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Questions

Given two topological spaces X7 and Xs...
Cohomological rigidity

H* (X)) 2 H*(X;) = 3f:X1 5 X,

If both X; and X5 are equipped with G-actions...

Equivariant Cohomological Rigidity

G x X1 % G x X9
* ~ * i B
Ho(X1) = Hp(X;) = l o l

X1T>X2
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Objects

Constructive definition

> @Q": n-dimensional simple polytope,
> \: F(Q™) — Z™*! such that

spang{\(F},), ..., A(F;,)} : direct summand of Z"*1, whenever
F,n---NnE;, #0.

X2n+1 _ Qn % Tn+1/N
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Objects

Constructive definition

> @": n-dimensional simple polytope,

> X: F(Q) = ZF for n <k < m(:= |F(Q")]) such that

spang {\(F},), ..., A\(F;,)} : direct summand of Z*, whenever
F,n---NnE;, #0.

Xk = Qn X T/

Axiomatic definition
A smooth manifold X" with effective T*-action s.t.

» locally isomorphic to T x T*F=" ~ C" x Tk,

» X"k /T* is homeomorphic to a simple polytope P as manifold
with corners.

5/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )

6/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )
k=m
(1) if X: F(Q™) — Z™ is given by F; — ey,

XM = Zon.

6/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )
k=m
(1) if X: F(Q™) — Z™ is given by F; — ey,

XM = Zon.

(2) if Q" = A™ and \: F(A™) — Z" is given by
{)\(Fi)—ei iZl,...,ﬂ
A(Fns1) = (=q1,..., —qn,p) ged(qr,p) =--- = ged(gn,p) = 1,

X" =Lpsqu, ..., qn)-

6/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )
k=m
(1) if X: F(Q™) — Z™ is given by F; — ey,

XM = Zon.

(2) if Q" = A™ and \: F(A™) — Z" is given by
{)\(Fi)—ei iZl,...,ﬂ
A(Fns1) = (=q1,..., —qn,p) ged(qr,p) =--- = ged(gn,p) = 1,

X" =Lpsqu, ..., qn)-

What else..?
k=mn+1, {topological contact toric manfiolds}

6/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )
k=m
(1) if X: F(Q™) — Z™ is given by F; — ey,

XM = Zon.

(2) if Q" = A™ and \: F(A™) — Z" is given by
{)\(Fi)—ei iZl,...,ﬂ
A(Fns1) = (=q1,..., —qn,p) ged(qr,p) =--- = ged(gn,p) = 1,

X" =Lpsqu, ..., qn)-

What else..?

k=mn+1, {topological contact toric manfiolds}
(D {good contact toric manifolds} ).

6/10



Examples
Two extreme cases:
k =n, {quasitoric manifolds} ( O {symplectic toric manifolds} )
k=m
(1) if X: F(Q™) — Z™ is given by F; — ey,

XM = Zon.

(2) if Q" = A™ and \: F(A™) — Z" is given by
{)\(Fi)—ei iZl,...,ﬂ
A(Fns1) = (=q1,..., —qn,p) ged(qr,p) =--- = ged(gn,p) = 1,

X" =Lpsqu, ..., qn)-

What else..?

k=mn+1, {topological contact toric manfiolds}
(D {good contact toric manifolds} ).

k =n+2, hyperplane cut of t.c.t.m.
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Contact toric manifolds

Definition (Conact toric manifold)

A (2n + 1)-dimensional contact manifold M with an effective
T™*1_action preserving the contact structure.
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Contact toric manifolds

Definition (Conact toric manifold)

A (2n + 1)-dimensional contact manifold M with an effective
T™*1_action preserving the contact structure.

Theorem [Lerman, 2002] The classification of c.c.c.t.

Tt ~ M freely Tt ~ M not freely

dimM =3 T3 Lens space

Principal 7" !-bundle

over S™ Classified by moment cone.

dim M > 3
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Moment cone

(M, a): contact G-manifold,

(M x R,d(e'a)): symplectization of (M, a),
G ~ M x R, (trivially on R.)

®: M xR — g* moment map.

vV v v v
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Moment cone

(M, a): contact G-manifold,

(M x R,d(e'a)): symplectization of (M, a),

G ~ M x R, (trivially on R.)

®: M xR — g* moment map.

When G = T, (M x R) U {0} = C(P") such that...

vV vV v v Y

simple polytope P"

= {x e R™ ™ | (x,\) >0,\ € 2"}

> spany{\;,,...,\i, } is a direct summand of Z™ ™!, whenever
Fon--nF, #0

> M = P ox T/ (T -equivariantly homeomorphic.)
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Answer for the equivariant cohomological rigidity

For Ttk ~ X1TF and Tk ~ XJF,

(1) When k = n:
Theorem (Masuda, 2008)

X1, Xs: quasitoric manifolds.
H%.(X1) = Hyn(X2) as H*(BT™)-alg. iff X1 = X5 equiv. homeo.
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Answer for the equivariant cohomological rigidity

For Ttk ~ X1TF and Tk ~ XJF,

(1) When k = n:
Theorem (Masuda, 2008)

X1, Xs: quasitoric manifolds.
H%.(X1) & Hy (X2) as H*(BT™)-alg. iff X1 = Xo equiv. homeo.

(2) When k =m and X: F(Q) — Z™ is given by F; — e;:

Theorem (Davis—Januszkiewicz, 1991)
Him(Zg) = SR[Q)] ring isom.
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(3) When k =n+1,

Theorem (Sarkar-S, 2019, arXiv)

Let X1 and X5 be two topological contact toric manifolds. Then,

HZ(Xh) 2 Hya (Xo) as H* (BT )-alg. iff X1 = X5 eq. homeo.
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Theorem (Sarkar-S, 2019, arXiv)

Let X1 and X5 be two topological contact toric manifolds. Then,

HZ(Xh) 2 Hya (Xo) as H* (BT )-alg. iff X1 = X5 eq. homeo.

Remark
Similar arguments may apply to the case when k& > n + 1, which
(probably) gives...
CHE (XPHR) = 1 (XDTF) as H*(BTF)-alg.
if and only if X% = X2*F equiv. homeo. "

«Thank you for your attention.»
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