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Basic objects

Let us consider the following objects:

M2n: a connected compact smooth 2n-manifold,

T k = S1 × . . .× S1︸ ︷︷ ︸
k

: the compact k-torus,

θ : T k y M2n: an effective smooth action.

The number d = n − k is called the complexity of the action of θ.

We also suppose the following conditions (*) to be satisfied:

the set MT of fixed points is finite and nonempty,

for each point x ∈ M2n, its stabilizer subgroup St(x) ∈ T k is
connected,

for each subgroup H ⊂ T k , the closure of every connected
component of the set {x ∈ M2n|St(x) = H} contains a point x ′ such
that dim St(x ‘) > dimH.

Question: what can be said about the quotient M2n/T k?
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Classical case d = 0

A classical idea for studying group actions is constructing an equivariant
topological model for the original space. In our case:

M2n
Q,λ = (Q × T n)/ ∼

where Q = M2n/T n and λ is the characteristic function, mapping an orbit
Tx ∈ Q to its stabilizer subgroup St(x).

A classical object of study in toric topology is a class of manifolds called
quasitoric manifolds. Characteristic data for recovering a quasitoric
manifold X = X 2n

P,λ consists of:

a simple n-polytope P,

a characteristic function λ : Fi −→ Zn.

Such manifolds possess an action of complexity d = 0 and the orbit space
of such action is the polytope P.
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Examples of complexity 1 actions

The complex Grassmannian

Gr4,2(C) = {V ⊂ C4| dimV = 2}.

Its orbit space Gr4,2/T
3 ∼= S5.

The full complex flag manifold

Fl3(C) = {V• = ({0} ⊂ V1 ⊂ V2 ⊂ C3)| dimVi = i}.

Its orbit space Fl3/T
2 ∼= S4.

A quasitoric manifold X 2n
P,λ has an action of a generic subtorus

T n−1 ⊂ T n. Its orbit space X 2n
P,λ/T

n−1 ∼= Sn+1.

All the examples we mentioned have orbit spaces homeomorphic to
spheres. Is it normal?
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The general position condition

Let x ∈ MT , a fixed point, and consider the tangent representation of
T k y TxM

2n; there is a decomposition: TxM
2n ∼= V (α1)⊕ . . .⊕ V (αn)

where V (αi ) is the standard 1-dimensional complex representation given
by tz = αi (t)z , z ∈ C and αi ∈ Hom(T k , S1) ∼= Zk . The vectors αi are
called the weights of the tangent representation of T k at x ∈ MT .

Definition

The weights α1, . . . , αn ∈ Zk are in j-general position (for j ≤ k) if any j
of them are linearly independent; the weights are in general position if they
are in k-general position.

Definition

The action T k y M2n is in general position if the weights α1, . . . , αn are
in general position for any fixed point x ∈ MT .
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Local properties of complexity 1 actions

Consider an action of T n−1 on M2n satisfying (*).

Proposition

• If the action T n−1 y M2n is in general position then the orbit space
Q = M2n/T n−1 is a topological manifold. Otherwise the orbit space
Q = M2n/T n−1 is a topological manifold with boundary ∂Q 6= ∅.

Therefore for the actions not in general position, the orbit space Q is not
the sphere Sn+1.

Lemma

Let the tangent representation of T n−1 at x ∈ MT have the weights
α1, . . . , αn such that c1α1 + . . .+ cnαn = 0 for ci ∈ Z : gcd(ci ) = 1. Then
there is a neighbourhood U of x such that its orbit TU ∼= Rm+1 × Rn−m

≥0
where m is the number of ci = 0.
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Hessenberg varieties

Definition

A function h : [n] −→ [n] is called a Hessenberg function if it satisfies the
following:
• h(i) > i for i = 1, . . . , n − 1,
• h(i + 1) ≥ h(i) for i = 1, . . . , n − 1.

Definition

Fix a linear transformation A : Cn −→ Cn and a Hessenberg function h.
Consider

Hess(A, h) = {({0} ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Cn)| AVi ⊂ Vh(i)}

– a Hessenberg variety defined by A and h.

It follows from the definition that Hess(A, h) ⊂ Fln(C).
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Hessenberg varieties

We consider regular (nonsingular) Hessenberg varieties Hh = Hess(Λ, h)
where Λ = diag(λ1, . . . , λn), λi 6= λj . It has an effective T n−1-action and
its complexity

d =
∑
i

(h(i)− i)− n + 1.

Proposition

For Hh with d > 0, the action is not in general position.

For n = 4, there are two Hessenberg functions, namely h = (2, 4, 4, 4) and
h = (3, 3, 4, 4) such that d = 1. For the corresponding varieties, the
following holds.

Example

The orbit space Hh/T
3 ∼= S5 \ (t4i=1D

5) – the complement of four disjoint
open disks in the 5-sphere. In particular, ∂(Hh/T

3) ∼= t4i=1S
4.
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Hamiltonian torus actions of complexity 1

Suppose now that the manifold M2n is symplectic and the action
T n−1 y M2n is Hamiltonian. In particular, there is a moment map
µ : M2n −→ Rn−1; its image µ(M2n) = Pn−1 is a convex polytope.

Theorem (Y.Karshon, S.Tolman ’18)

If the action T n−1 y M2n is in general position then the orbit space
M2n/T n−1 is homeomorphic to the sphere Sn+1.

Corollary

If the action T n−1 y M2n is not in general position then the orbit space
M2n/T n−1 is homeomorphic to Sn+1 \ (U1 t . . . t Um) where Ui are open
domains.

In particular, one can find (co)homology groups of the orbit space using
the Alexander Duality: H̃q(M2n/T n−1) = H̃n−q(U1 t . . . t Um).
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Orbits spaces of Hessenberg varieties for n=5

In the case n = 5, there are three possible Hessenberg functions h for
which Hh has complexity d = 1.

h = (2, 3, 5, 5, 5) and h = (3, 3, 4, 5, 5). We have

Hh/T
4 ∼= S6 \ (#K5D

6)

where #K5D
6 denotes the connected sum of five open disks D6 along

the full graph K5 on five vertices. In particular, ∂(Hh/T
4) ∼= #K5S

5.

h = (2, 4, 4, 5, 5). We have

Hh/T
4 ∼= S6 \ (#K̃5,5

D6)

where K̃5,5 denotes the almost full graph (see Fig.1). In particular,
∂(Hh/T

4) ∼= #K̃5,5
S5.
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Almost full graph K̃5,5

Figure: The almost full graph connecting two sets of vertices.

From the Alexander Duality it follows that:

H4(Q(3,3,4,5,5)) = H4(S6 \ (#K5D
6)) ∼= H1(#K5D

6) ∼= Z6,

H4(Q(2,4,4,5,5)) = H4(S6 \ (#K̃5,5
D6)) ∼= H1(#K̃5,5

D6) ∼= Z11

and H j(Q(3,3,4,5,5)) = H j(Q(2,4,4,5,5)) = 0 for j ≤ 3.
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Homologies of orbit spaces in general

Theorem (V.C. ’19)

If the action T n−1 y M2n is Hamiltonian then the reduced cohomology
groups H̃ i (M2n/T n−1) = 0 for i = 0, 1, 2.

Theorem (A. Ayzenberg, V.C. ’19)

For a finite simplicial complex L, there is a smooth manifold M2n with
Hodd(M2n) = 0 and an action of T n−1 such that
H̃q+3(M2n/T n−1) = H̃q(L) for q ≥ 0. In fact, M2n/T n−1 is homotopy
equivalent to Σ3L.

Theorem (A. Ayzenberg, V.C. ’19)

For a finite simplicial complex L, there is a smooth manifold M2n with
Hodd(M2n) = 0 and an action of T n−1 in j-general position such that
M2n/T n−1 is homotopy equivalent to Σj+2L.
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Further work

Theorem*

For a general action T n−1 y M2n, the reduced cohomology groups
H̃ i (M2n/T n−1) = 0 for i = 0, 1, 2.

Theorem*

If the action T n−1 y M2n is in j-position then H̃q(M2n/T n−1) = 0 for
q < j + 2.

Theorem*

More generally, if the action T k y M2n is in j-position then
H̃q(M2n/T k) = 0 for q < j + 2.
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