Combinatorial properties of string polytopes of Type A

Eunjeong Lee

IBS-CGP

jointly with Yunhyung Cho, Yoosik Kim, and Kyeong-Dong Park arXiv:1904.00130

Toric Topology 2019 in Okayama: Workshop for Young Researchers November 22, 2019 Okayama University of Science, Okayama, Japan

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ : dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

- is a rational polytope living in \mathbb{R}^N , where $N = \dim_{\mathbb{C}} G/B = \frac{n(n+1)}{2}$, • $\Delta_i(\lambda) \cap \mathbb{Z}^N \leftrightarrow$ weights of $V(\lambda)$,
- \bigcirc is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \mathsf{Gelfand}\mathsf{-}\mathsf{Cetlin} \mathsf{ polytope} \mathsf{ GC}(\lambda).$

Combinatorics of $\Delta_{f i}(\lambda)$ depends on f i.

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

- is a rational polytope living in ℝ^N, where N = dim_C G/B = ⁿ⁽ⁿ⁺¹⁾/₂,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),
- is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \mathsf{Gelfand}\mathsf{-}\mathsf{Cetlin}$ polytope $\mathsf{GC}(\lambda)$.

Combinatorics of $\Delta_{f i}(\lambda)$ depends on f i.

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

Is a rational polytope living in ℝ^N, where N = dim_ℂ G/B = n(n+1)/2,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),

- (a) is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \mathsf{Gelfand}\mathsf{-}\mathsf{Cetlin} \ \mathsf{polytope} \ \mathsf{GC}(\lambda).$

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

Is a rational polytope living in ℝ^N, where N = dim_C G/B = n(n+1)/2,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),

- (a) is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \mathsf{Gelfand}\mathsf{-}\mathsf{Cetlin} \ \mathsf{polytope} \ \mathsf{GC}(\lambda).$

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

- Is a rational polytope living in ℝ^N, where N = dim_C G/B = n(n+1)/2,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),
- So is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \mathsf{Gelfand}-\mathsf{Cetlin} \ \mathsf{polytope} \ \mathsf{GC}(\lambda).$

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

- Is a rational polytope living in ℝ^N, where N = dim_C G/B = n(n+1)/2,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),
- \bullet is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{i}(\lambda) \simeq \mathsf{Gelfand-Cetlin} \ \mathsf{polytope} \ \mathsf{GC}(\lambda).$

- $G = \mathsf{SL}_{n+1}(\mathbb{C}).$
- $\mathbf{i} = (i_1, \dots, i_N)$: a reduced decomposition of the longest element in \mathfrak{S}_{n+1} , i.e., $s_{i_1}s_{i_2}\cdots s_{i_N} = (n+1 \ n \ \cdots \ 2 \ 1)$.
- λ: dominant integral weight.

Using these data, Littelmann defined the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

- is a rational polytope living in ℝ^N, where N = dim_C G/B = n(n+1)/2,
 Δ_i(λ) ∩ ℤ^N ↔ weights of V(λ),
- So is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{i}(\lambda) \simeq \mathsf{Gelfand-Cetlin} \text{ polytope } \mathsf{GC}(\lambda).$

Main theorem

Why string polytopes?

G/B

Eunjeong Lee (IBS-CGP)

э

• • • • • • • •

Main theorem

Why string polytopes?

G/B

$\Delta_{\mathbf{i}}(\lambda)$

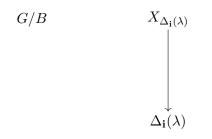
Eunjeong Lee (IBS-CGP)

э

• • • • • • • •

Main theorem

Why string polytopes?

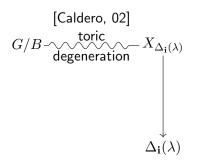


э

• • • • • • • •

Main theorem

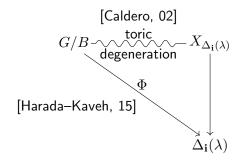
Why string polytopes?



< 4 → <

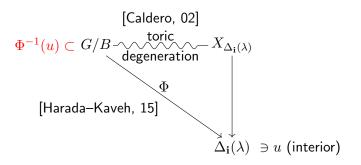
Main theorem

Why string polytopes?

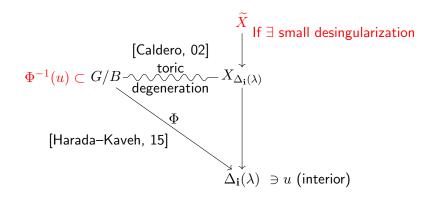


Main theorem

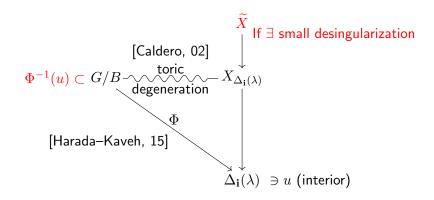
Why string polytopes?



Why string polytopes?



Why string polytopes?



Theorem [Nishinou–Nohara–Ueda, 10]

One can get symplectic information (so called disk potential) of $\Phi^{-1}(u)$ using the combinatorics of $\Delta_i(\lambda)$.

Eunjeong Lee (IBS-CGP)

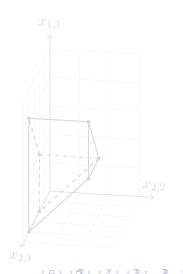
Gelfand–Cetlin polytopes

$$G = \mathsf{SL}_3(\mathbb{C}), \lambda = 2\varpi_1 + 2\varpi_2.$$

$$4 \qquad 2 \qquad 0$$

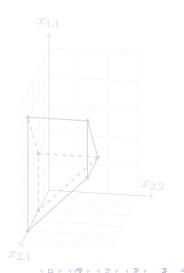
$$\forall \qquad \forall \qquad \forall \qquad x_{2,1} \qquad x_{2,2}$$

$$\forall \qquad \forall \qquad x_{1,1}$$

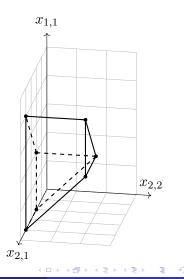


Main theorem

Gelfand–Cetlin polytopes



Gelfand–Cetlin polytopes



Gelfand–Cetlin toric varieties

 $X_{\widetilde{\Sigma}}$ is a small desingularization of X_{Σ} if $\widetilde{\Sigma}$ is smooth and it is a refinement of Σ satisfying $\widetilde{\Sigma}(1) = \Sigma(1)$.

Theorem [Batyrev–Ciocan-Fontanine–Kim–van Straten, 00]

Gelfand–Cetlin toric variety admits a small desingularization $\widehat{X}.$ Moreover, \widetilde{X} is a Bott manifold.

Gelfand–Cetlin toric varieties

 $X_{\widetilde{\Sigma}}$ is a small desingularization of X_{Σ} if $\widetilde{\Sigma}$ is smooth and it is a refinement of Σ satisfying $\widetilde{\Sigma}(1) = \Sigma(1)$.

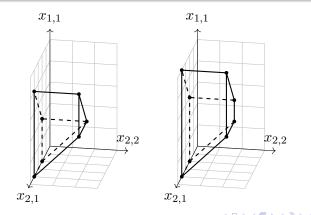
Theorem [Batyrev–Ciocan-Fontanine–Kim–van Straten, 00]

Gelfand–Cetlin toric variety admits a small desingularization $\widetilde{X}.$ Moreover, \widetilde{X} is a Bott manifold.

Main theorem

Gelfand-Cetlin toric varieties

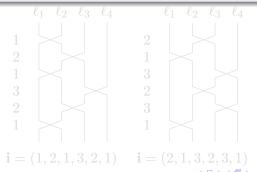
 $X_{\widetilde{\Sigma}}$ is a small desingularization of X_{Σ} if $\widetilde{\Sigma}$ is smooth and it is a refinement of Σ satisfying $\widetilde{\Sigma}(1) = \Sigma(1)$.



Wiring diagrams

Definition

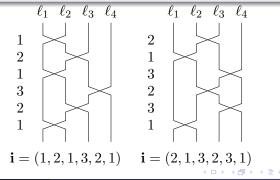
For a reduced word i, the wiring diagram $G(\mathbf{i})$ is a pseudoline arrangement consisting of a family of (n + 1)-vertical piecewise straight lines such that the *j*th crossing of wires (from the top) is located in the i_j -column of the diagram for each $j = 1, \ldots, N$.



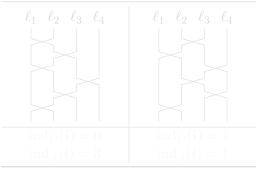
Wiring diagrams

Definition

For a reduced word i, the wiring diagram $G(\mathbf{i})$ is a pseudoline arrangement consisting of a family of (n + 1)-vertical piecewise straight lines such that the *j*th crossing of wires (from the top) is located in the i_j -column of the diagram for each $j = 1, \ldots, N$.

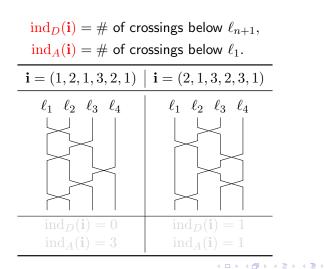


 $\operatorname{ind}_D(\mathbf{i}) = \#$ of crossings below ℓ_{n+1} , $\operatorname{ind}_A(\mathbf{i}) = \#$ of crossings below ℓ_1 .

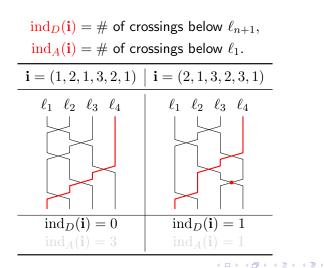


3

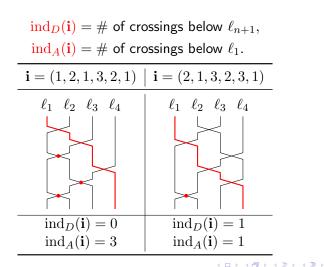
(日)



3

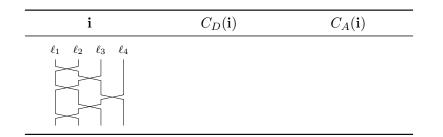


э

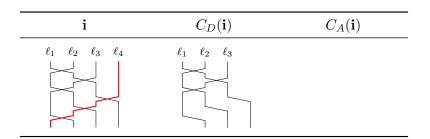


э

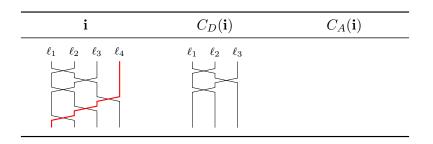
- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.



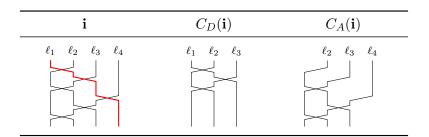
- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.



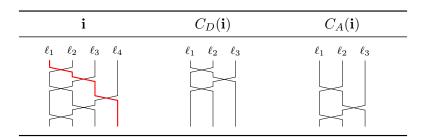
- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.



- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.



- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.



Theorem 1 ([Cho-Kim-L-Park])

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

- 3 # of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.
- 3 There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$

 i = (2, 1, 2, 3, 2, 1). ind_D(i) = 0, G_D(i) = (2, 1, 2). ind_A(2, 1, 2) = 0, G_D(2, 1, 2) = (1), ind_D(1) = 0. Hence. A(2, 1, 2, 2, 2) (λ) ≃ GG(λ).
 i = (2, 1, 3, 2, 3, 1). ind_A(i) = 1. ≠ 0 and ind_D(i) = 1. ≠ 0. Hence A(2, 1, 2, 2, 3, 1). ind_A(i) = 1. ≠ 0 and ind_D(i) = 1. ≠ 0. Hence

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 1 ([Cho-Kim-L-Park])

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \neq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

Theorem 1 ([Cho-Kim-L-Park])

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト イボト イヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト イボト イヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト イボト イヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト イボト イヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト 不得 トイヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

3 # of facets of
$$\Delta_{\mathbf{i}}(\lambda) = n(n+1)$$
.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = 0, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = 0, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト 不得 トイヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

3 # of facets of
$$\Delta_{\mathbf{i}}(\lambda) = n(n+1)$$
.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = \mathbf{0}, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = \mathbf{0}, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = \mathbf{0}$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \operatorname{GC}(\lambda)$.
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

3

イロト 不得 トイヨト イヨト

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

• $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = \mathbf{0}, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = \mathbf{0}, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = \mathbf{0}$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \mathsf{GC}(\lambda)$.

• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

イロト 不得 トイラト イラト 一日

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

2
$$\#$$
 of facets of $\Delta_{\mathbf{i}}(\lambda) = n(n+1)$.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = \mathbf{0}, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = \mathbf{0}, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = \mathbf{0}$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \mathsf{GC}(\lambda)$.
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \neq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

イロト 不得 トイラト イラト 一日

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

3 # of facets of
$$\Delta_{\mathbf{i}}(\lambda) = n(n+1)$$
.

• There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} (C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})) = 0$ for all $k = n, \ldots, 1$.

- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. $\operatorname{ind}_D(\mathbf{i}) = \mathbf{0}, C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2, 1, 2) = \mathbf{0}, C_D(2, 1, 2) = (1), \quad \operatorname{ind}_D(1) = \mathbf{0}$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \mathsf{GC}(\lambda)$.
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq \mathbf{0}$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq \mathbf{0}$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \operatorname{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

イロト 不得 トイラト イラト 一日

Theorem 1 ([Cho–Kim–L–Park])

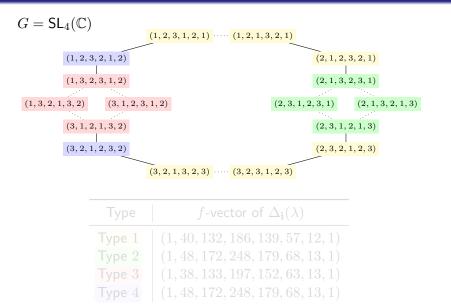
Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

3 # of facets of
$$\Delta_{\mathbf{i}}(\lambda) = n(n+1)$$
.

3 There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that $\operatorname{ind}_{\sigma_k} \left(C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n} (\mathbf{i}) \right) = 0$ for all $k = n, \dots, 1$.

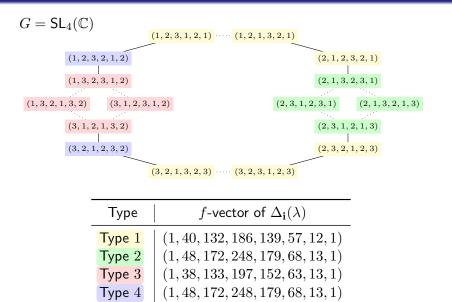
- $\mathbf{i} = (2, 1, 2, 3, 2, 1)$. ind_D(\mathbf{i}) = 0, $C_D(\mathbf{i}) = (2, 1, 2)$. $\operatorname{ind}_A(2,1,2) = 0, C_D(2,1,2) = (1), \quad \operatorname{ind}_D(1) = 0.$ Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq \mathsf{GC}(\lambda).$
- $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. $\operatorname{ind}_A(\mathbf{i}) = 1 \neq 0$ and $\operatorname{ind}_D(\mathbf{i}) = 1 \neq 0$. Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \mathsf{GC}(\lambda)$. Indeed, # of facets of $\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

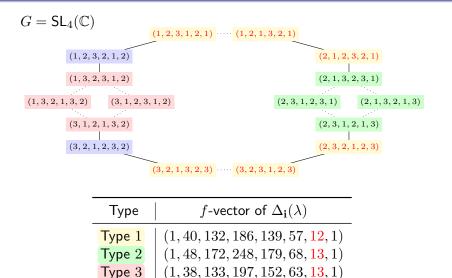


Eunjeong Lee (IBS-CGP)

< □ > < /□ >



< 1[™] >



Type 4

(1, 48, 172, 248, 179, 68, 13, 1)

< 1[™] >

Theorem 2 ([Cho–Kim–<u>L</u>–Park])

Let i be a reduced decomposition of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. If there exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that

$$\begin{aligned} &\operatorname{ind}_{\sigma_n}(\mathbf{i}) \leq 2, \\ &\operatorname{ind}_{\sigma_k} \left(C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i}) \right) = 0 \quad \text{ for all } k = n - 1, \dots, 1, \end{aligned}$$

then $X_{\Delta_i(\lambda)}$ admits a small desingularization \widetilde{X} . Moreover, \widetilde{X} is obtained by a blow-up of a Bott manifold.

Every reduced decomposition for $G = SL_4(\mathbb{C})$ satisfies the above condition. But when $G = SL_5(\mathbb{C})$ not every decomposition satisfies the condition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2 ([Cho–Kim–<u>L</u>–Park])

Let i be a reduced decomposition of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. If there exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that

$$\inf_{\sigma_n}(\mathbf{i}) \leq 2, \\ \inf_{\sigma_k} \left(C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i}) \right) = 0 \quad \text{ for all } k = n - 1, \dots, 1,$$

then $X_{\Delta_i(\lambda)}$ admits a small desingularization \widetilde{X} . Moreover, \widetilde{X} is obtained by a blow-up of a Bott manifold.

Every reduced decomposition for $G = SL_4(\mathbb{C})$ satisfies the above condition. But when $G = SL_5(\mathbb{C})$ not every decomposition satisfies the condition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Suppose that \mathbf{i} satisfies the condition in Theorem 2. Then,

- **2** $\Delta_{\mathbf{i}}(\lambda_P)$ is reflexive, where λ_P is the weight corresponding to the anticanonical line bundle of G/P.
- One can compute the Floer theorectical disk potential defined by Fukaya–Oh–Ohta–Ono of the Lagrangian submanifold in G/B given by Δ_i(λ) for any regular dominant integral weight λ.

Remark

For $G = SL_4(\mathbb{C})$, there are four string polytopes in \mathbb{R}^6 up to unimodular equivalence. (There are 16 reduced decompositions.) For $G = SL_5(\mathbb{C})$, there are 28 string polytopes in \mathbb{R}^{10} up to unimodular equivalence. (There are 768 reduced decompositions.)

< □ > < 同 > < 回 > < 回 > < 回 >

Corollary

Suppose that \mathbf{i} satisfies the condition in Theorem 2. Then,

- **2** $\Delta_{\mathbf{i}}(\lambda_P)$ is reflexive, where λ_P is the weight corresponding to the anticanonical line bundle of G/P.
- One can compute the Floer theorectical disk potential defined by Fukaya–Oh–Ohta–Ono of the Lagrangian submanifold in G/B given by Δ_i(λ) for any regular dominant integral weight λ.

Remark

For $G = SL_4(\mathbb{C})$, there are four string polytopes in \mathbb{R}^6 up to unimodular equivalence. (There are 16 reduced decompositions.) For $G = SL_5(\mathbb{C})$, there are 28 string polytopes in \mathbb{R}^{10} up to unimodular equivalence. (There are 768 reduced decompositions.)

э

イロト イヨト イヨト イヨト

Corollary

Suppose that \mathbf{i} satisfies the condition in Theorem 2. Then,

- **2** $\Delta_{\mathbf{i}}(\lambda_P)$ is reflexive, where λ_P is the weight corresponding to the anticanonical line bundle of G/P.
- One can compute the Floer theorectical disk potential defined by Fukaya–Oh–Ohta–Ono of the Lagrangian submanifold in G/B given by Δ_i(λ) for any regular dominant integral weight λ.

Remark

For $G = SL_4(\mathbb{C})$, there are four string polytopes in \mathbb{R}^6 up to unimodular equivalence. (There are 16 reduced decompositions.) For $G = SL_5(\mathbb{C})$, there are 28 string polytopes in \mathbb{R}^{10} up to unimodular equivalence. (There are 768 reduced decompositions.)

э

イロト イヨト イヨト イヨト

Thank you for your attention!!