Higher Whitehead products and L_∞ structures in toric topology

Elizaveta Zhuravleva

Moscow State University

Okayama University of Science, 22.11.2019

We consider the spaces $\mathcal{Z}_{\mathcal{K}}$ and $(\mathbb{C}P^{\infty})^{\mathcal{K}}$. Canononical inclusions: $\mu_i : S^2 \longrightarrow \mathbb{C}P^{\infty} \longrightarrow (\mathbb{C}P^{\infty})^{\vee m} \longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}}$, $1 \leq i \leq m$.

Definition of Whitehead products

Higher k-fold Whitehead product in $(\mathbb{C}P^{\infty})^{\mathcal{K}}$ is the element in $\pi_{2k-1}\left((\mathbb{C}P^{\infty})^{\mathcal{K}}\right)$, defined as:

$$\left[\mu_{i_1},\ldots,\mu_{i_k}\right]_{\mathsf{w}}:S^{2k-1}\stackrel{\mathsf{w}}{\longrightarrow}\left(S^2\right)^{\partial\Delta}\longrightarrow\left(\mathbb{C}\mathsf{P}^\infty\right)^{\partial\Delta}\longrightarrow\left(\mathbb{C}\mathsf{P}^\infty\right)^{\mathcal{K}},$$

Note

The Higher Whitehead product for an arbitrary topological space X is the set in $\pi_{2k-1}(X)$, not just an element.

The problem is how to describe the relations in $\pi_*\left(\Omega\left(\mathbb{C}P^\infty\right)^{\mathcal{K}}\right)$ and in Pontryagin algebra $H_*\left(\Omega\left(\mathbb{C}P^\infty\right)^{\mathcal{K}}\right)$. It is well known that the (2-fold) Whitehead product satisfies the Jacobi identity on $\pi_*(\Omega(X))$.

Gererally, it is unknown what relations higher Whitehead products satisfy.

According to (Quillen, 1969), we can construct DGL L_X for any topological simply connected space X.

The reduced DGL L is a *model* of X if there is a sequence of DGL quasi-isomorphisms between L and L_X . For every model, we have

 $H(L) \cong \pi_*(\Omega X) \otimes \mathbb{Q}$

We consider the models of the form $L = (\mathbb{L}(V), \partial)$.

Topological higher Whitehead product

$$[x_1,\ldots,x_k]_W=\{f\circ\omega|f:T
ightarrow X ext{ is an extension of }g\}.$$

Algebraic higher Whitehead product

$$[x_1,\ldots,x_k]_W = \{\overline{\phi(\omega)} | \phi : (\mathbb{L}(U),\partial) o L ext{ is an extension of } arphi \}$$

$$(\mathbb{L}(u_1,\ldots,u_k),0) \xrightarrow{\varphi} L .$$

$$(\mathbb{L}(U),\delta)$$

The approaches are equivalent.

Elizaveta Zhuravleva (MSU)

L_∞ algebra

Definition

An L_{∞} algebra is a graded vector space L together with linear maps $\ell_k : L^{\otimes k} \to L$ of degree k - 2, $k \ge 1$, satisfying the following two conditions:

(i) For every permutation σ

$$\ell_k\left(x_{\sigma(1)}\ldots x_{\sigma(k)}\right) = sgn(\sigma)\varepsilon(\sigma)\ell_k\left(x_1\ldots x_k\right).$$

(ii) The generalized Jacobi identities hold:

$$\sum_{i+j=n+1}\sum_{\sigma\in S(i,n-i)}\pm \ell_j\left(\ell_i\left(x_{\sigma(1)}\cdots x_{\sigma(i)}\right)x_{\sigma(i+1)}\cdots x_{\sigma(n)}\right)=0,$$

where S(i, n-i) denotes the set of (i, n-i) shuffles.

The notion of L_{∞} algebra generalizes the notion of DGL.

Elizaveta Zhuravleva (MSU)

Higher Whitehead pr. and L_∞ str.

The notion of A_{∞} algebra generalizes the notion of DGA.

Theorem (Kadeishvili, 1980)

Given a DGA A there is a A_{∞} structure on its cohomology H(A), for which H(A) and A are quasi-isomorphic A_{∞} algebras. The following holds: $m_1 = 0, m_2$ induced from the multiplication in A.

There is an L_{∞} analog of this theorem:

Theorem (1)

Given a DGL L there is a L_{∞} structure on its cohomology H(L), for which H(L) and L are quasi-isomorphic L_{∞} algebras. The following holds: $\ell_1 = 0, \ell_2$ induced from Lie brackets in L.

Theorem (2)

Let X be a topological space, let L be its Quillen model. Let $x \in [x_1, \ldots, x_k]_W$, $k \ge 3$ be an element from higher Whitehead product set.

Then, there exists an L_{∞} structure on $H(L) = \pi_*(\Omega X) \otimes \mathbb{Q}$, for which

$$x = \varepsilon \ell_k \left(x_1 \otimes \ldots \otimes x_k \right),$$

where $\varepsilon = (-1)^{1+|x_{k-1}|+|x_{k-3}|+\cdots}$.

The constructed L_{∞} structure recovers the element *x*.

The case of $(\mathbb{C}P^{\infty})^{\mathcal{K}}$

In this case, we have the canonical choice of the elements $[\mu_{i_1}, \ldots, \mu_{i_k}]_W$. Let us consider the example. Let the elements $[\mu_1, \mu_2, \mu_3]_W$ and $[\mu_2, \mu_3, \mu_4]_W$ be defined. The diagram is commutative:

Thus, the diagram consisting of DG Lie algebras is also commutative.

$$\begin{array}{cccc} \left(\mathbb{L}_{5^{2}\times5^{2}},\partial\right)_{2,3} & \xrightarrow{i_{2,3}} & \left(\mathbb{L}_{T(5^{2},3)},\partial\right)_{1,2,3} \\ & & \downarrow^{i_{1,2}} & \downarrow^{\phi_{1,2,3}} & , \\ \left(\mathbb{L}_{T(5^{2},3)},\partial\right)_{2,3,4} & \xrightarrow{\phi_{2,3,4}} & L \end{array}$$

$$(2)$$

Theorem (3)

There exists an L_{∞} structure on $H(L) = \pi_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) \otimes \mathbb{Q}$ such that for any well-defined canonical higher Whitehead product $[\mu_{i_1}, \ldots, \mu_{i_k}]_W$, $k \ge 3$ we have

$$\ell_k(\mu_{i_1}\otimes\cdots\otimes\mu_{i_k})=(-1)^{\left[rac{k}{2}
ight]+1}\left[\mu_{i_1},\ldots,\mu_{i_k}
ight]_W.$$

This particular L_∞ structure recovers all Whitehead products of this type.

Corollary

Let us consider the following homotopy classes:

$$\mu_{i_1}, \ldots \mu_{i_k} \in \pi_1(\Omega(\mathbb{C}P^\infty)^{\mathcal{K}}) \otimes \mathbb{Q}, i_1 < \cdots < i_k.$$

Let the higher Whitehead products be well-defined:

$$\left[\mu_{i_1},\ldots,\widehat{\mu_{i_j}},\ldots\mu_{i_k}\right]_W, j=1,\ldots k.$$

Then the identity holds:

$$\sum_{j=1}^{k} \left[\left[\mu_{i_1}, \ldots, \widehat{\mu_{i_j}}, \ldots \mu_{i_k} \right]_{k-1}, \mu_{i_j} \right]_2 = 0.$$

Okayama, 22.11.2019