Lower bound of the number of seed PL-spheres of picard number 4

Hyeontae Jang joint work with Choi and Park.

Ajou University

Real Toric Spaces

Let K be a simplicial complex of dim. $n-1$ on m vertices and λ be a characteristic map of K.

- $\operatorname{Pic}(K):=m-n$ is called the picard number of K.

Theorem(Fundamental Theorem for Toric Geometry)
Each D-J class of real toric spaces can be indexed by (K, λ).

Wedge Operation

The wedge of K at v is a simplicial complex defined as

$$
\operatorname{Wed}_{v}(K)=\left(I * L k_{K}(v)\right) \cup(\partial I *(K \backslash v))
$$

where I is a 1 -simplex and $K \backslash v$ is the subcomplex without v.

Wedge Operation

- K is a simplicial PL-sphere if $|K| \stackrel{P L}{\cong} \partial \Delta^{n}$.
- K is polytopal if it is the boundary complex of a simplicial polytope.

Proposition(Choi-Park, 2016)

- K is a simplicial PL-sphere if and only if so is $\operatorname{Wed}_{v}(K)$.
- K is polytopal if and only if so is $\operatorname{Wed}_{v}(K)$.

Wedge Operation

Theorem(Choi-Park, 2016~2017)

All characteristic maps of $\operatorname{Wed}_{v}(K)$ can be constructed by characteristic maps of K.

Now, we want to know simplicial complexes that is not a result of wedge.

- K is called a seed if it can not be obtained from wedge operations of a simplicial complex.
- A good seed is a seed that supports a characteristic map.

Dual Characteristic maps

A dual characteristic map λ^{*} is a map

$$
\lambda^{*}:\{1,2, \ldots, m\} \longrightarrow \mathbb{Z}_{2}^{m-n}
$$

whose rows span ker λ.

Proposition

For a n-subset $J \subset\{1,2, \ldots, m\},\{\lambda(i) \mid i \in J\}$ is a basis if and only if $\left\{\lambda^{*}(i) \mid i \notin J\right\}$ is a basis.

Therefore, λ^{*} has still non-singularity information of λ.

Dual Characteristic maps

λ^{*} has same columns $\lambda^{*}(i)=\lambda^{*}(j)$
\longrightarrow every facets have i or j as a vertex.
$\longrightarrow K$ is a suspension or a wedge.
Theorem(Choi-Park, 2017)
If K is a good seed, then $m<2^{\operatorname{Pic}(K)}$.
Therefore, there are finitely many good seeds with a fixed picard number.

Dual Characteristic maps(a modification of Garrison and Scott's algorithm, 2003)

- Input: $C F=$ the union of the power sets of all cofacets of K .
- Output: $\Gamma=$ the list of \mathbb{Z}_{2} vectors $\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ such that the last $m-n$ vectors form the standard basis \mathbb{Z}_{2}^{m-n}.
- Initialization:

$$
\begin{aligned}
& \lambda_{n+1} \leftarrow(1,0, \cdots, 0), \lambda_{n+2} \leftarrow(0,1, \cdots, 0), \cdots, \lambda_{m} \leftarrow(0,0, \cdots, 1) . \\
& \Gamma \leftarrow \emptyset \\
& S \leftarrow \text { the list of nonzero elements of } \mathbb{Z}_{2}^{m-n} \\
& i \leftarrow n
\end{aligned}
$$

- Procedure:
(1) Set $S_{i} \leftarrow S$.
(2) For all $I \in C F$ of the form $I=\{i\} \cup\left\{i_{1}, \cdots, i_{k}\right\}$ with
$1 \leq i \leq i_{1} \leq \cdots \leq i_{k}$, remove the vector $\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}$ from the list S_{i}.
(3) If $i=n$, then STOP.
(9) If $S_{i}=\emptyset$, then $i \leftarrow i+1$ and go to 3 .
(5) Set $\lambda_{i} \leftarrow$ the 1st element of S_{i} and remove it from S_{i}
(0) If $i=1$, then add $\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ to Γ and go to 4 .
(Set $i \leftarrow i-1$ and go to 1 .

Injective Dual Characteristic maps(a modification of Garrison and Scott's algorithm, 2003)

- Input: $C F=$ the union of the power sets of all cofacets of K.
- Output: $\Gamma=$ the list of \mathbb{Z}_{2} vectors $\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ such that the last $m-n$ vectors form the standard basis \mathbb{Z}_{2}^{m-n}.
- Initialization:

$$
\begin{aligned}
& \lambda_{n+1} \leftarrow(1,0, \cdots, 0), \lambda_{n+2} \leftarrow(0,1, \cdots, 0), \cdots, \lambda_{m} \leftarrow(0,0, \cdots, 1) . \\
& \Gamma \leftarrow \emptyset \\
& S_{n+1} \leftarrow \text { the list of nonzero elements of } \mathbb{Z}_{2}^{m-n} \\
& i \leftarrow n
\end{aligned}
$$

- Procedure:
(1) Set $S_{i} \leftarrow S_{i+1}$.
(2) For all $I \in C F$ of the form $I=\{i\} \cup\left\{i_{1}, \cdots, i_{k}\right\}$ with
$1 \leq i \leq i_{1} \leq \cdots \leq i_{k}$, remove the vector $\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}$ from the list S_{i}.
(3) If $i=n$, then STOP.
(9) If $S_{i}=\emptyset$, then $i \leftarrow i+1$ and go to 3 .
(5) Set $\lambda_{i} \leftarrow$ the 1st element of S_{i} and remove it from S_{i}
(0) If $i=1$, then add $\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ to Γ and go to 4 .
(0) Set $i \leftarrow i-1$ and go to 1 .

Known Results

(1) When $m-n \leq 3$, every PL-sphere is polytopal (Mani, 1972), so it can be completely classified by Gale diagrams (Perles, 1966). \longrightarrow there are 5 good seeds.

Known Results

(1) When $m-n \leq 3$, every PL-sphere is polytopal (Mani, 1972), so it can be completely classified by Gale diagrams (Perles, 1966). \longrightarrow there are 5 good seeds.
(2) When $\mathrm{m}=8, \mathrm{n}=4$, there are 39 PL-spheres (Barnette, 1973) and 37 among them are polytopal (Grünbaum-Sreedharan, 1967).
\longrightarrow there are 21 good seed PL-spheres and 2 among them are not polytopal.

Known Results

(1) When $m-n \leq 3$, every PL-sphere is polytopal (Mani, 1972), so it can be completely classified by Gale diagrams (Perles, 1966). \longrightarrow there are 5 good seeds.
(2) When $\mathrm{m}=8, \mathrm{n}=4$, there are 39 PL-spheres (Barnette, 1973) and 37 among them are polytopal (Grünbaum-Sreedharan, 1967).
\longrightarrow there are 21 good seed PL-spheres and 2 among them are not polytopal.
(3) When $\mathrm{m}=9, \mathrm{n}=5$, there are 322 polytopal simplicial complexes (Fukuda-Miyata-Moriyama, 2013).
\longrightarrow there are 132 good seed polytopes.

Bistellar Moves

Definition

Let K be a simplicial complex. Assume that $F \in K$ has a link that is a boundary complex of a k-simplex $G \notin K$. The bistellar \mathbf{k}-move $b m_{F}(K)$ of K at F is defined as follows:

$$
K \backslash(\bar{F} * \partial \bar{G}) \cup(\partial \bar{F} * \bar{G})
$$

Note that $L k_{b m_{F}(K)}(G)=\partial \bar{F}$, so the inverse of a bistellar move is a bistellar move. In particular, $K=b m_{G}\left(b m_{F}(K)\right)$.

Bistellar Moves

If $\operatorname{dim}(G)=0$, then $b m_{F}(K)$ has one more vertex.

Bistellar Moves

Theorem(Pachner)

Let K, L be PL-manifolds. $|K| \stackrel{P L}{\cong}|L|$ if and only if they can be connected by a sequence of bistellar moves.
Moreover, polytopes are connected by a sequence of bistellar moves preserving vertices.

There is a simplicial sphere each face of which has the link that is not a simplex.
\longrightarrow It can not be obtained from vertex preserving bistellar moves.

Bistellar Moves

- Input: $P=$ PL-spheres of dim. $n-1$ on $\{1,2, \ldots, m\}$.
- Output: $B P=P L$-spheres of $\operatorname{dim} . n-1$ on $\{1,2, \ldots, m+1\}$ that can be obtained by a sequence of bistellar moves without using vertex reduction.
- Initialization:

$$
\begin{aligned}
& B P \leftarrow\left\{b m_{F}(K)| | F \mid=n, F \in K, K \in P\right\} / \cong . \\
& I \leftarrow|B P| \\
& E_{k} \leftarrow \emptyset \text { for each } k \leq I . \\
& V \leftarrow\{1,2, \ldots, m+1\} . \\
& i \leftarrow 1 .
\end{aligned}
$$

Bistellar Moves

- Procedure:
(1) If $i>I$, then STOP.
(2) $K \leftarrow B P_{i}$.
(3) $j \leftarrow 1$.
(9) $F P \leftarrow\left\{F \in K \mid L k_{K}(F)=\partial \Delta^{g}\right.$ for some $\left.0<g<n-1\right\}$.
(3) If $j>|F P|$, then $i \leftarrow i+1$ and go to 1 .
(0) If for some $e \in E_{i}$ such that $e_{2}=\operatorname{dim}\left(L k\left(F_{j}\right)\right)+2, B P_{e_{1}} \cong b m_{F_{j}}(K)$, then $j \leftarrow j+1$ and go to 5 .
(1) For $i \leq p \leq I$, if $B P_{p} \cong b m_{F_{j}}(K)$, then add $\left(i,\left|F_{j}\right|\right)$ to $E_{p}, j \leftarrow j+1$, go to 5 .
(8) Add $b m_{F_{j}}(K)$ to $B P, I \leftarrow I+1, E_{I} \leftarrow\left\{\left(i,\left|F_{j}\right|\right)\right\}, j \leftarrow j+1$.

Our Results

	PL-spheres/polytopes	seeds	good seeds
4	$39 / 37$	$23 / 21$	$21 / 19$
5	$337 \leq / 322$	$194 \leq / 184$	$142 \leq / 132$
6	$6257 \leq / 6257 \geq$	$4237 \leq / 4237 \geq$	$733 \leq / 733 \geq$

The bistellar program took 14 hours for $m=9, n=5$ case, 21 days for $\mathrm{m}=10, \mathrm{n}=6$ case.

The goodness checking program with the charateristic version and the injective dual version took 44 and 5 seconds, respectively for $m=10, n=6$ case.

