
What are string polytopes? Main theorem

Combinatorial properties of string polytopes of Type A

Eunjeong Lee

IBS-CGP

jointly with Yunhyung Cho, Yoosik Kim, and Kyeong-Dong Park
arXiv:1904.00130

Toric Topology 2019 in Okayama: Workshop for Young Researchers
November 22, 2019

Okayama University of Science, Okayama, Japan

Eunjeong Lee (IBS-CGP) String polytopes November 22, 2019 1 / 13



What are string polytopes? Main theorem

What are string polytopes?

G = SLn+1(C).

i = (i1, . . . , iN ): a reduced decomposition of the longest element
in Sn+1, i.e., si1si2 · · · siN = (n+ 1 n · · · 2 1).

λ: dominant integral weight.

Using these data, Littelmann defined the string polytope ∆i(λ), which

1 is a rational polytope living in RN , where N = dimCG/B = n(n+1)
2 ,

2 ∆i(λ) ∩ ZN ↔ weights of V (λ),
3 is a Newton–Okounkov body of (G/B,Lλ) (by [Kaveh, 15]).
4 For i = (1, 2, 1, 3, 2, 1, ..., n, n− 1, . . . , 1),

∆i(λ) ' Gelfand–Cetlin polytope GC(λ).

Combinatorics of ∆i(λ) depends on i.
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Why string polytopes?

G/B

∆i(λ)

X∆i(λ)

[Caldero, 02]
toric

degeneration

X̃
If ∃ small desingularization

Φ

[Harada–Kaveh, 15]

3 u (interior)

Φ−1(u) ⊂

Theorem [Nishinou–Nohara–Ueda, 10]

One can get symplectic information (so called disk potential) of Φ−1(u)
using the combinatorics of ∆i(λ).
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Gelfand–Cetlin polytopes

G = SL3(C), λ = 2$1 + 2$2.

4 2 0

x2,1 x2,2

x1,1

≥ ≥≥ ≥

≥ ≥

x2,1

x2,2

x1,1
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What are string polytopes? Main theorem

Gelfand–Cetlin toric varieties

X
Σ̃

is a small desingularization of XΣ if Σ̃ is smooth and it is a refinement

of Σ satisfying Σ̃(1) = Σ(1).

Theorem [Batyrev–Ciocan-Fontanine–Kim–van Straten, 00]

Gelfand–Cetlin toric variety admits a small desingularization X̃. Moreover,
X̃ is a Bott manifold.
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What are string polytopes? Main theorem

Wiring diagrams

Definition

For a reduced word i, the wiring diagram G(i) is a pseudoline arrangement
consisting of a family of (n+ 1)-vertical piecewise straight lines such that
the jth crossing of wires (from the top) is located in the ij-column of the
diagram for each j = 1, . . . , N .

i = (1, 2, 1, 3, 2, 1)

1
2
1
3
2
1

`1 `2 `3 `4

i = (2, 1, 3, 2, 3, 1)

2
1
3
2
3
1

`1 `2 `3 `4
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What are string polytopes? Main theorem

Indices

indD(i) = # of crossings below `n+1,

indA(i) = # of crossings below `1.

i = (1, 2, 1, 3, 2, 1) i = (2, 1, 3, 2, 3, 1)

`1 `2 `3 `4 `1 `2 `3 `4

indD(i) = 0 indD(i) = 1
indA(i) = 3 indA(i) = 1
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What are string polytopes? Main theorem

Contractions

CD(i): erase `n+1 and rearrange.

CA(i): erase `1 and rearrange.

Contraction maps a reduced word of the longest element in Sn+1 to a
reduced word of the longest element in Sn.

i CD(i) CA(i)

`1 `2 `3 `4
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What are string polytopes? Main theorem

Theorem 1 ([Cho–Kim–L–Park])

Let i be a reduced word of the longest element in Sn+1. Let λ be a
regular dominant integral weight. Then the following are equivalent.

1 ∆i(λ) ∼= GC(λ).

2 # of facets of ∆i(λ) = n(n+ 1).

3 There exists a sequence (σ1, . . . , σn) ∈ {A,D}n such that
indσk

(
Cσk+1

◦ · · · ◦ Cσn(i)
)

= 0 for all k = n, . . . , 1.

i = (2, 1, 2, 3, 2, 1). indD(i) = 0, CD(i) = (2, 1, 2).
indA(2, 1, 2) = 0, CD(2, 1, 2) = (1), indD(1) = 0. Hence
∆(2,1,2,3,2,1)(λ) ' GC(λ).

i = (2, 1, 3, 2, 3, 1). indA(i) = 1 6= 0 and indD(i) = 1 6= 0. Hence
∆(2,1,2,3,2,1)(λ) 6' GC(λ). Indeed, # of facets of ∆i(λ) = 13 6= 12.
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G = SL4(C)

(3, 2, 1, 3, 2, 3) (3, 2, 3, 1, 2, 3)

(2, 3, 2, 1, 2, 3)

(2, 3, 1, 2, 1, 3)

(2, 3, 1, 2, 3, 1) (2, 1, 3, 2, 1, 3)

(2, 1, 3, 2, 3, 1)

(2, 1, 2, 3, 2, 1)

(1, 2, 1, 3, 2, 1)(1, 2, 3, 1, 2, 1)

(1, 2, 3, 2, 1, 2)

(1, 3, 2, 3, 1, 2)

(3, 1, 2, 3, 1, 2)(1, 3, 2, 1, 3, 2)

(3, 1, 2, 1, 3, 2)

(3, 2, 1, 2, 3, 2)

Type f -vector of ∆i(λ)

Type 1 (1, 40, 132, 186, 139, 57, 12, 1)
Type 2 (1, 48, 172, 248, 179, 68, 13, 1)
Type 3 (1, 38, 133, 197, 152, 63, 13, 1)
Type 4 (1, 48, 172, 248, 179, 68, 13, 1)
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Theorem 2 ([Cho–Kim–L–Park])

Let i be a reduced decomposition of the longest element in Sn+1. Let λ
be a regular dominant integral weight. If there exists a sequence
(σ1, . . . , σn) ∈ {A,D}n such that

indσn(i) ≤ 2,

indσk
(
Cσk+1

◦ · · · ◦ Cσn(i)
)

= 0 for all k = n− 1, . . . , 1,

then X∆i(λ) admits a small desingularization X̃. Moreover, X̃ is obtained
by a blow-up of a Bott manifold.

Every reduced decomposition for G = SL4(C) satisfies the above condition.
But when G = SL5(C) not every decomposition satisfies the condition.

Eunjeong Lee (IBS-CGP) String polytopes November 22, 2019 11 / 13



What are string polytopes? Main theorem

Theorem 2 ([Cho–Kim–L–Park])

Let i be a reduced decomposition of the longest element in Sn+1. Let λ
be a regular dominant integral weight. If there exists a sequence
(σ1, . . . , σn) ∈ {A,D}n such that

indσn(i) ≤ 2,

indσk
(
Cσk+1

◦ · · · ◦ Cσn(i)
)

= 0 for all k = n− 1, . . . , 1,

then X∆i(λ) admits a small desingularization X̃. Moreover, X̃ is obtained
by a blow-up of a Bott manifold.

Every reduced decomposition for G = SL4(C) satisfies the above condition.
But when G = SL5(C) not every decomposition satisfies the condition.

Eunjeong Lee (IBS-CGP) String polytopes November 22, 2019 11 / 13
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Corollary

Suppose that i satisfies the condition in Theorem 2. Then,

1 ∆i(λ) is integral for any dominant integral weight λ.

2 ∆i(λP ) is reflexive, where λP is the weight corresponding to the
anticanonical line bundle of G/P .

3 One can compute the Floer theorectical disk potential defined by
Fukaya–Oh–Ohta–Ono of the Lagrangian submanifold in G/B given
by ∆i(λ) for any regular dominant integral weight λ.

Remark

For G = SL4(C), there are four string polytopes in R6 up to unimodular
equivalence. (There are 16 reduced decompositions.) For G = SL5(C),
there are 28 string polytopes in R10 up to unimodular equivalence. (There
are 768 reduced decompositions.)
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Thank you for your attention!!
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