots, m$.
- Suppose $\alpha_{1}+\cdots+\alpha_{m}: \underbrace{S^{2} \vee \cdots \vee S^{2}}_{m} \rightarrow X$ extends to a map

$$
\alpha: D J_{\partial \Delta^{m-1}}\left(S^{2}\right) \rightarrow X
$$

where $D J_{\partial \Delta^{m-1}}\left(S^{2}\right)$ is the m-fold fat-wedge of S^{2}.
Def The higher Whitehead product for α is the composite

$$
S^{2 m-1}=Z_{\partial \Delta^{m-1}} \xrightarrow{\bar{w}} D J_{\partial \Delta^{m-1}}\left(S^{2}\right) \xrightarrow{\alpha} X .
$$

If α is clear by the context, we write it simply by $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$.
Rem Higher Whitehead products of maps from suspensions are similarly defined.

Higher Whitehead product

- Let $\alpha_{i}: S^{2} \rightarrow X$ be maps for $i=1, \ldots, m$.
- Suppose $\alpha_{1}+\cdots+\alpha_{m}: \underbrace{S^{2} \vee \cdots \vee S^{2}}_{m} \rightarrow X$ extends to a map

$$
\alpha: D J_{\partial \Delta^{m-1}}\left(S^{2}\right) \rightarrow X
$$

where $D J_{\partial \Delta^{m-1}}\left(S^{2}\right)$ is the m-fold fat-wedge of S^{2}.
Def The higher Whitehead product for α is the composite

$$
S^{2 m-1}=Z_{\partial \Delta^{m-1}} \xrightarrow{\bar{w}} D J_{\partial \Delta^{m-1}}\left(S^{2}\right) \xrightarrow{\alpha} X .
$$

If α is clear by the context, we write it simply by $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$.
Rem Higher Whitehead products of maps from suspensions are similarly defined.

Prop TFAE:

1. A higher Whitehead product of $\alpha_{1}, \ldots, \alpha_{m}$ can be defined to be trivial;
2. $\alpha_{1}+\cdots+\alpha_{m}: \underbrace{S^{2} \vee \cdots \vee S^{2}}_{m} \rightarrow X$ extends over $\left(S^{2}\right)^{m}$.

The map w

The m-torus T^{m} acts on Z_{K} such that

$$
Z_{K} \times_{T^{m}} E T^{m} \simeq D J_{K}
$$

Then there is a homotopy fibration

$$
Z_{K} \rightarrow D J_{K} \rightarrow B T^{m}
$$

where we denote the fiber inclusion $Z_{K} \rightarrow D J_{K}$ by w.

The map w

The m-torus T^{m} acts on Z_{K} such that

$$
Z_{K} \times_{T^{m}} E T^{m} \simeq D J_{K}
$$

Then there is a homotopy fibration

$$
Z_{K} \rightarrow D J_{K} \rightarrow B T^{m}
$$

where we denote the fiber inclusion $Z_{K} \rightarrow D J_{K}$ by w.
Eg If $K=\partial \Delta^{1}$, then the above homotopy fibration is nothing but the (external) Ganea fibration

$$
S^{3} \rightarrow \mathbb{C} P^{\infty} \vee \mathbb{C} P^{\infty} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{2}
$$

Problem

Prop The map $w: Z_{K} \rightarrow D J_{K}$ factors as the composite

$$
Z_{K} \xrightarrow{\bar{w}} D J_{K}\left(S^{2}\right) \rightarrow D J_{K}
$$

where the second map is induced from the inclusion $S^{2} \rightarrow \mathbb{C} P^{\infty}$.

Problem

Prop The map $w: Z_{K} \rightarrow D J_{K}$ factors as the composite

$$
Z_{K} \xrightarrow{\bar{w}} D J_{K}\left(S^{2}\right) \rightarrow D J_{K}
$$

where the second map is induced from the inclusion $S^{2} \rightarrow \mathbb{C} P^{\infty}$.

- Let $a_{i}: S^{2} \rightarrow D J_{K}$ be the inclusion into the i-th $\mathbb{C} P^{\infty}$ in $D J_{K}$.

Eg

1. The fiber inclusion $S^{3} \rightarrow \mathbb{C} P^{\infty} \vee \mathbb{C} P^{\infty}$ of the Ganea fibration is the Whitehead product $\left[a_{1}, a_{2}\right]$.
2. More generally, if $K=\partial \Delta^{m-1}$, then the map $w: Z_{K} \rightarrow D J_{K}$ is the higher Whitehead product $\left[a_{1}, \ldots, a_{m}\right]$.

Problem

Prop The map $w: Z_{K} \rightarrow D J_{K}$ factors as the composite

$$
Z_{K} \xrightarrow{\bar{w}} D J_{K}\left(S^{2}\right) \rightarrow D J_{K}
$$

where the second map is induced from the inclusion $S^{2} \rightarrow \mathbb{C} P^{\infty}$.

- Let $a_{i}: S^{2} \rightarrow D J_{K}$ be the inclusion into the i-th $\mathbb{C} P^{\infty}$ in $D J_{K}$.

Eg

1. The fiber inclusion $S^{3} \rightarrow \mathbb{C} P^{\infty} \vee \mathbb{C} P^{\infty}$ of the Ganea fibration is the Whitehead product $\left[a_{1}, a_{2}\right]$.
2. More generally, if $K=\partial \Delta^{m-1}$, then the map $w: Z_{K} \rightarrow D J_{K}$ is the higher Whitehead product $\left[a_{1}, \ldots, a_{m}\right]$.

Problem For which K is the map w described in terms of (higher) Whitehead products of a_{1}, \ldots, a_{m} ?

Previous work

- Grbić and Theriault studied the problem for a small class of simplicial complexes by computing the rational loop homology of $D J_{K}$.
- Unfortunately, the proof of their main result includes an unfixable mistake. But our result recovers their main result.
- There are several example calculations of the map w by others.
- All techniques used so far are not comprehensive.
- We will use the fat-wedge filtration technology which is the only one comprehensive technique to investigate the homotopy type of Z_{K}.

2. Result

Minimal non-face

- A subset $\sigma \subset[m]$ is called a minimal non-face of K if $\sigma \notin K$ and any proper subset of σ is a simplex of K.

Eg Minimal non-faces of a simplicial complex

are $123,14,15,24,25,35$.

Minimal non-face

- A subset $\sigma \subset[m]$ is called a minimal non-face of K if $\sigma \notin K$ and any proper subset of σ is a simplex of K.

Eg Minimal non-faces of a simplicial complex

are $123,14,15,24,25,35$.

- For $I \subset[m]$,

$$
K_{I}=\{\sigma \in K \mid \sigma \subset I\}
$$

is called the full subcomplex on I.
Eg $\sigma \subset[m]$ is a minimal non-face if and only if $K_{\sigma}=\partial \sigma$.
Proposition For any $\emptyset \neq I \subset[m], Z_{K_{l}}$ is a retract of Z_{K}.

Fillable complex

Recall that (higher) Whitehead products are defined by using boundaries of simplices.

Then if the homotopy type of Z_{K} is controlled by minimal non-faces of K, the map w might be described in terms of (higher) Whitehead products.

Def 1. K is called fillable if there are minimal non-faces $\sigma_{1}, \ldots, \sigma_{r}$ such that $\left|K \cup \sigma_{1} \cup \cdots \cup \sigma_{r}\right|$ is contractible.
2. K is called totally fillable if all full subcomplexes are fillable.

Fillable complex

Recall that (higher) Whitehead products are defined by using boundaries of simplices.

Then if the homotopy type of Z_{K} is controlled by minimal non-faces of K, the map w might be described in terms of (higher) Whitehead products.

Def 1. K is called fillable if there are minimal non-faces $\sigma_{1}, \ldots, \sigma_{r}$ such that $\left|K \cup \sigma_{1} \cup \cdots \cup \sigma_{r}\right|$ is contractible.
2. K is called totally fillable if all full subcomplexes are fillable.

- The above $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ is called a filling, where there are possibly several fillings.
- We will assume that a fillable complex K is equipped with a specific filling $\mathcal{F}(K)$.

Eg Any skeleton of a simplex is totally fillable.
Proposition Dual shellable complexes are totally fillable.

Example

The following simplicial complex K is totally fillable.

Indeed, its non-contractible full subcomplexes are K itself and

all of which are fillable, where $(i, j)=(1,4),(1,5),(2,4),(2,5),(3,5)$ and $(p, q, r)=(1,2,4),(1,2,5),(1,3,5),(2,3,5),(4,5,1),(4,5,2)$.

Main theorem

- For a totally fillable complex K, we put

$$
W_{K}=\bigvee_{\emptyset \neq \mid \subset[m]} \bigvee_{\sigma \in \mathcal{F}\left(K_{l}\right)} S^{|\sigma|+|I|-1}
$$

Main theorem

- For a totally fillable complex K, we put

$$
W_{K}=\bigvee_{\emptyset \neq \mid \subset[m]} \bigvee_{\sigma \in \mathcal{F}\left(K_{l}\right)} S^{|\sigma|+|\Lambda|-1}
$$

Theorem If K is totally fillable, then there is a homotopy equivalence

$$
\epsilon_{K}: Z_{K} \xrightarrow{\simeq} W_{K}
$$

such that for $\emptyset \neq I \subset[m]$ and $\sigma \in \mathcal{F}\left(K_{l}\right)$, the composite

$$
S^{|\sigma|+|I|-1} \rightarrow W_{K} \xrightarrow{\epsilon_{K}^{-1}} Z_{K} \xrightarrow{w} D J_{K}
$$

is the iterated Whitehead product

$$
\left[\left[\cdots\left[\left[\left[a_{i_{1}}, \ldots, a_{i_{k}}\right], a_{j_{1}}\right], a_{j_{2}}\right] \cdots\right], a_{j_{|| |-k}}\right]
$$

for some ordering $I-\sigma=\left\{j_{1}<\cdots<j_{|I|-k}\right\}$, where $\sigma=\left\{i_{1}, \ldots, i_{k}\right\}$.

Example

Let us apply the main theorem to the following fillable complex K.

Here is the list of full subcomplexes and the corresponding spheres and Whitehead products.

$$
\begin{aligned}
& K_{\{i, j\}} \\
& K_{\{p, q, r\}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\mathcal{F}\left(K_{\{i, j\}}\right)=\{i j\} & \mathcal{F}\left(K_{\{p, q, r\}}\right)=\{q r\} & \mathcal{F}\left(K_{\{1,2,3\}}\right)=\{123\} \\
I-\sigma=\emptyset & I-\sigma=\{p\} & I-\sigma=\emptyset \\
S^{3} & S^{4} & S^{5} \\
{\left[a_{i}, a_{j}\right]} & {\left[\left[a_{q}, a_{r}\right], a_{p}\right]} & {\left[a_{1}, a_{2}, a_{3}\right]}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\{1,2,3,5\}} \\
& \mathcal{F}\left(K_{\{1,2,3,5\}}\right)=\{123,35\} \\
& I-\sigma=\{5\},\{1<2\} \\
& S^{6} \vee S^{5} \\
& {\left[\left[a_{1}, a_{2}, a_{3}\right], a_{5}\right] \vee\left[\left[\left[a_{3}, a_{5}\right], a_{1}\right], a_{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}\left(K_{\{1,2,3,4,5\}}\right)=\{123\} \\
& I-\sigma=\{4<5\} \\
& S^{7} \\
& {\left[\left[\left[a_{1}, a_{2}, a_{3}\right], a_{4},\right], a_{5}\right]}
\end{aligned}
$$

3. Proof

Fat wedge filtration

Def Put

$$
Z_{K}^{i}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in Z_{K} \mid \text { at least } m-i \text { of } x_{i} \text { are the basepoint }\right\}
$$

Then we get a filtration

$$
*=Z_{K}^{0} \subset Z_{K}^{1} \subset \cdots \subset Z_{K}^{m}=Z_{K}
$$

which we call the fat-wedge filtration.

Fat wedge filtration

Def Put

$$
Z_{K}^{i}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in Z_{K} \mid \text { at least } m-i \text { of } x_{i} \text { are the basepoint }\right\} .
$$

Then we get a filtration

$$
*=Z_{K}^{0} \subset Z_{K}^{1} \subset \cdots \subset Z_{K}^{m}=Z_{K}
$$

which we call the fat-wedge filtration.

- The fat wedge filtration was found in the attempt to understand (or desuspend) the known stable splitting of Z_{K}.
- It clarifies how combinatorics of K is connected to Z_{K}.
- It already has several applications in topology and combinatorial commutative algebra.

Cone decomposition

Thm (Iriye \& K '19) For each $\emptyset \neq I \subset[m]$, there is a map

$$
\varphi_{K_{l}}:\left|K_{l}\right| * S^{|I|-1} \rightarrow Z_{K}^{|I|-1}
$$

by which

$$
Z_{K}^{i}=Z_{K}^{i-1} \bigcup_{I \subset[m],|| |=i} C\left(\left|K_{l}\right| * S^{|| |-1}\right)
$$

Cone decomposition

Thm (Iriye \& K '19) For each $\emptyset \neq I \subset[m]$, there is a map

$$
\varphi_{K_{l}}:\left|K_{l}\right| * S^{|I|-1} \rightarrow Z_{K}^{|I|-1}
$$

by which

$$
Z_{K}^{i}=Z_{K}^{i-1} \bigcup_{I \subset[m],|I|=i} C\left(\left|K_{l}\right| * S^{|| |-1}\right)
$$

Cor If all $\varphi_{K_{l}}$ are null homotopic, then there is a homotopy equivalence

$$
Z_{K} \simeq \bigvee_{\emptyset \neq \mid \subset[m]}\left|\Sigma^{|I|+1} K_{l}\right|
$$

which is natural with respect to K and null homotopies of $\varphi_{K_{I}}$.

Homotopy decomposition

Prop (Iriye \& K '19) The map $\varphi_{K_{I}}$ factors through the inclusion

$$
\left|K_{l}\right| * S^{|I|-1} \rightarrow \mid K_{l} \cup\{\text { minimal non-faces }\} \mid * S^{|I|-1}
$$

Cor If K is totally fillable, then $\varphi_{K_{I}} \simeq *$ for all $\emptyset \neq I \subset[m]$.

Homotopy decomposition

Prop (Iriye \& K '19) The map $\varphi_{K_{I}}$ factors through the inclusion

$$
\left|K_{l}\right| * S^{|I|-1} \rightarrow \mid K_{l} \cup\{\text { minimal non-faces }\} \mid * S^{|I|-1}
$$

Cor If K is totally fillable, then $\varphi_{K_{I}} \simeq *$ for all $\emptyset \neq I \subset[m]$.
Prop If K is fillable, then

$$
|\Sigma K| \simeq \bigvee_{\sigma \in \mathcal{F}(K)} S^{|\sigma|-1}
$$

Proof $|\Sigma K| \simeq\left|K \bigcup_{\sigma \in \mathcal{F}(K)} \sigma\right| /|K|=\bigvee_{\sigma \in \mathcal{F}(K)} S^{|\sigma|-1}$.
Thm If K is totally fillable, then there is a homotopy equivalence

$$
\epsilon_{K}: Z_{K} \xrightarrow{\simeq} W_{K}
$$

which is natucal with respect to K and fillings of its full subcomplexes.

Reduction

- Suppose K is totally fillable.
- Let $\sigma \in \mathcal{F}\left(K_{l}\right)$ for $\emptyset \neq I \subset[m]$.
- Let L be the simplicial complex which is the union of vertices in I and $\partial \sigma$.

Cor There is a homotopy commutative diagram
whenever we choose an appropriate ordering of $I-\sigma$.
Then the proof reduces to the case of L, which is done by a homotopical observation.

4. Generalization

Polyhedral products

- Let $(\underline{X}, \underline{A})=\left\{\left(X_{i}, A_{l}\right)\right\}_{i=1}^{m}$ be a collection of pairs of spaces.

One can associate to K and $(\underline{X}, \underline{A})$ the space

$$
Z_{K}(\underline{X}, \underline{A})
$$

called the polyhedral product.
Eg

1. If $\left(X_{i}, A_{i}\right)=\left(D^{2}, S^{1}\right)$ for all i, then $Z_{K}(\underline{X}, \underline{A})=Z_{K}$.
2. If $\left(X_{i}, A_{i}\right)=(X, *)$ for all i, then $Z_{K}(\underline{X}, \underline{A})=D J_{K}(X)$.

- Let $(C \underline{X}, \underline{X})=\left\{\left(C X_{i}, X_{i}\right)\right\}_{i=1}^{m}$ and $(\Sigma \underline{X}, *)=\left\{\left(\Sigma X_{i}, *\right)\right\}_{i=1}^{m}$.

The pinch maps $\left(C X_{i}, X_{i}\right) \rightarrow\left(\Sigma X_{i}, *\right)$ induce a map

$$
\bar{w}: Z_{K}(C \underline{X}, \underline{X}) \rightarrow Z_{K}(\Sigma \underline{X}, *)
$$

which specializes to $\bar{w}: Z_{K} \rightarrow D J_{K}\left(S^{2}\right)$.

Generalization to polyhedral products

We can generalize our main theorem to the map

$$
\bar{W}: Z_{K}(C \underline{X}, \underline{X}) \rightarrow Z_{K}(\Sigma \underline{X}, *)
$$

whenever all X_{i} are suspensions because we have the following.

- Our main theorem is in fact a corollary of a similar result on the map

$$
\bar{w}: Z_{K} \rightarrow D J_{K}\left(S^{2}\right)
$$

- We can define the fat-wedge filtration of $Z_{K}(C \underline{X}, \underline{X})$.
- The fat-wedge filtartion of $Z_{K}(C \underline{X}, \underline{X})$ is a cone decomposition whenever all X_{i} are suspensions.
- In this case, the attaching maps have the same properties as Z_{K}.

