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1 Toric varieties in Gk(Cn)

Gk(Cn): set of all k-dimensional vector

subspaces in Cn

(C∗)n: algebraic torus, where C∗ = C \ {0}

(C∗)n ↷ Gk(Cn)

For an orbit O ⊂ Gk(Cn), the closure O is a

toric variety.



1 Toric varieties in Gk(Cn)

∃µ (moment map) : Gk(Cn)→ Rn s.t.

• µ(O) is a (convex) polytope in Rn,

{fixed points of O} ←→ {vertices of µ(O)};

• O is smooth ⇔ µ(O) is a simple polytope.

Question. Which O’s are smooth?

→ Find simple µ(O)′s.



1 Toric varieties in Gk(Cn)

Actually, µ(O) is a matroid polytope.

(combinatorial)Theorem (Noji-O).

A simple matroid polytope is a product of simplices.

(geometric)Theorem (Noji-O).

If O is smooth, then O is a product of complex

projective spaces.

(µ(O) = ∆d1 × · · · ×∆dr ⇒ O = CPd1 × · · · × CPdr )



1 Remark on our results

We found a paper which prove the following:

Theorem.

Every simple 0/1-polytope is the (cartesian) product of

some 0/1-simplices. (Volker Kaibel and Martin Wolff, Simple

0/1-polytopes, Europ. J. Combinatorics (2000) 21, 139–144. )

Matroid polytopes are 0/1-polytopes and this easily

implies our combinatorial Theorem in the previous slide.

However, at least for matroid polytopes, I and Noji

proved a stronger statement in our paper to prove our

combinatorial Theorem in the previous slide.



1 Toric varieties in Gk(Cn)

∃µ (moment map) : Gk(Cn)→ Rn s.t.

• µ(O) is a (convex) polytope in Rn,

{fixed points of O} ←→ {vertices of µ(O)};

• O is smooth ⇔ µ(O) is a simple polytope.

One viewpoint.

The more edges emanate from a vertex of µ(O), the

“more singular ” O is, at the corresponding fixed point.

Question.

How many edges do emanate from a vertex of µ(O)?



1 Toric varieties in Gk(Cn)

We may assume that O is non-degenerate i.e.

dim O = n− 1,

because

dim O = n− r

⇒
O = O1 × · · · × Or

and each Oi can be regarded as non-degenerate

torus orbit closure in Gki
(Cni).



1 Toric varieties in Gk(Cn)

When k = 0 or 1,

Gk(Cn) = {a point}.

When k = 1 or n− 1,

Gk(Cn) = complex projective space.

And then (non-degenerate O)= Gk(Cn).

(∵ O is unique open dense orbit in Gk(Cn),

since Gk(Cn) is the complex projective space)

Thus, we consider the cases when 2 ≤ k ≤ n− 2.



2 µ(O) for non-degenerate O ⊂ G2(C4)

O ⊂ G2(C4)

µ(∃O) = Octahedron µ(∃O) = Pyramid



3 A iniquality for the number of edges from a vertex

For a polytope P , let

D(P ) = max
v∈V (P )

dv − dimP.

V (P ): set of all vertices of polytope and

dv : the number of edges which emanate from v

Then P is simple ⇔ D(P ) = 0.

“Theorem” (O).

When 2 ≤ k ≤ n− 2, for non-degenerate O

3

√
3

4
(n− 3)− 1 ≤ D(µ(O)).



3 A iniquality for the number of edges from a vertex

When 5 ≤ n,

0 < 3
√

3
4 (5− 3)− 1 ≤ 3

√
3
4 (n− 3)− 1 ≤ D(µ(O)).

This means that O is not smooth when 5 ≤ n,

which reprove the previous theorem.

Remark.

More generally, the above assertion holds for matroid polytopes

of connected matroids on [n] of rank k.



4 Remark on our viewpoint

Other viewpoint can be taken. Indeed, we can think that the
more facets intersect at a vertex of µ(O), the “more singular” O
is, at corresponding fixed point.

For generic O ⊂ Gk(Cn),

µ(O) = ∆n,k is called a hypersimlex.

The ∆n,k has n facets at each vertex
while it has k(n− k) edges at each vertices.

Since for a general (n− 1)-dimensional polytope, the minimum

number of its edgs and facets at a vertex of it are both n− 1, the

two viewpoints give different impressions of the singularity of O.


