On generalized Bott towers and twisted cubes

Yuki Sugiyama

Chuo University

Toric Topology 2019 in Okayama
Workshop for Young Researchers
November 22, 2019

Generalized Bott tower

$B_{0}:=\{$ a point $\}$.
$\gamma_{1}^{(k)} \rightarrow B_{0}$: holomorphic line bundles over B_{0} for $k=1, \ldots, n_{1}$.
$\rightarrow B_{1}:=\mathbb{P}\left(\underline{\mathbb{C}} \oplus \gamma_{1}^{(1)} \oplus \cdots \oplus \gamma_{1}^{\left(n_{1}\right)}\right)=\mathbb{C} P^{n_{1}}$.
$\gamma_{2}^{(k)} \rightarrow B_{1}$: holomorphic line bundles over B_{1} for $k=1, \ldots, n_{2}$. $\rightarrow B_{2}:=\mathbb{P}\left(\underline{\mathbb{C}} \oplus \gamma_{2}^{(1)} \oplus \cdots \oplus \gamma_{2}^{\left(n_{2}\right)}\right):$ a bundle over B_{1} with a fiber $\mathbb{C} P^{n_{2}}$.

Definition

Repeating this process m times, we obtain a sequence as follows:

$$
B_{m} \xrightarrow{\pi_{m}} B_{m-1} \xrightarrow{\pi_{m-1}} \cdots \xrightarrow{\pi_{3}} B_{2} \xrightarrow{\pi_{2}} B_{1} \xrightarrow{\pi_{1}} B_{0}=\{\text { a point }\},
$$

where the fiber of $\pi_{j}: B_{j} \rightarrow B_{j-1}$ for $j=1, \ldots, m$ is $\mathbb{C} P^{n_{j}}$. This sequence is called a generalized Bott tower of height m, and B_{j} is called a j-stage generalized Bott manifold.

Generalized Bott tower

Remark

When $n_{j}=1$ for all j, the above sequence is called the Bott tower.
We get a m-stage generalized Bott manifold B_{m} from any collection of integers $\left\{c_{i, j}^{(k)}\right\}$:

$$
B_{m}=\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}\right) / G
$$

where $G=\left(\mathbb{C}^{\times}\right)^{m}$, and its i-th factor acts on the right by

$$
\begin{aligned}
& \left(z_{1,0}, \ldots, z_{m, n_{m}}\right) \cdot a_{i} \\
& \quad=\left(z_{1,0}, \ldots, z_{i-1, n_{i-1}}, z_{i, 0} a_{i}, z_{i, 1} a_{i}, \ldots, z_{i, n_{i}} a_{i}\right. \\
& \left.\quad \ldots, z_{j, 0}, a_{i}^{c_{i, j}^{(1)}} z_{j, 1}, \ldots, a_{i, j}^{c_{i, j}^{\left(n_{j}\right)}} z_{j, n_{j}}, \ldots\right)
\end{aligned}
$$

Generalized Bott tower

We can construct a line bundle over B_{m} from the integers $\left\{l_{j}\right\}$ by

$$
\mathbf{L}=\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}\right) \times_{G} \mathbb{C},
$$

where the i-th factor of $G=\left(\mathbb{C}^{\times}\right)^{m}$ acts by

$$
\left(\left(z_{1,0}, \ldots, z_{m, n_{m}}\right), v\right) \cdot a_{i}=\left(\left(z_{1,0}, \ldots, z_{m, n_{m}}\right) \cdot a_{i}, a_{i}^{l_{i}} v\right)
$$

Twisted cube for generalized Bott tower

$$
\begin{aligned}
A_{i}(x) & =A_{i}\left(x_{i+1,1}, \ldots, x_{m, n_{m}}\right) \\
& := \begin{cases}l_{m} & (i=m) \\
l_{i}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} c_{i, j}^{(k)} x_{j, k} & (1 \leq i \leq m-1) .\end{cases}
\end{aligned}
$$

$N:=\sum_{j=1}^{m} n_{j}$.
$C:=\left\{\begin{array}{l}x=\left(x_{1,1}, \ldots, x_{m, n_{m}}\right) \in \mathbb{R}^{N} \left\lvert\, \begin{array}{l}\text { for all } 1 \leq i \leq m, \\ A_{i}(x) \leq \sum_{k=1}^{n_{i}} x_{i, k} \leq 0, x_{i, k} \leq 0 \\ \text { or } 0<\sum_{k=1}^{n_{i}} x_{i, k}<A_{i}(x), x_{i, k}>0\end{array}\right.\end{array}\right\}$
C is called a twisted cube for generalized Bott tower. When $n_{j}=1$ for $j=1, \ldots, m, C$ is the twisted cube for the Bott tower which was defined by M. Grossberg and Y. Karshon (1994).

Twisted cube for generalized Bott tower

$$
\operatorname{sgn}\left(x_{j, k}\right):= \begin{cases}-1 & \left(x_{j, k} \leq 0\right) \\ 1 & \left(x_{j, k}>0\right)\end{cases}
$$

The function $\rho_{0}: \mathbb{R}^{N} \rightarrow\{-1,0,1\}$ is defined by

$$
\rho_{0}(x)= \begin{cases}(-1)^{N} \operatorname{sgn}\left(x_{1,1}\right) \cdots \operatorname{sgn}\left(x_{m, n_{m}}\right) & \text { if } x \in C \\ 0 & \text { elsewhere }\end{cases}
$$

This function is called the density function of the twisted cube.

Example of the twisted cube (1)

$$
\begin{aligned}
& m=3, n_{j}=1 \text { for } j=1,2,3 \\
& l_{1}=1, l_{2}=1, l_{3}=2, \\
& c_{1,2}^{(1)}=-1, c_{1,3}^{(1)}=2, c_{2,3}^{(1)}=-1 \\
& -1+x_{3,1} \leq x_{2,1} \leq 0 \\
& -1+x_{2,1}-2 x_{3,1} \leq x_{1,1} \leq 0 \text { or } 0<x_{1,1}<-1+x_{2,1}-2 x_{3,1}
\end{aligned} ~\left\{\begin{array}{l}
-2 \leq x_{3,1} \leq 0 \\
-1
\end{array}\right.
$$

- \cdots the lattice point of $\rho_{0}=1$
- \cdots the lattice point of $\rho_{0}=-1$
- \cdots not contained in C_{1}

Example of the twisted cube (2)

$$
\begin{aligned}
& m=2, n_{1}=1, n_{2}=2 \\
& l_{1}=2, l_{2}=2 \\
& c_{1,2}^{(1)}=1, c_{1,2}^{(2)}=2
\end{aligned}\left\{\begin{array}{l}
-2 \leq x_{2,1}+x_{2,2} \leq 0, x_{2,1}, x_{2,2} \leq 0 \\
-2-x_{2,1}-2 x_{2,2} \leq x_{1,1} \leq 0 \text { or } 0<x_{1,1}<-2-x_{2,1}-2 x_{2,2}
\end{array}\right.
$$

- \cdots the lattice point of $\rho_{0}=1$
- \cdots the lattice point of $\rho_{0}=-1$
- \cdots not contained in C_{2}

Multiplicity function of virtual character

Now, consider the torus action as follows:
$T=T^{N+1}=S^{1} \times \cdots \times S^{1} \curvearrowright \mathbf{L}$:
$\left(t_{1,1}, \ldots, t_{m, n_{m}}, t_{m+1}\right) \cdot\left[z_{1,0}, \ldots, z_{m, n_{m}}, v\right]=$
$\left[z_{1,0}, t_{1,1} z_{1,1}, \ldots, t_{1, n_{1}} z_{1, n_{1}}, \ldots, z_{m, 0}, t_{m, 1} z_{m, 1}, \ldots, t_{m, n_{m}} z_{m, n_{m}}, t_{m+1} v\right]$.
Let $\mathcal{O}_{\mathbf{L}}$ be the sheaf of holomorphic sections.
The virtual character is the function $\chi: T \rightarrow \mathbb{C}$ which is given by

$$
\chi=\sum(-1)^{i} \chi^{i}
$$

where $\chi^{i}(a)=\operatorname{trace}\left\{a: H^{i}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right) \rightarrow H^{i}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)\right\}$ for $a \in T$. Every μ in the integral weight lattice $l^{*} \subset i$ t * defines a homomorphism $\lambda^{\mu}: T \rightarrow S^{1}$. We can write

$$
\chi=\sum_{\mu \in l^{*}} m_{\mu} \lambda^{\mu}
$$

The coefficients are given by a function mult : $l^{*} \rightarrow \mathbb{Z}$, sending $\mu \mapsto m_{\mu}$, called the multiplicity function.

Multiplicity function of virtual character

Theorem

Fix integers $\left\{c_{i, j}^{(k)}\right\}$ and $\left\{l_{j}\right\}$. Let $\mathbf{L} \rightarrow B_{m}$ be the corresponding line bundle over a generalized Bott manifold. Let $\rho_{0}: \mathbb{R}^{N} \rightarrow\{-1,0,1\}$ be the density function of the twisted cube which is determined by these integers. Consider the above torus action of T. Then the multiplicity function for $l^{*}\left(\cong \mathbb{Z}^{N}\right) \times \mathbb{Z}$ is given by

$$
\operatorname{mult}(\alpha, k)= \begin{cases}\rho_{0}(\alpha) & (k=1) \\ 0 & (k \neq 1)\end{cases}
$$

Remark

When B_{m} is a Bott manifold, the above theorem was proved by M . Grossberg and Y. Karshon (1994).

Example

Now, consider the twisted cube C_{1}.
The blue dots and the red dots correspond to the integral weight lattice μ. Then the virtual character is

$$
\begin{aligned}
\chi= & \lambda^{e_{4}}+\lambda^{e_{4}-e_{1,1}}+\lambda^{e_{4}-e_{2,1}}+\lambda^{e_{4}-e_{2,1}-e_{1,1}}+\lambda^{e_{4}-e_{2,1}-2 e_{1,1}} \\
& +\lambda^{e_{4}-e_{3,1}}+\lambda^{e_{4}-e_{3,1}-e_{2,1}}+\lambda^{e_{4}-e_{3,1}-e_{2,1}-e_{1,1}}-\lambda^{e_{4}-2 e_{3,1}+e_{1,1}} \\
& -\lambda^{e_{4}-2 e_{3,1}+2 e_{1,1}}-\lambda^{e_{4}-e_{3,1}-e_{2,1}+e_{1,1}}+\lambda^{e_{4}-2 e_{3,1}-3 e_{2,1}}
\end{aligned}
$$

where $\left\{e_{1,1}, e_{2,1}, e_{3,1}, e_{4}\right\}$ is the standard basis of \mathbb{R}^{4}.

Example

$L(C)$: the number of the lattice points with sign of twisted cube C $=$ the number of the terms λ^{μ} with multiplicity in the virtual character χ. When $C=C_{1}$,

$$
L\left(C_{1}\right)=9+(-3)=6 .
$$

We hope to compute the number of lattice points of a twisted cube for a (generalized) Bott tower in general case.

References

[GK] M. Grossberg, and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke math. J., 76(1) (1994), 23-58.

