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Moment-angle complex

• Let K be a simplicial complex with vertex set [m] = {1, . . . ,m}.
• For σ ⊂ [m], let

Zσ = X1 × · · · × Xm, where Xi =

{
D2 i ∈ σ

S1 i ̸∈ σ.

Def The moment-angle complex for K is defined by

ZK =
∪
σ∈K

Zσ.

Eg Let K = ∂∆m−1. For m = 2,

ZK = (D2 × S1) ∪ (S1 ∪ D2) = ∂(D2 × D2) = S3.

For m general,

ZK = ∂(D2)m = S2m−1.
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Davis-Januszkiewicz space

• For σ ⊂ [m] and a pointed space X , let

DJσ(X ) = X1 × · · · × Xm, where Xi =

{
X i ∈ σ

∗ i ̸∈ σ.

Def Define

DJK (X ) =
∪
σ∈K

DJσ(X ),

where DJK = DJK (CP∞) is called the Davis-Januszkiewicz space.

Eg Let K = ∂∆m−1. For m = 2,

DJK (X ) = (X × ∗) ∪ (∗ × X ) = X ∨ X .

For m general, DJK (X ) is the m-fold fat-wedge of X , i.e.

DJK (X ) = {(x1, . . . , xm) ∈ Xm | xi = ∗ for some i}.
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Whitehead product

• Let

w : ZK → DJK (S
2)

be the map induced from the pinch map (D2, S1) → (S2, ∗).

Def The Whitehead product of maps α1, α2 : S
2 → X , denoted by

[α1, α2], is the composite

S3 = Z∂∆1
w−→ DJ∂∆1(S2) = S2 ∨ S2 α1+α2−−−−→ X .

Rem Whitehead products of maps from suspensions are similarly defined.

Prop The cofiber of S3 = Z∂∆1
w−→ DJ∂∆1(S2) = S2 ∨ S2 is S2 × S2.

Cor TFAE:

1. [α1, α2] = 0;

2. α1 + α2 : S
2 ∨ S2 → X extends over S2 × S2.
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Higher Whitehead product
• Let αi : S

2 → X be maps for i = 1, . . . ,m.
• Suppose α1 + · · ·+ αm : S2 ∨ · · · ∨ S2︸ ︷︷ ︸

m

→ X extends to a map

α : DJ∂∆m−1(S2) → X ,

where DJ∂∆m−1(S2) is the m-fold fat-wedge of S2.

Def The higher Whitehead product for α is the composite

S2m−1 = Z∂∆m−1
w−→ DJ∂∆m−1(S2)

α−→ X .

If α is clear by the context, we write it simply by [α1, . . . , αm].

Rem Higher Whitehead products of maps from suspensions are similarly

defined.

Prop TFAE:

1. A higher Whitehead product of α1, . . . , αm can be defined to be

trivial;

2. α1 + · · ·+ αm : S2 ∨ · · · ∨ S2︸ ︷︷ ︸
m

→ X extends over (S2)m.
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The map w

The m-torus Tm acts on ZK such that

ZK ×Tm ETm ≃ DJK .

Then there is a homotopy fibration

ZK → DJK → BTm,

where we denote the fiber inclusion ZK → DJK by w .

Eg If K = ∂∆1, then the above homotopy fibration is nothing but the

(external) Ganea fibration

S3 → CP∞ ∨ CP∞ → (CP∞)2.
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Problem

Prop The map w : ZK → DJK factors as the composite

ZK
w−→ DJK (S

2) → DJK

where the second map is induced from the inclusion S2 → CP∞.

• Let ai : S
2 → DJK be the inclusion into the i-th CP∞ in DJK .

Eg

1. The fiber inclusion S3 → CP∞ ∨ CP∞ of the Ganea fibration is the

Whitehead product [a1, a2].

2. More generally, if K = ∂∆m−1, then the map w : ZK → DJK is the

higher Whitehead product [a1, . . . , am].

Problem For which K is the map w described in terms of (higher)

Whitehead products of a1, . . . , am?
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Previous work

• Grbić and Theriault studied the problem for a small class of simplicial

complexes by computing the rational loop homology of DJK .

• Unfortunately, the proof of their main result includes an unfixable

mistake. But our result recovers their main result.

• There are several example calculations of the map w by others.

• All techniques used so far are not comprehensive.

• We will use the fat-wedge filtration technology which is the only one

comprehensive technique to investigate the homotopy type of ZK .
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2. Result
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Minimal non-face
• A subset σ ⊂ [m] is called a minimal non-face of K if σ ̸∈ K and any

proper subset of σ is a simplex of K .

Eg Minimal non-faces of a simplicial complex

1

2

3 4 5

are 123, 14, 15, 24, 25, 35.

• For I ⊂ [m],

KI = {σ ∈ K |σ ⊂ I}
is called the full subcomplex on I .

Eg σ ⊂ [m] is a minimal non-face if and only if Kσ = ∂σ.

Proposition For any ∅ ̸= I ⊂ [m], ZKI
is a retract of ZK .

12 / 25



Minimal non-face
• A subset σ ⊂ [m] is called a minimal non-face of K if σ ̸∈ K and any

proper subset of σ is a simplex of K .

Eg Minimal non-faces of a simplicial complex

1

2

3 4 5

are 123, 14, 15, 24, 25, 35.

• For I ⊂ [m],

KI = {σ ∈ K |σ ⊂ I}
is called the full subcomplex on I .

Eg σ ⊂ [m] is a minimal non-face if and only if Kσ = ∂σ.

Proposition For any ∅ ̸= I ⊂ [m], ZKI
is a retract of ZK .

12 / 25



Fillable complex
Recall that (higher) Whitehead products are defined by using boundaries

of simplices.

Then if the homotopy type of ZK is controlled by minimal non-faces of K ,

the map w might be described in terms of (higher) Whitehead products.

Def 1. K is called fillable if there are minimal non-faces σ1, . . . , σr such

that |K ∪ σ1 ∪ · · · ∪ σr | is contractible.

2. K is called totally fillable if all full subcomplexes are fillable.

• The above {σ1, . . . , σr} is called a filling, where there are possibly

several fillings.
• We will assume that a fillable complex K is equipped with a specific

filling F(K ).

Eg Any skeleton of a simplex is totally fillable.

Proposition Dual shellable complexes are totally fillable.
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Example
The following simplicial complex K is totally fillable.

1

2

3 4 5

Indeed, its non-contractible full subcomplexes are K itself and

K{1,2,3,4}
1

2

3 4

K{1,2,3,5}
1

2

3 5

K{1,2,4,5}
1

2

4 5

K{i ,j}

i j

K{p,q,r}

p

q
r

K{1,2,3}

1

2
3

all of which are fillable, where (i , j) = (1, 4), (1, 5), (2, 4), (2, 5), (3, 5) and

(p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5), (4, 5, 1), (4, 5, 2).
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Main theorem

• For a totally fillable complex K , we put

WK =
∨

∅≠I⊂[m]

∨
σ∈F(KI )

S |σ|+|I |−1.

Theorem If K is totally fillable, then there is a homotopy equivalence

ϵK : ZK
≃−→ WK

such that for ∅ ̸= I ⊂ [m] and σ ∈ F(KI ), the composite

S |σ|+|I |−1 → WK
ϵ−1
K−−→ ZK

w−→ DJK

is the iterated Whitehead product

[[· · · [[[ai1 , . . . , aik ], aj1 ], aj2 ] · · · ], aj|I |−k
]

for some ordering I − σ = {j1 < · · · < j|I |−k}, where σ = {i1, . . . , ik}.
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Example
Let us apply the main theorem to the following fillable complex K .

1

2

3 4 5

Here is the list of full subcomplexes and the corresponding spheres and

Whitehead products.

K{i ,j}

i j

F(K{i ,j}) = {ij}

I − σ = ∅

S3

[ai , aj ]

K{p,q,r}

p

q
r

F(K{p,q,r}) = {qr}
I − σ = {p}

S4

[[aq, ar ], ap]

K{1,2,3}

1

2
3

F(K{1,2,3}) = {123}

I − σ = ∅

S5

[a1, a2, a3]
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K{1,2,3,4}
1

2

3 4

F(K{1,2,3,4}) = {123}
I − σ = {4}

S6

[[a1, a2, a3], a4]

K{1,2,3,5}
1

2

3 5

F(K{1,2,3,5}) = {123, 35}
I − σ = {5}, {1 < 2}

S6 ∨ S5

[[a1, a2, a3], a5] ∨ [[[a3, a5], a1], a2]

K{1,2,4,5}

1

2
4 5

F(K{1,2,4,5}) = {24}
I − σ = {1 < 5}
S5

[[[a2, a4], a1]a5]

K{1,2,3,4,5}

1

2
3 4 5

F(K{1,2,3,4,5}) = {123}
I − σ = {4 < 5}
S7

[[[a1, a2, a3], a4, ], a5]
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3. Proof
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Fat wedge filtration

Def Put

Z i
K = {(x1, . . . , xm) ∈ ZK | at least m − i of xi are the basepoint}.

Then we get a filtration

∗ = Z 0
K ⊂ Z 1

K ⊂ · · · ⊂ Zm
K = ZK

which we call the fat-wedge filtration.

• The fat wedge filtration was found in the attempt to understand (or

desuspend) the known stable splitting of ZK .

• It clarifies how combinatorics of K is connected to ZK .

• It already has several applications in topology and combinatorial

commutative algebra.
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Cone decomposition

Thm (Iriye & K ’19) For each ∅ ̸= I ⊂ [m], there is a map

φKI
: |KI | ∗ S |I |−1 → Z

|I |−1
K

by which

Z i
K = Z i−1

K

∪
I⊂[m], |I |=i

C (|KI | ∗ S |I |−1).

Cor If all φKI
are null homotopic, then there is a homotopy equivalence

ZK ≃
∨

∅≠I⊂[m]

|Σ|I |+1KI |

which is natural with respect to K and null homotopies of φKI
.
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Homotopy decomposition

Prop (Iriye & K ’19) The map φKI
factors through the inclusion

|KI | ∗ S |I |−1 → |KI ∪ {minimal non-faces}| ∗ S |I |−1.

Cor If K is totally fillable, then φKI
≃ ∗ for all ∅ ̸= I ⊂ [m].

Prop If K is fillable, then

|ΣK | ≃
∨

σ∈F(K)

S |σ|−1.

Proof |ΣK | ≃ |K
∪

σ∈F(K) σ|/|K | =
∨

σ∈F(K) S
|σ|−1.

Thm If K is totally fillable, then there is a homotopy equivalence

ϵK : ZK
≃−→ WK

which is natucal with respect to K and fillings of its full subcomplexes.
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Reduction

• Suppose K is totally fillable.

• Let σ ∈ F(KI ) for ∅ ̸= I ⊂ [m].

• Let L be the simplicial complex which is the union of vertices in I

and ∂σ.

Cor There is a homotopy commutative diagram

S |σ|+|I |−1

incl

incl // WL

��

ϵ−1
L // ZL

incl

��

S |σ|+|I |−1 incl // WK

ϵ−1
K // ZK

whenever we choose an appropriate ordering of I − σ.

Then the proof reduces to the case of L, which is done by a homotopical

observation.
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4. Generalization
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Polyhedral products

• Let (X ,A) = {(Xi ,AI )}mi=1 be a collection of pairs of spaces.

One can associate to K and (X ,A) the space

ZK (X ,A)

called the polyhedral product.

Eg

1. If (Xi ,Ai ) = (D2, S1) for all i , then ZK (X ,A) = ZK .

2. If (Xi ,Ai ) = (X , ∗) for all i , then ZK (X ,A) = DJK (X ).

• Let (CX ,X ) = {(CXi ,Xi )}mi=1 and (ΣX , ∗) = {(ΣXi , ∗)}mi=1.

The pinch maps (CXi ,Xi ) → (ΣXi , ∗) induce a map

w : ZK (CX ,X ) → ZK (ΣX , ∗)

which specializes to w : ZK → DJK (S
2).
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Generalization to polyhedral products

We can generalize our main theorem to the map

w : ZK (CX ,X ) → ZK (ΣX , ∗)

whenever all Xi are suspensions because we have the following.

• Our main theorem is in fact a corollary of a similar result on the map

w : ZK → DJK (S
2).

• We can define the fat-wedge filtration of ZK (CX ,X ).

• The fat-wedge filtartion of ZK (CX ,X ) is a cone decomposition

whenever all Xi are suspensions.

• In this case, the attaching maps have the same properties as ZK .
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