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1 Toric varieties in G (C™)

Gr(C™): set of all k-dimensional vector
subspaces in C"

(C*)™: algebraic torus, where C* = C \ {0}

For an orbit O C G (C™), the closure O is a
toric variety.



1 Toric varieties in G (C™)
Ju (moment map) : G (C") — R” s.t.

e 11(O) is a (convex) polytope in R",
{fixed points of O} <— {vertices of u(O)};

e O is smooth < u(O) is a simple polytope.

Question. Which @’s are smooth?

— Find simple x(O)’s.



1 Toric varieties in G (C™)

Actually, 1(O) is a matroid polytope.

(combinatorial) Theorem (Noji-O).

A simple matroid polytope is a product of simplices.

(geometric) Theorem (Noji-O).
If O is smooth, then O is a product of complex

projective spaces.

(M(6>:Ad1 X'”XAdr m— O:(CPdl X"'XCPdT)



]. Remark on our results

We found a paper which prove the following:

Theorem.

Every simple 0/1-polytope is the (cartesian) product of
some 0/1-simplices. (Volker Kaibel and Martin Wolff, Simple
0/1-polytopes, Europ. J. Combinatorics (2000) 21, 139-144. )

Matroid polytopes are 0/1-polytopes and this easily
iImplies our combinatorial Theorem in the previous slide.

However, at least for matroid polytopes, | and Noji
proved a stronger statement in our paper to prove our

combinatorial Theorem in the previous slide.



1 Toric varieties in G (C™)
Ju (moment map) : G (C™) — R" s.t.

o 1(O) is a (convex) polytope in R™,
{fixed points of O} +— {vertices of u(O)};

o O is smooth < 1(O) is a simple polytope.

One viewpoint.
The more edges emanate from a vertex of u(0), the
“more singular " O is, at the corresponding fixed point.

Question.

How many edges do emanate from a vertex of u(0)?



1 Toric varieties in G (C™)

We may assume that O is non-degenerate i.e.
dim O =n—1,

because

dim O =n—r
=
><..

O:Ol °><@f,a

and each O; can be regarded as non-degenerate
torus orbit closure in G, (C").



1 Toric varieties in G (C™)

When kK =0 or 1,
G (C™) = {a point}.

When k=1orn—1,
G (C™) = complex projective space.

And then (non-degenerate O)= G (C™).
(".- O is unique open dense orbit in G, (C"),
since G (C™) is the complex projective space)

Thus, we consider the cases when 2 < k < n — 2.



2 1(O) for non-degenerate O C Go(C*)

O C Gy ((C4)

©u(30) = Octahedron  u(30) = Pyramid




3 A iniquality for the number of edges from a vertex

For a polytope P, let

D(P)= max d, —dim P.
veV(P)

V(P): set of all vertices of polytope and
dy: the number of edges which emanate from v

Then P is simple & D(P) = 0.

“Theorem” (O).
When 2 < k < n — 2, for non-degenerate O

/23~ 1< DWE),



3 A iniquality for the number of edges from a vertex

When 5 < n,

0< {/3(5-3)—1< §/3(n—3) 1< D(uO)).

This means that O is not smooth when 5 < n,

which reprove the previous theorem.

Remark.
More generally, the above assertion holds for matroid polytopes

of connected matroids on [n] of rank k.



4 Remark on our viewpoint

Other viewpoint can be taken. Indeed, we can think that the

more facets intersect at a vertex of 1(O), the “more singular’ O
Is, at corresponding fixed point.

For generic O C G (C™),
u(O) = A, i is called a hypersimlex.

The A, r has n facets at each vertex
while it has k(n — k) edges at each vertices.

Since for a general (n — 1)-dimensional polytope, the minimum
number of its edgs and facets at a vertex of it are both n — 1, the

two viewpoints give different impressions of the singularity of O.



