Higher Whitehead products in moment-angle complexes

Semyon Abramyan
NRU Higher School of Economics
Conference "Toric Topology 2019 in Okayama"
Okayama, 18-22 November 2019

Whitehead products

Fix $\left[f_{i}\right] \in \pi_{p_{i}}(X), i=1, \ldots m$ and set $p=p_{1}+\ldots p_{m}$.

Whitehead products

Fix $\left[f_{i}\right] \in \pi_{p_{i}}(X), i=1, \ldots m$ and set $p=p_{1}+\ldots p_{m}$.
The higher Whitehead product $\left[f_{1}, \ldots, f_{m}\right] \subseteq \pi_{p}(X)$ is a set of homotopy classes of maps

Here the upper left arrow is the attaching map of p-cell in the product $(\underline{S})^{\Delta^{m}}=S^{p_{1}} \times \cdots \times S^{p_{m}}$.

Whitehead products in moment-angle complexes

We will consider iterated higher Whitehead products of maps:

$$
\mu_{i}: S^{2}=\mathbb{C} P^{1} \subset \mathbb{C} P^{\infty} \xrightarrow{i-\text { th inclusion }}\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} .
$$

Whitehead products in moment-angle complexes

We will consider iterated higher Whitehead products of maps:

$$
\mu_{i}: S^{2}=\mathbb{C} P^{1} \subset \mathbb{C} P^{\infty} \xrightarrow{i-\text { th inclusion }}\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} .
$$

Theorem (Buchstaber-Panov)

The moment-angle complex $\left(D^{2}, S^{1}\right)^{\mathcal{K}}$ is the homotopy fibre of the canonical inclusion $\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \hookrightarrow\left(\mathbb{C} P^{\infty}\right)^{m}$.

Whitehead products in moment-angle complexes

We will consider iterated higher Whitehead products of maps:

$$
\mu_{i}: S^{2}=\mathbb{C} P^{1} \subset \mathbb{C} P^{\infty} \xrightarrow{i-\text { th inclusion }}\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} .
$$

Theorem (Buchstaber-Panov)

The moment-angle complex $\left(D^{2}, S^{1}\right)^{\mathcal{K}}$ is the homotopy fibre of the canonical inclusion $\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \hookrightarrow\left(\mathbb{C} P^{\infty}\right)^{m}$.

Therefore, any iterated higher Whitehead product lifts to a map

$$
\begin{gathered}
\left(D^{2}, S^{1}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{m} \\
\cdots \uparrow{ }^{w} \ldots \\
S^{d(w)} .
\end{gathered}
$$

Main problem

There are classes of simplicial complexes for which corresponding moment-angle complexes are homotopy equivalent to a wedge of spheres, for example, shifted (Grbić-Theriault), totally fillable (Iriye-Kishimoto). Moreover, in these cases every sphere maps to $\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}$ by (iterated higher) Whitehead product.
This leads us to the follwing problem.

Problem (Buchstaber-Panov)

Assume the $\mathcal{Z}_{\mathcal{K}}$ is homotopy equivalent to a wedge of spheres. Is it true that all wedge summands are represented by lifts $S^{P} \rightarrow \mathcal{Z}_{\mathcal{K}}$ of iterated higher Whitehead products of the canonical maps $\mu_{i}: S^{2} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}$?

From the discussion above follows that for shifted, totally fillable and, in addition, flag complexes (Grbić-Panov-Theriault-Wu) the answer for the problem is positive.

An example of unrealizability

Theorem (A.)

Let \mathcal{K} be the simplicial complex

$$
\left(\partial \Delta^{2}(1,2,3) * \partial \Delta^{2}(4,5,6)\right) \cup \Delta^{2}(1,2,3) \cup \Delta^{2}(4,5,6) .
$$

Then

$$
\mathcal{Z}_{\mathcal{K}} \simeq\left(S^{7}\right)^{\vee 6} \vee\left(S^{8}\right)^{\vee 6} \vee\left(S^{9}\right)^{\vee 2} \vee S^{10}
$$

but S^{10} cannot be realized by any linear combination of iterated higher Whitehead products.

Sketch of proof

Let X be a (desired) wedge $\left(S^{7}\right)^{\vee 6} \vee\left(S^{8}\right)^{\vee 6} \vee\left(S^{9}\right)^{\vee 2} \vee S^{10}$. By
Bahri-Bendersky-Cohen-Gitler theorem, we have spliting $f: \Sigma X \xrightarrow{\simeq} \Sigma \mathcal{Z}_{\mathcal{K}}$. And because of dimensional reasons this equivalence can be desuspended to $f^{\prime}: X \rightarrow \mathcal{Z}_{\mathcal{K}}$. Thus, $\mathcal{Z}_{\mathcal{K}}$ is a desired wedge.
The only Whitehead products of dimension 10 are of the form

$$
\left[\mu_{i_{1}},\left[\mu_{i_{2}}, \mu_{i_{3}}, \mu_{i_{4}}, \mu_{i_{5}}, \mu_{i_{6}}\right]\right], \quad\left[\mu_{i_{1}}, \mu_{i_{2}},\left[\mu_{i_{3}}, \mu_{i_{4}}, \mu_{i_{5}}, \mu_{i_{6}}\right]\right] .
$$

Both types are not defined because of combinatorics of \mathcal{K}.

Positive answer

But still class of simplicial complexes with positive answer is large enough.

Theorem (A.)

Let \mathcal{K} be a simplicial complex from the class, i.e. $\mathcal{Z}_{\mathcal{K}}$ is wedge of spheres and each sphere is a lift of Whitehead product. Then for any $n \in \mathbb{Z}_{\geqslant 0}$ the complex $\left(\mathcal{K} * \partial \Delta^{n}\right) \cup \Delta^{n}$ is from the class too.

