Topological contact toric manifolds

Jongbaek Song (joint work with S. Sarkar) arXiv:1909.00994 [math.AT]

School of Mathematical, KIAS

Toric Topology 2019 in Okayama (Workshop for Young Researchers) November 22, 2019

Questions

Given two topological spaces X_1 and X_2 ...

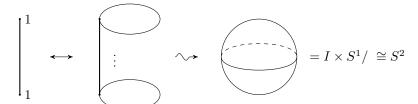
Cohomological rigidity

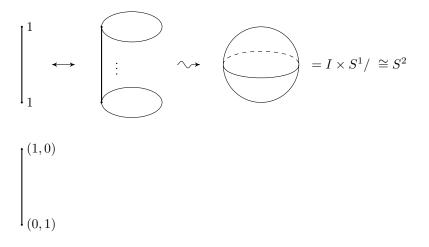
$$H^*(X_1) \cong H^*(X_2) \stackrel{?}{\Longrightarrow} {}^{\exists} f \colon X_1 \stackrel{\cong}{\longrightarrow} X_2$$

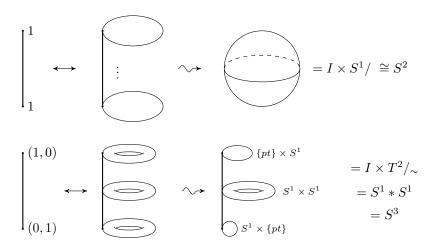
If both X_1 and X_2 are equipped with G-actions...

Equivariant Cohomological Rigidity

1







$$T^3 \curvearrowright X^6$$
 $\pi \downarrow$

$$T^{3} \curvearrowright X^{6}$$

$$\pi \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{1} \downarrow$$

$$\lambda_{2} \downarrow$$

$$\lambda_{3} \downarrow$$

$$\lambda_{4} \downarrow$$

$$\lambda_{5} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{6} \downarrow$$

$$\lambda_{7} \downarrow$$

$$\lambda_{7} \downarrow$$

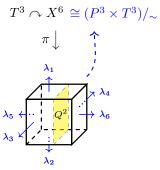
$$\lambda_{8} \downarrow$$

$$\lambda_{7} \downarrow$$

$$\lambda_{8} \downarrow$$

$$\lambda_{7} \downarrow$$

$$\lambda_{8} \downarrow$$

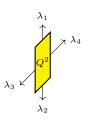


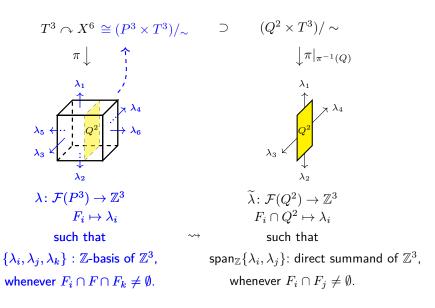
$$\lambda \colon \mathcal{F}(P^3) \to \mathbb{Z}^3$$
 $F_i \mapsto \lambda_i$

such that

 $\{\lambda_i,\lambda_j,\lambda_k\}:\mathbb{Z} ext{-basis of }\mathbb{Z}^3$,

whenever $F_i \cap F \cap F_k \neq \emptyset$.





Objects

Constructive definition

- $ightharpoonup Q^n$: n-dimensional simple polytope,
- $lacksquare \lambda \colon \mathcal{F}(Q^n) o \mathbb{Z}^{n+1}$ such that $\operatorname{span}_{\mathbb{Z}}\{\lambda(F_{i_1}),\ldots,\lambda(F_{i_k})\}$: direct summand of \mathbb{Z}^{n+1} , whenever $F_{i_1} \cap \cdots \cap F_{i_\ell} \neq \emptyset$.

$$X^{2n+1} = Q^n \times T^{n+1}/_{\sim}$$

Objects

Constructive definition

- $ightharpoonup Q^n$: n-dimensional simple polytope,
- $\lambda: \mathcal{F}(Q^n) \to \mathbb{Z}^k$ for $n \le k \le m (:= |\mathcal{F}(Q^n)|)$ such that $\operatorname{span}_{\mathbb{Z}}\{\lambda(F_{i_1}), \dots, \lambda(F_{i_\ell})\}$: direct summand of \mathbb{Z}^k , whenever $F_{i_1} \cap \dots \cap F_{i_\ell} \ne \emptyset$.

$$X^{n+k} := Q^n \times T^k/_\sim$$

Objects

Constructive definition

- $ightharpoonup Q^n$: n-dimensional simple polytope,
- $\lambda: \mathcal{F}(Q^n) \to \mathbb{Z}^k$ for $n \le k \le m (:= |\mathcal{F}(Q^n)|)$ such that $\operatorname{span}_{\mathbb{Z}}\{\lambda(F_{i_1}), \ldots, \lambda(F_{i_\ell})\}$: direct summand of \mathbb{Z}^k , whenever $F_{i_1} \cap \cdots \cap F_{i_\ell} \ne \emptyset$.

$$X^{n+k} := Q^n \times T^k /_{\sim}$$

Axiomatic definition

A smooth manifold X^{n+k} with effective T^k -action s.t.

- ▶ locally isomorphic to $T^n \times T^{k-n} \curvearrowright \mathbb{C}^n \times T^{k-n}$,
- $ightharpoonup X^{n+k}/T^k$ is homeomorphic to a simple polytope P^n as manifold with corners.

Two extreme cases:

```
k = n, {quasitoric manifolds} ( \supset {symplectic toric manifolds} )
```

Two extreme cases:

$$m{k}=m{n}, \ \{ \mbox{quasitoric manifolds} \} \ \big(\supset \{ \mbox{symplectic toric manifolds} \} \ m{k}=m{m}$$
 (1) if $\lambda\colon \mathcal{F}(Q^n) \to \mathbb{Z}^m$ is given by $F_i \mapsto e_i,$
$$X^{n+m} = \mathcal{Z}_{Q^n}.$$

Two extreme cases:

$$k = n$$
, {quasitoric manifolds} (\supset {symplectic toric manifolds}) $k = m$

(1) if
$$\lambda \colon \mathcal{F}(Q^n) \to \mathbb{Z}^m$$
 is given by $F_i \mapsto e_i$,

$$X^{n+m} = \mathcal{Z}_{Q^n}.$$

(2) if
$$Q^n = \Delta^n$$
 and $\lambda \colon \mathcal{F}(\Delta^n) \to \mathbb{Z}^{n+1}$ is given by
$$\begin{cases} \lambda(F_i) = e_i & i = 1, \dots, n \\ \lambda(F_{n+1}) = (-q_1, \dots, -q_n, p) & \gcd(q_1, p) = \dots = \gcd(q_n, p) = 1, \end{cases}$$
$$X^{2n+1} = L(p; q_1, \dots, q_n).$$

Two extreme cases:

$$k = n$$
, {quasitoric manifolds} (\supset {symplectic toric manifolds}) $k = m$

(1) if
$$\lambda\colon \mathcal{F}(Q^n)\to \mathbb{Z}^m$$
 is given by $F_i\mapsto e_i$,
$$X^{n+m}=\mathcal{Z}_{Q^n}.$$

(2) if
$$Q^n=\Delta^n$$
 and $\lambda\colon \mathcal{F}(\Delta^n)\to\mathbb{Z}^{n+1}$ is given by
$$\begin{cases} \lambda(F_i)=e_i & i=1,\dots,n\\ \lambda(F_{n+1})=(-q_1,\dots,-q_n,p) & \gcd(q_1,p)=\dots=\gcd(q_n,p)=1,\\ X^{2n+1}=L(p;q_1,\dots,q_n). \end{cases}$$

What else..?

k = n + 1, {topological contact toric manfiolds}

Two extreme cases:

$$k = n$$
, {quasitoric manifolds} (\supset {symplectic toric manifolds}) $k = m$

(1) if
$$\lambda\colon \mathcal{F}(Q^n)\to \mathbb{Z}^m$$
 is given by $F_i\mapsto e_i$,
$$X^{n+m}=\mathcal{Z}_{Q^n}.$$

(2) if
$$Q^n=\Delta^n$$
 and $\lambda\colon \mathcal{F}(\Delta^n)\to \mathbb{Z}^{n+1}$ is given by
$$\begin{cases} \lambda(F_i)=e_i & i=1,\dots,n\\ \lambda(F_{n+1})=(-q_1,\dots,-q_n,p) & \gcd(q_1,p)=\dots=\gcd(q_n,p)=1,\\ X^{2n+1}=L(p;q_1,\dots,q_n). \end{cases}$$

What else ?

```
k = n + 1, {topological contact toric manfiolds} (\supset {good contact toric manifolds} ).
```

Two extreme cases:

$$X^{n+m} = \mathcal{Z}_{Q^n}.$$

(2) if
$$Q^n = \Delta^n$$
 and $\lambda \colon \mathcal{F}(\Delta^n) \to \mathbb{Z}^{n+1}$ is given by
$$\begin{cases} \lambda(F_i) = e_i & i = 1, \dots, n \\ \lambda(F_{n+1}) = (-q_1, \dots, -q_n, p) & \gcd(q_1, p) = \dots = \gcd(q_n, p) = 1, \end{cases}$$
$$X^{2n+1} = L(p; q_1, \dots, q_n).$$

What else..?

$$k=n+1$$
, {topological contact toric manfiolds} (\supset {good contact toric manifolds}).

k = n + 2, hyperplane cut of t.c.t.m.

6/10

Contact toric manifolds

Definition (Conact toric manifold)

A (2n+1)-dimensional contact manifold M with an effective T^{n+1} -action preserving the contact structure.

Contact toric manifolds

Definition (Conact toric manifold)

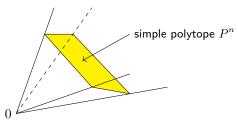
A (2n+1)-dimensional contact manifold M with an effective T^{n+1} -action preserving the contact structure.

Theorem [Lerman, 2002] The classification of c.c.c.t.

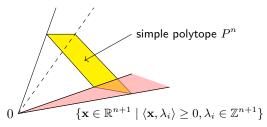
	$T^{n+1} \curvearrowright M$ freely	$T^{n+1} \curvearrowright M$ not freely
$\dim M = 3$	T^3	Lens space
$\dim M > 3$	Principal T^{n+1} -bundle over S^n	Classified by moment cone.

- (M, α) : contact G-manifold,
- $(M \times \mathbb{R}, d(e^t \alpha))$: symplectization of (M, α) ,
- ▶ $G \curvearrowright M \times \mathbb{R}$, (trivially on \mathbb{R} .)
- $lackbox{ }\Phi\colon M imes\mathbb{R} o\mathfrak{g}^*$ moment map.

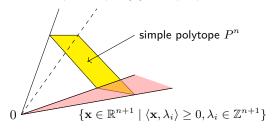
- (M, α) : contact G-manifold,
- $(M \times \mathbb{R}, d(e^t \alpha))$: symplectization of (M, α) ,
- ▶ $G \curvearrowright M \times \mathbb{R}$, (trivially on \mathbb{R} .)
- $lackbox{\Phi} \colon M imes \mathbb{R} o \mathfrak{g}^*$ moment map.
- ▶ When $G = T^{n+1}$, $\Phi(M \times \mathbb{R}) \cup \{0\} = C(P^n)$ such that...



- (M, α) : contact G-manifold,
- $(M \times \mathbb{R}, d(e^t \alpha))$: symplectization of (M, α) ,
- ▶ $G \curvearrowright M \times \mathbb{R}$, (trivially on \mathbb{R} .)
- $lackbox{\Phi} \colon M imes \mathbb{R} o \mathfrak{g}^*$ moment map.
- ▶ When $G = T^{n+1}$, $\Phi(M \times \mathbb{R}) \cup \{0\} = C(P^n)$ such that...

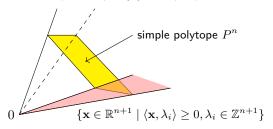


- (M, α) : contact G-manifold,
- $(M \times \mathbb{R}, d(e^t \alpha))$: symplectization of (M, α) ,
- ▶ $G \curvearrowright M \times \mathbb{R}$, (trivially on \mathbb{R} .)
- $lackbox{\Phi} \colon M \times \mathbb{R} \to \mathfrak{g}^*$ moment map.
- ▶ When $G = T^{n+1}$, $\Phi(M \times \mathbb{R}) \cup \{0\} = C(P^n)$ such that...



▶ $\operatorname{span}_{\mathbb{Z}}\{\lambda_{i_1},\ldots,\lambda_{i_k}\}$ is a direct summand of \mathbb{Z}^{n+1} , whenever $F_{i_1}\cap\cdots\cap F_{i_k}\neq\emptyset$

- (M, α) : contact G-manifold,
- $(M \times \mathbb{R}, d(e^t \alpha))$: symplectization of (M, α) ,
- ▶ $G \curvearrowright M \times \mathbb{R}$, (trivially on \mathbb{R} .)
- $lackbox{\Phi} \colon M \times \mathbb{R} \to \mathfrak{g}^*$ moment map.
- ▶ When $G = T^{n+1}$, $\Phi(M \times \mathbb{R}) \cup \{0\} = C(P^n)$ such that...



- ▶ $\operatorname{span}_{\mathbb{Z}}\{\lambda_{i_1},\ldots,\lambda_{i_k}\}$ is a direct summand of \mathbb{Z}^{n+1} , whenever $F_{i_1}\cap\cdots\cap F_{i_k}\neq\emptyset$
- ▶ $M \cong P^n \times T^{n+1}/_{\sim}$, (T^{n+1} -equivariantly homeomorphic.)

Answer for the equivariant cohomological rigidity

For
$$T^{n+k} \curvearrowright X_1^{n+k}$$
 and $T^{n+k} \curvearrowright X_2^{n+k}$,

(1) When k = n:

Theorem (Masuda, 2008)

 X_1, X_2 : quasitoric manifolds.

 $H^*_{T^n}(X_1)\cong H^*_{T^n}(X_2)$ as $H^*(BT^n)$ -alg. iff $X_1\cong X_2$ equiv. homeo.

Answer for the equivariant cohomological rigidity

For
$$T^{n+k} \curvearrowright X_1^{n+k}$$
 and $T^{n+k} \curvearrowright X_2^{n+k}$,

(1) When k = n:

Theorem (Masuda, 2008)

 X_1, X_2 : quasitoric manifolds.

$$H^*_{T^n}(X_1)\cong H^*_{T^n}(X_2)$$
 as $H^*(BT^n)$ -alg. iff $X_1\cong X_2$ equiv. homeo.

(2) When k = m and $\lambda \colon \mathcal{F}(Q) \to \mathbb{Z}^m$ is given by $F_i \mapsto e_i$:

Theorem (Davis-Januszkiewicz, 1991)

$$H^*_{T^m}(\mathcal{Z}_Q) \cong \mathrm{SR}[Q]$$
 ring isom.

(3) When k = n + 1,

Theorem (Sarkar-S, 2019, arXiv)

Let X_1 and X_2 be two topological contact toric manifolds. Then,

$$H^*_{T^{n+1}}(X_1)\cong H^*_{T^{n+1}}(X_2)$$
 as $H^*(BT^{n+1})$ -alg. iff $X_1\cong X_2$ eq. homeo.

(3) When k = n + 1,

Theorem (Sarkar-S, 2019, arXiv)

Let X_1 and X_2 be two topological contact toric manifolds. Then,

$$H^*_{T^{n+1}}(X_1)\cong H^*_{T^{n+1}}(X_2)$$
 as $H^*(BT^{n+1})$ -alg. iff $X_1\cong X_2$ eq. homeo.

Remark

Similar arguments may apply to the case when $k \geq n+1$, which (probably) gives...

$$\label{eq:hammon} ``H^*_{T^k}(X_1^{n+k})\cong H^*_{T^k}(X_2^{n+k}) \text{ as } H^*(BT^k)\text{-alg.}$$
 if and only if $X_1^{n+k}\cong X_2^{n+k}$ equiv. homeo. "

(3) When k = n + 1,

Theorem (Sarkar-S, 2019, arXiv)

Let X_1 and X_2 be two topological contact toric manifolds. Then,

$$H_{T^{n+1}}^*(X_1) \cong H_{T^{n+1}}^*(X_2)$$
 as $H^*(BT^{n+1})$ -alg. iff $X_1 \cong X_2$ eq. homeo.

Remark

Similar arguments may apply to the case when $k \geq n+1$, which (probably) gives...

$$\label{eq:hammon} ``H^*_{T^k}(X_1^{n+k})\cong H^*_{T^k}(X_2^{n+k}) \text{ as } H^*(BT^k)\text{-alg.}$$
 if and only if $X_1^{n+k}\cong X_2^{n+k}$ equiv. homeo. "

«Thank you for your attention.»