Cohomological Rigidity Problem of Toric Fano Manifolds

Kazuki Kurimoto (Kyoto Sangyo University)

Toric Topology 2019 Workshop for Young Reseachers 2019/11/22

J.W.W. Akihiro Higashitani and Mikiya Masuda

Variety isomorphism classes of toric Fano manifolds

dimension	variety types	proved by
2	5	
3	18	Watanabe-Watanabe('82), Batyrev ('91)
4	124	Batyrev('99), Sato('00)
5	866	Øbro ('07)
:	i i	:

Toric Fano 2-folds

ρ	varieties		
1	\mathbb{P}^2		
2	$\mathbb{F}_0 \; (= \mathbb{P}^1 imes \mathbb{P}^1)$ and \mathbb{F}_1		
3	2 points blow up of \mathbb{P}^2		
4	3 points blow up of \mathbb{P}^2		

Theorem 1 (Higashitani-K.-Masuda)

Toric Fano 3-folds are cohomologically rigid.

Invariants

s.v.e. :
$$\{f \in H^*(M) \mid f^2 = 0\}$$

c.v.e. : $\{f \in H^*(M) \mid f^3 = 0\}$
 \vdots

3-stage Bott towers

ID.	ideals	s.v.e. over \mathbb{Z}	7	s.v.e. over 2	$\mathbb{Z}/2\mathbb{Z}$
11.	$(x^2, y^2, z(z-x-y))$	x, y	(2)	x, y, x + y	(3)
12.	$(x^2,y(y-x),z(z-y))$	x, x - 2y	(2)	X	(1)
17.	$(x^2, y^2, z(z-x))$	x, y, x - 2z	(3)	x, y, x + y	(3)
18.	$(x^2, y^2, z(z-x+y))$	x, y	(2)	x, y, x + y	(3)
21.	(x^2, y^2, z^2)	x, y, z	(3)	all	(7)

from the database by \emptyset bro (http://www.grdb.co.uk/forms/toricsmooth)

$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{pmatrix}$$
&
$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 1 \\
0 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix}$$
&
$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 1 \\
0 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix}$$

from the database by \emptyset bro (http://www.grdb.co.uk/forms/toricsmooth)

Lemma

 M_1, M_2 : toric manifolds, A: fan of M_1, B : fan of M_2 .

If two M_2 -bundles over M_1 have fans as follows, they are diffeomorphic.

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \approx \begin{pmatrix} A & -C \\ O & B \end{pmatrix}$$

It is shown to use moment angle manifolds.

Isomorphism classes of toric Fano 3-folds

variety types	$H^*(V;\mathbb{Z})$	diffeomorphism types
18	16	16

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad \mathcal{V}_{11} : \mathbb{T}^6 \to \mathbb{T}^3$$

$$\mathcal{V}_{11}(g_1, \dots, g_6) = (g_1 g_2^{-1}, g_3 g_4^{-1}, g_2 g_4 g_5 g_6^{-1})$$

$$\begin{array}{c} \mathbf{18.} \\ \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad \mathcal{V}_{18} : \mathbb{T}^6 \to \mathbb{T}^3$$

$$\mathcal{V}_{18} : \mathbb{T}^6 \to \mathbb{$$

P : octahedron

 \mathcal{Z}_P : moment angle manifold corresponding to P

We get a diffeomorphism as follows.

$$\begin{array}{cccc}
\mathcal{Z}_P/\ker \mathcal{V}_{11} & \stackrel{\approx}{\longrightarrow} & \mathcal{Z}_P/\ker \mathcal{V}_{18} \\
\begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \end{pmatrix} & \mapsto & \begin{pmatrix} z_1^{-1} \\ z_2^{-1} \\ z_3 \\ z_4 \\ z_5 \\ z_6 \end{pmatrix}$$

Theorem 2 (Higashitani-K.-Masuda)

Toric Fano 4-folds are cohomologically rigid except for one pair.

Isomorphism classes of toric Fano manifolds

dimension	variety types	$H^*(V;\mathbb{Z})$	diffeo. types
2	5	5	5
3	18	16	16
4	124	102	102 or 103
5	866	??	??
:	:	:	:

Excepted one pair of dimesion 4

$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 1 0 -1 0

$$\mathcal{I}_{50} = ((x - y - z + w)w, (x - y)y, (x - z)z, x^{2}(x + w), x^{2}y, x^{2}z, (x - y)(x - z)w)$$

$$\mathcal{I}_{57} = ((x - y + w)w, (x - y)y, (x - z)z, x^2(x + w), x^2y, x^2z, (x - y)(x - z)w)$$

$$F: H^*(V_{50}) \xrightarrow{\cong} H^*(V_{57}) \qquad \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \mapsto \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

Theorem 3 (Higashitani-K.-Masuda)

Toric Fano manifolds of dimension d whose Picard number is greater than or equal to 2d-2 are cohomologically rigid.

They are some direct product or bundles of \mathbb{P}^1 , \mathbb{F}_1 , $BL_2(\mathbb{P}^2)$, $BL_3(\mathbb{P}^2)$ and DP_4 where

 $BL_2(\mathbb{P}^2)$: 2 points blow up of \mathbb{P}^2

 $BL_3(\mathbb{P}^2)$: 3 points blow up of \mathbb{P}^2

 DP_4 : del Pezzo 4-fold

ρ	d	varieties	proved by
2 <i>d</i>	even	$\prod^{rac{d}{2}} \mathit{BL}_3(\mathbb{P}^2)$	Casagrande('06)
2 <i>d</i>	odd	no such variety	
2 <i>d</i> – 1	even	$BL_2(\mathbb{P}^2) imes\prod^{rac{d-2}{2}}BL_3(\mathbb{P}^2)$	Øbro('08)
2 <i>d</i> – 1	odd	$\left(\prod^{rac{d-1}{2}} extit{BL}_3(\mathbb{P}^2) ight)$ -bundle over \mathbb{P}^1	
2d – 2	even	$\left(\prod^{\frac{d-2}{2}}BL_3(\mathbb{P}^2)\right)$ -bundle over \mathbb{F}_0 or \mathbb{F}_1 $BL_2(\mathbb{P}^2) \times BL_2(\mathbb{P}^2) \times \prod^{\frac{d-4}{2}}BL_3(\mathbb{P}^2)$ $DP_4 \times \prod^{\frac{d-4}{2}}BL_3(\mathbb{P}^2)$	Assarf-Joswig-Paffenholz ('14)
2d - 2	odd	$\left(\mathit{BL}_2(\mathbb{P}^2) imes \prod^{rac{d-3}{2}} \mathit{BL}_3(\mathbb{P}^2) ight)$ -bundle over \mathbb{P}^1	

A part of known results for Bott towers

Theorem 4 (Masuda-Panov('08))

 $M: n ext{-stage Bott tower. } H^*(M;\mathbb{Z})\cong H^*((\mathbb{P}^1)^n;\mathbb{Z})\Rightarrow M\approx (\mathbb{P}^1)^n$

Theorem 5 (Choi-Masuda-Suh('10))

2-stage generalized Bott towers are cohomologically rigid.

Theorem 6 (Choi-Masuda-Suh('10))

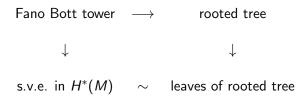
3-stage Bott towers are cohomologically rigid.

Theorem 7 (Choi('15))

4-stage Bott towers are cohomologically rigid.

Theorem 8 (Higashitani-K.)

Fano Bott towers are cohomologically rigid.



Thank you for your attention.

15 / 15