Algebraic properties of the equivariant cohomology rings of moment-angle complexes.

Zeinikesheva I.K.

Moscow State University

Toric Topology 2019 in Okayama 18-22 November 2019

1 / 10

 \mathcal{K} - simplicial complex on the set $[m] = \{1, \dots, m\}$. $I = \{i_1, \dots, i_k\} \in \mathcal{K}$ - simplex.

For each simplex *I* define the set:

$$(D^2, S^1)^I = \{(x_1, \ldots, x_m) \in (D^2)^m : x_i \in S^1 \text{ when } i \notin I\} \cong \prod_{i \in I} D^2 \times \prod_{i \notin I} S^1.$$

The moment-angle complex is the polyhedral product

$$\mathcal{Z}_{\mathcal{K}} := (D^2, S^1)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (D^2, S^1)^I \subset (D^2)^m$$

Example

$$\mathcal{K} = \bullet \bullet$$
 (2 points), then $\mathcal{Z}_{\mathcal{K}} = D^2 \times S^1 \cup S^1 \times D^2 \cong S^3$.

 $\mathcal{K} = \partial \Delta^2$, then $\mathcal{Z}_{\mathcal{K}} = (D^2 \times D^2 \times S^1) \cup (D^2 \times S^1 \times D^2) \cup (S^1 \times D^2 \times D^2) \cong S^5.$

The face ring of \mathcal{K} (the Stanley–Reisner ring)

$$\mathbb{Z}[\mathcal{K}] := \mathbb{Z}[v_1, \ldots, v_m] / (v_{i_1} \cdots v_{i_k} = 0 : \{i_1, \ldots, i_k\} \notin \mathcal{K})$$

where deg $v_i = 2$.

э

Theorem (Buchstaber, Panov)

There are isomorphisms of graded commutative algebras

$$\begin{aligned} H^*(\mathcal{Z}_{\mathcal{K}}) &\cong \operatorname{Tor}_{\mathbb{Z}[v_1, \dots, v_m]}(\mathbb{Z}[\mathcal{K}], \mathbb{Z}) \\ &\cong H(\Lambda[u_1, \dots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d) \\ &\cong \bigoplus_{I \subset [m]} \widetilde{H}^*(\mathcal{K}_I) \qquad \qquad \mathcal{K}_I = \mathcal{K}|_I \end{aligned}$$

Here, the second row is the cohomology of the differential bigraded algebra with deg $u_i = 1$, deg $v_i = 2$, $du_i = v_i$, $dv_i = 0$. In the third row, $\widetilde{H}^*(\mathcal{K}_I)$ denotes the reduced simplicial cohomology of the full subcomplex $\mathcal{K}_I \subset \mathcal{K}$ (the restriction of \mathcal{K} to $I \subset [m]$).

The equivariant cohomology ring of a moment-angle complex

There is an action of the $T^m = \{(t_1, \ldots, t_m) \in \mathbb{C}^m : |t_i| = 1, i = 1, \ldots, m\}$ on $\mathcal{Z}_{\mathcal{K}}$, obtained by the restriction of the coordinatewise action of T^m on \mathbb{C}^m . We consider the action of the *i*th coordinate circle $S_i^1 \subset T^m$ on $\mathcal{Z}_{\mathcal{K}}$ and the corresponding equivariant cohomomology ring $H^*_{S_i^1}(\mathcal{Z}_{\mathcal{K}})$. We have a ring isomorphism:

Theorem (Masuda, Panov)

$$\begin{aligned} & H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}}) \cong \mathit{Tor}_{\mathbb{Z}[\upsilon_1,\ldots,\upsilon_m]}(\mathbb{Z}[\mathcal{K}],\mathbb{Z}[\upsilon_i]) \\ & \cong \mathit{H}(\Lambda[u_1,\ldots,\hat{u}_i,\ldots,u_m]\otimes\mathbb{Z}[\mathcal{K}],d) \end{aligned}$$

где $du_j = v_j, dv_j = 0.$

18-22 Nov 2019 5 / 10

We consider the equivariant cohomology ring $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$. The equivariant cohomology $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$ may be not free as a module over $\mathbb{Z}[v_i]$. We have:

Example

Let K be an m-cycle (the boundary of an m-gon), with vertices numbered counter-clockwise.

When m = 3 or m = 4, $H^*_{S^1}(\mathcal{Z}_{\mathcal{K}})$ is free over $\mathbb{Z}[v_i]$ for all *i*.

For $m \ge 5$: the cohomology class in $H^3_{S^1_m}(\mathcal{Z}_{\mathcal{K}})$ represented by the cocycle $u_1v_3 \in \Lambda[u_1, \ldots, u_{m-1}] \otimes \mathbb{Z}[\mathcal{K}]$ is a $\mathbb{Z}[v_m]$ -torsion element. Indeed, $v_m \cdot u_1v_3 = u_1(v_3v_m) = 0$, as $v_3v_m = 0$ in $\mathbb{Z}[\mathcal{K}]$ for $m \ge 5$. Hence, $H^*_{S^1}(\mathcal{Z}_{\mathcal{K}})$ is not free as a $\mathbb{Z}[v_m]$ -module. So, for what type of \mathcal{K} the equivariant cohomology ring $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$ is free as a module over $\mathbb{Z}[v_i]$?

Lemma

For simplicial complex \mathcal{K} such as

$$\partial \Delta^{k_1} * \cdots * \partial \Delta^{k_p} * \Delta^l, l \ge -1, k_i \ge 0$$

the equivariant cohomology ring $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$ is a free module over $\mathbb{Z}[v_i]$ for all *i*.

Lemma

Let \mathcal{K} be such simplicial complex for which in the set of missing faces $MF(\mathcal{K})$ there are such faces I_1, I_2 , so that $I_1 \setminus I_2 = \{i\}$. Then $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$ is not free $\mathbb{Z}[v_i]$ -module.

Proof

Let I_1, I_2 be such faces in $MF(\mathcal{K})$ so that $I_1 \setminus I_2 = \{i\}$. Let us consider cohomology class $[u_s v_{I_2 \setminus s}] \in H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$, where $s \neq i$. We have

$$\upsilon_i \cdot u_s \upsilon_{l_2 \setminus s} = u_s \upsilon_i \upsilon_{l_2 \setminus s} = u_s \upsilon_i \upsilon_{l_1 \cap l_2} \upsilon_{l_2 \setminus (s, l_1 \cap l_2)} = 0,$$

as $v_i v_{I_1 \cap I_2} = v_{I_1} = 0$ in $\mathbb{Z}[\mathcal{K}]$.

Criterion for flag complexes

Flag complex is a simplicial complex in which any set of vertices pairwise connected by edges forms a simplex.

Theorem

Let \mathcal{K} be a flag complex. Then the next conditions are equivalent: a) $\mathcal{K} = \partial \Delta^{k_1} * \cdots * \partial \Delta^{k_p} * \Delta^l, l \ge -1, k_j = 1 \quad \forall j$ b) $H^*_{S^1_i}(\mathcal{Z}_{\mathcal{K}})$ is a free module over $\mathbb{Z}[v_i]$ for all i

Proof

Implication a) \Rightarrow b) is a lemma 1. Implication b) \Rightarrow a) follows from lemma 2. Indeed, if $H_{S^1}^*(\mathcal{Z}_{\mathcal{K}})$ is a free module, then in $MF(\mathcal{K})$ there are no such

 I_k, I_l , that $I_k \setminus I_l = \{i\}$. For the flag complex \mathcal{K} all $I_k, I_l \in MF(\mathcal{K})$ consist of two vertices. It means that $I_k \cap I_l = \emptyset \forall k, l$. This is equivalent to $\mathcal{K} = \partial \Delta^{k_1} * \cdots * \partial \Delta^{k_p} * \Delta^l$.

< /型 → < Ξ

- Victor Buchstaber and Taras Panov. *Toric Topology*. Mathematical Surveys and Monographs, 204, Amer. Math. Soc., Providence, RI, 2015.
- Mikiya Masuda, Taras Panov. *Cohomological rigidity of moment-angle manifolds*, preprint.

10 / 10