
Hypertorus graphs and graph equivariant cohomologies

Shintarô KUROKI

Abstract. The purpose of this paper is to establish a new graph: a hypertorus
graph which is the analogue of the GKM-graph or the torus graph, and to study
a ring structure of its graph equivariant cohomology. A hypertorus graph is

a regular 2n-valent graph labeled by the dual of Lie algebra of the (n + 1)-
dimensional torus Tn × S1 encoding combinatorial informations about some
4n-dimensional manifold with Tn × S1-action. For instance, graphs induced
by hypertoric varieties or cotangent bundles of toric manifolds are hypertorus

graphs.

1. Introduction

Suppose a torus T acts on a space M such that the dimension of the 1-skelton
is 2. Here the 1-skelton of a T -manifold M is the set of points p ∈ M , where
dimTp ≥ dimT−1. From this 1-skelton, we can construct a graph Γ: the vertex set
VΓ = MT and two vertices are linked with an edge in Γ whenever the corresponding
fixed points on M are connected by an invariant sphere. In [GKM] Goresky,
Kottwitz and MacPherson showed that, for such manifold with some assumptions,
this 1-skeleton has the structure of a “labeled” graph (Γ, α) labeled by the weights
of the T -action on the tangent space TpM for p ∈ MT , and that the equivariant
cohomology ring of M (over the real number R) is isomorphic to the “cohomology
ring” of this graph (Γ, α). For example, 1-skeltons of 2n-dimensional non-singular
toric varieties (toric manifolds) with Tn-action satisfy this property.

Motivated by the above Goresky, Kottwitz and MacPherson’s theorem (we call
it the GKM theorem), in [GZ2], Guillemin and Zara introduced the GKM-graph
(Γ, α) and the cohomology ring H(Γ, α). If this GKM-graph (Γ, α) is associated
with some torus T -action on M , then its equivariant cohomology ring is isomorphic
to H(Γ, α) by the GKM theorem. So we can regard the GKM-graph as a gener-
alized object of a space with some torus action. The above Guillemin and Zara’s
research has been of independent combinatorial interest since the appearance of
their paper [GZ1] (1999), and they translated the important topological properties
of Hamiltonian T -actions on M into the languages of combinatorics and applied
the combinatorial theory.
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We can also define a “labeled graph” from the torus manifold, which is de-
fined by Hattori and Masuda in [HM] as the topological generalized object of the
non-singular toric variety in the algebraic geometry. The torus manifold is a 2n-
dimensional manifold with an effective Tn-action and finite fixed points, and torus
manifolds do not always have an almost complex structure (this part is the most
different part of the previous researches). Motivated by such torus manifold and
the GKM-graph, a torus graph Γ and its equivariant cohomology H∗

T (Γ) were de-
fined by Maeda, Masuda and Panov in [MMP], and they showed that H∗

T (Γ) is
isomorphic to the face ring associated with Γ which is the ring described by the
combinatorial data of Γ. According to [MP], if odd degree cohomologies of the
torus manifold are 0 then its equivariant cohomology ring (over the integer Z) is
isomorphic to H∗

T (Γ). Remark that GKM-graphs and torus graphs are different
graphs, but the intersection of the set of GKM-graphs and the set of torus graphs
include the set of graphs associated with toric manifolds.

On the other hand we can also define a labeled graph from the hypertoric vari-
ety. The hypertoric variety is the hyperKähler analogue of the toric variety, which
is defined, in [BD], by the hyperKähler quotient of a torus action on a quaternion
space. From this quotient, the hypertoric variety is a non-compact orbifold with
the natural Tn-action. Its ordinary cohomology and equivariant cohomology were
studied by Konno in [Ko1] and [Ko2]. According to Harada and Proudfoot in
[HP], this Tn-action can extend to Tn×S1-action and they studied about its equi-
variant cohomology. Its equivariant cohomology ring is described by the half space
arrangement induced by the hypertoric variety with Tn × S1-action. According to
Harada and Holm in [HH], from this Tn×S1-action we can define a labeled graph,
and they also define a “cohomology ring” of graph and study the correspondence
between generators of equivariant cohomology of the Tn × S1-action and elements
of a cohomology ring of graph.

Motivated by such hypertoric variety and the torus graph, in this paper, we
define a hypertorus graph G = (Γ, α, θ) and its graph equivariant cohomology
H∗

Tn×S1(G). The goal of this paper is to show the ring structure of H∗
Tn×S1(G) in

some case (Theorem 3.1). A hypertorus graph is a generalization of graphs which
appeared in [HH], and a remarkable difference of this graph and other graphs
(GKM-graphs and torus graphs) is that some hypertorus graphs have a leg which
is a half line from one vertex (see Figure 2). Because of the leg, we can define
the neighborhood of the subgraph in G and apply the main theorem (Theorem
3.1) to show the Mayer-Vietoris exact sequence holds for H∗

Tn×S1(G) in some case

(Theorem 4.1).
We now give a brief outline of the contents of this paper. In Section 2, we

give definitions of a hypertorus graph and its graph equivariant cohomology, and
also prepare to state the main theorem (Theorem 3.1). For the main theorem, we
need to prepare definitions of a hyperfacet which is some subgraph in a hypertorus
graph, a Thom class of a hyperfacet, and a ring Z[G] defined by some combinatorial
data of hyperfacets. In Section 3, we prove the main theorem. In order to prove it,
we divide the proof into two parts: the first part is to study an x-forgetful graph of
a hypertorus graph, and to show its graph equivariant cohomology; in the second
part, using a result of a graph equivariant cohomology of an x-forgetful graph, the
main theorem is proved. In Section 4, as an application of the main theorem, we
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prove that there exists the Mayer-Vietoris exact sequence on the graph equivariant
cohomology in some case (Theorem 4.1).

2. Definitions: hypertorus graph

The aim of this section is to define a hypertorus graph and its graph equivariant
cohomology. In order to state the main theorem in Section 3, we also define a
hyperfacet and a ring Z[G] in the last section (Section 2.3).

2.1. Notations. First we prepare some notations. In this paper Γ is a con-
nected graph which possibly has legs, where a leg means an out going half line from
one vertex (see the left graph in the Figure 1). Let VΓ be a set of vertices, EΓ a
set of edges, LΓ a set of legs in Γ, and EΓ = EΓ ∪ LΓ. Then Γ can be denoted by

Γ = (VΓ, EΓ).

In this paper we assume the number of VΓ and EΓ are finite.
Moreover we assume all edges and legs have an orientation (see Figure 1): each

edge e ∈ EΓ has two possible orientations, and we denote the opposite orientation
of the edge e = pq by ē = qp; each leg l ∈ LΓ has only one orientation which is
an out going direction from one vertex. We denote the initial vertex of e = pq by
i(e)(= p) and the terminal vertex by t(e)(= q), and remark that a leg l does not
have a terminal vertex but an initial vertex i(l). For a vertex p ∈ VΓ, we put the
set of all out going edges and legs from p ∈ VΓ by

EΓ
p = {ϵ ∈ EΓ | i(ϵ) = p},

and |EΓ
p | denotes the size of EΓ

p . In this paper we consider only a connected graph

Γ = (VΓ, EΓ) which satisfies |EΓ
p | = |EΓ

q | = m for all p, q ∈ VΓ. We call such graph
a (regular) m-valent graph. The following two figures are examples of our graphs.

Figure 1. These are examples of regular graphs with legs and
orientations. The left 2-valent graph has two legs, on the other
hand the right 3-valent graph has no legs. Remark all edges have
two orientations and all legs have only one orientation.

2.2. Hypertorus graph and Graph equivariant cohomology. We will
define a hypertorus graph in the first section 2.2.1, and the graph equivariant coho-
mology in the next section 2.2.2.
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2.2.1. Hypertorus graph. Let Γ = (VΓ, EΓ) be an m-valent graph. In order to
define a hypertorus graph, we will define a connection and an axial function.

Before we define a connection, we prepare the set θ = {θe | e ∈ EΓ} which is a
collection of bijective maps

θe : EΓ
p → EΓ

q

for all edges e = pq ∈ EΓ. Since Γ is an m-valent graph, we have |EΓ
p | = m = |EΓ

q |
for all p, q ∈ VΓ. Hence the bijective map θe always exists for all edges e ∈ EΓ.
A connection on Γ is the set θ = {θe| e ∈ EΓ} which satisfies the following two
conditions:

• θē = θ−1
e (θqp = θ−1

pq );
• θe(e) = ē (θpq(pq) = qp).

We can easily show that an m-valent graph Γ admits different ((m− 1)!)g connec-
tions, where g is the number of (unoriented) edges EΓ.

Next we define an axial function. In order to define it, we prepare some no-
tations. Let Tn be an n-dimensional torus, that is, an n-dimensional compact
commutative group. Tn is often denoted by T . In particular a 1-dimensional torus
is denoted by S1. Let t be a Lie algebra of T , tZ a lattice of t, and t∗ the dual
algebra of t. Hom(T, S1) means a set of all homomorphisms from the group T to
S1, and we know that it can be regarded as a lattice of the dual algebra t∗Z. More-
over we can identify t∗Z with H1(T ;Z) = H2(BT ;Z), where BT is the base space of
the universal principal T -bundle ET → BT . Therefore we have the identification
Hom(T, S1) = t∗Z = H2(BT ). An axial function

α : EΓ → Hom(T, S1) = t∗Z = H2(BT )

is a map which satisfies the following three conditions:

• α(ē) = ±α(e) for all edges e ∈ EΓ;
• α(EΓ

p ) = {α(ϵ) | ϵ ∈ EΓ
p } is pairwise linearly independent for all p ∈ VΓ,

that is, for two distinct elements ϵ1, ϵ2 ∈ EΓ
p , these axial function values

α(ϵ1), α(ϵ2) are linearly independent in t∗Z;
• α satisfies the congruence relation for all edges e ∈ EΓ, that is, the relation
α(ϵ)− α(θe(ϵ)) ≡ 0 (mod α(e)) holds for all ϵ ∈ EΓ

i(e).

Definition 2.1 (hypertorus graph). Let G = (Γ, α, θ) be a collection of a
2n-valent graph Γ = (VΓ, EΓ), a connection θ on Γ, and an axial function

α : EΓ → Hom(Tn × S1, S1) = (tn)∗Z ⊕ Zx,
where x is a generator of Zx which is the dual of the Lie algebra of S1. We call
G = (Γ, α, θ) a hypertorus graph if it satisfies the following conditions for all
p ∈ VΓ:

(1) We can put EΓ
p = {ϵ+1 (p), · · · , ϵ+n (p), ϵ

−
1 (p), · · · , ϵ−n (p)} and (ϵ+j (p), ϵ

−
j (p))

satisfies α(ϵ+j (p)) + α(ϵ−j (p)) = x for all j = 1, · · · , n;

(2) The set {α(ϵ+j (p)), x | j = 1, · · · , n} spans (tn)∗Z ⊕ Zx, we denote it by

⟨α(ϵ+1 ), · · · , α(ϵ+n ), x⟩ = t∗Z ⊕ Zx.
We call {ϵ+j (p), ϵ−j (p)} such that α(ϵ+j (p)) + α(ϵ−j (p)) = x a pair in EΓ

p .

The following Figure 2 is examples of the hypertorus graph.
Because the axial function α satisfies the congruence relation, we have the

following Lemma 2.2.
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Figure 2. Hypertorus graphs, where ⟨a, b⟩ ≃ (t2)∗Z.

Lemma 2.2. Let {ϵ+, ϵ−} be a pair in EΓ
p . Then {θpq(ϵ+), θpq(ϵ

−)} is also a

pair in EΓ
q .

2.2.2. Graph equivariant cohomology. Let G = (Γ, α, θ) be a hypertorus graph.
First we put the set of generators of t∗Z by {α1, · · · , αn}. Then we can identify
t∗Z ⊕ Zx as follows:

t∗Z ⊕ Zx = ⟨α1, · · · , αn, x⟩ = H2(B(Tn × S1)),

and we can consider the equivariant cohomology of a point as follows:

H∗
Tn×S1(pt) = H∗(B(Tn × S1)) = Z[α1, · · · , αn, x].

Here Z[α1, · · · , αn, x] is the polynomial ring.

Definition 2.3 (graph equivariant cohomology). We define the ringH∗
Tn×S1(G)

of G = (Γ, α, θ) as follows:

H∗
Tn×S1(G) = {f : VΓ → H∗

Tn×S1(pt) | f(p)− f(q) ≡ 0 (mod α(pq))},

where pq ∈ EΓ is an edge and α(pq) ∈ t∗Z ⊕ Zx = H2(B(Tn × S1)). We call
H∗

Tn×S1(G) a graph equivariant cohomology. We also call the relation f(p)−f(q) ≡
0 (mod α(pq)) a congruence relation of f .

2.3. Hyperfacet and Ring Z[G]. Before we mention the main theorem, we
need to introduce a special subgraph (we call it a hyperfacet) of G and a ring Z[G]
induced by G.

In order to define a hyperfacet, we will define a pre-hyperfacet, its Thom class
and its opposite side.

2.3.1. pre-hyperfacet. First we define a pre-hyperfacet. Let H = (VH , EH) be
a subgraph of Γ = (VΓ, EΓ), that is, H satisfies VH ⊂ VΓ and EH ⊂ EΓ. Put
EH
p = EΓ

p ∩ EH and |EH
p | the number of out going edges and legs from p ∈ VH in

H. Assume |EH
p | = 2n− 1 or 2n for all p ∈ VH , where there always exists a vertex

p ∈ VH which satisfies |EH
p | = 2n − 1. Moreover we assume that H is closed by

the connection θ of G = (Γ, α, θ), that is, θHpq = θpq|EH
p

: EH
p → EH

q is bijective (if

|EH
p | = |EH

q |) or injective (if |EH
p | < |EH

q |), and if |EH
p | < |EH

q | then θHpq satisfies the

following congruence relation for {nH(p)} = EΓ
p −EH

p (we call nH(p) a normal edge
or a normal leg of H on p):

α(nH(p))− x ≡ 0 (mod α(pq)).

We call such subgraph H a pre-hyperfacet in G = (Γ, α, θ).
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2.3.2. Thom class. Next we define a Thom class of the pre-hyperfacet. Let H
be a pre-hyperfacet in G = (Γ, α, θ). We call the map τH : VΓ → H2(BT ) such
that

τH(p) =


0 if p ̸∈ VH

x if |EH
p | = 2n

α(nH(p)) if |EH
p | = 2n− 1,

the Thom class of a pre-hyperfacet H. For the Thom class τH of a pre-hyperfacet
H, we have the following lemma.

Lemma 2.4. τH is an element of H∗
Tn×S1(G).

Proof. Take an edge pq ∈ EΓ. It suffices to prove that τH satisfies the
congruence relation on pq, that is, τH(p)− τH(q) ≡ 0 (mod α(pq)).

Suppose that p ∈ VH and q ̸∈ VH . Then |EH
p | = 2n− 1 and {pq} = EΓ

p −EH
p =

{nH(p)}. So we have α(pq) = α(nH(p)). Because of the definition of the Thom
class, we also have τH(p) = α(nH(p)) and τH(q) = 0. Hence we know that

τH(p)− τH(q) = α(nH(p))− 0 = α(pq) ≡ 0 (mod α(pq)).

Suppose that p, q ∈ VH . If |EH
p | = |EH

q | = 2n − 1, then τH(p) = α(nH(p))

and τH(q) = α(nH(q)). Because {nH(p)} = EΓ
p − EH

p , {nH(q)} = EΓ
q − EH

q and the

map θHpq = θpq|EH
p

: EH
p → EH

q is bijective, we have θpq(nH(p)) = nH(q). By the

congruence relation of α, we know that

τH(p)− τH(q) = α(nH(p))− α(nH(q))

= α(nH(p))− α(θpq(nH(p))) ≡ 0 (mod α(pq)).

If |EH
p | = 2n − 1 and |EH

q | = 2n, then τH(p) = α(nH(p)) and τH(q) = x. Because
of the definition of the pre-hyperfacet, we know that

τH(p)− τH(q) = α(nH(p))− x ≡ 0 (mod α(pq)).

For the other cases (the cases p, q ̸∈ VH and |EH
p | = |EH

q | = 2n), we can easily
show that τH(p)− τH(q) = 0 by the definition of the Thom class. �

2.3.3. opposite side. Next we define the opposite side of the pre-hyperfacet. In
order to define it, we prove the following two lemmas: Lemma 2.5 and 2.6.

Lemma 2.5. If G = (Γ, α, θ) is a hypertorus graph, then there is a unique
(2n− 2)-valent hypertorus subgraph of G containing any given (n − 1) pairs in EΓ

p

for all p ∈ VΓ.

Proof. Let EL
p = {ϵ+1 , · · · , ϵ

+
n−1, ϵ

−
1 , · · · , ϵ

−
n−1} be (n−1) pairs in EΓ

p . Then

α(ϵ+j )+α(ϵ−j ) = x for j = 1, · · · , n−1 and ⟨α(ϵ+1 ), · · · , α(ϵ
+
n−1), x⟩ ≃ (tn−1)∗Z⊕Zx

by the definition of the hypertorus graph. We put that

⟨α(ϵ+1 ), · · · , α(ϵ+n−1), x⟩ = k∗Z ⊕ Zx.

Take any edge e from EL
p = EL

p ∩ EΓ
p . By Lemma 2.2, through the connection θe,

EL
p maps to some (n− 1) pairs θe(EL

p ) in EΓ
t(e). The α-images of these (n− 1) pairs

in EΓ
t(e) and x span the same subspace k∗Z ⊕ Zx, because α satisfies the congruence
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relation on e. We can translate the given (n− 1) pairs in EΓ
p along all edges in EL

p

in this way. Then we have the following (2n− 2)-valent graph

L1 =
∪

e∈EL
p

θe(EL
p ) ∪ EL

p .

We continue this operation along all edges EL1 −EL
p , where E

L1 is the set of edges
in L1, then we get a graph L2. This graph L2 is also a (2n − 2)-valent graph,
because the α-images of all (n − 1) pairs in EL2

p , for all p ∈ VL2 , and x also span
k∗Z ⊕ Zx. Continuing this process, finally we can get a (2n − 2)-valent hypertorus
subgraph in G.

Suppose that L and L′ are (2n−2)-valent hypertorus subgraphs and EL
p = EL′

p .

Similarly we translate EL′

p along each edge in EL
p and translate EL

p along each edge

in EL′

p by the connection θ of G. Then we have two same graphs

L1 =
∪

e∈EL
p

θe(EL′

p ) ∪ EL′

p and L′
1 =

∪
e∈EL′

p

θe(EL
p ) ∪ EL

p ,

because EL
p = EL′

p . We continue this operation along edges of L1 and L′
1. Then we

also have two same graphs L2 and L′
2. Moreover we continue this operation, finally

we know that L = L′. �

Next we will prove Lemma 2.6. In order to prove it, we define a boundary
of a pre-hyperfacet. Let H be a pre-hyperfacet. By the definition of a pre-
hyperfacet, there is a vertex p ∈ VH such that |EH

p | = 2n − 1. Then EH
p has

(n − 1) pairs {ϵ+1 , · · · , ϵ+n−1, ϵ−1 , · · · , ϵ−n−1}. Because of Lemma 2.5, we can

get the unique (2n − 2)-valent hypertorus subgraph L in G such that p ∈ VL and
EL
p = {ϵ+1 , · · · , ϵ+n−1, ϵ−1 , · · · , ϵ−n−1}. Then we call the union of all such L a

boundary of H, and we denote it by ∂H. Note that a boundary of H need not be
connected.

Lemma 2.6. Let H be a pre-hyperfacet in the hypertorus graph G = (Γ, α, θ)
and x be a generator of Zx ⊂ t∗Z ⊕ Zx. Then there is a unique pre-hyperfacet I
which satisfies the following conditions:

• H ∪ I = Γ;
• τH + τI = χ ∈ H∗

Tn×S1(G),
where χ is a map χ(VΓ) = {x}.

Proof. Set H = (VH , EH) and Î = (VΓ − VH , EΓ − EH). Define

I = Î ∪ ∂H.

Then we can easily see that H ∪ I = (VΓ, EΓ) = Γ.

Next we prove I is a pre-hyperfacet. Take p ∈ VI . If p ∈ V Î = VΓ − VH , then
EI
p = EΓ

p , that is, |EI
p | = 2n. If p ∈ V∂H , then EI

p = E∂H
p ∪ {nH(p)}, that is, |EI

p | =
2n− 1. Here nH(p) is a normal edge (leg) of H on p. So θIpq : EI

p → EI
q is bijective

(if |EI
p | = |EI

q |) or injective (if |EI
p | < |EI

q |). Put nH(p) = ϵ+, then the normal edge

(leg) of I on p can be denoted by ϵ− = nI(p) where {ϵ+, ϵ−} = EΓ
p −E∂H

p is one of

the pair in EΓ
p . So we have the following equation:

α(nI(p)) = α(ϵ−) = x− α(ϵ+) = x− α(nH(p)).
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If nH(p) = pq ∈ EI such that |EΓ
q | = |EI

q | = 2n, then we see that α(nI(p)) − x =
−α(nH(p)) ≡ 0 (mod α(nH(p)) = α(pq)) by the above equation. Hence I is a
pre-hyperfacet. Moreover we have that τH + τI = χ, because of the above equation
and the definition of the Thom class of the pre-hyperfacet.

Finally we prove the uniqueness of I. By two conditions H∪I = Γ, τH+τI = χ
and the definition of the Thom class, we see ∂I = ∂H and I = (VΓ − VH , EΓ −
EH) ∪ ∂I. From Lemma 2.5, the boundary ∂H = ∂I is unique. So we know the
uniqueness of I. �

We call I in Lemma 2.6 an opposite side of H and denote it by H. Note that

H ∩H = ∂H

by the proof of Lemma 2.6.
2.3.4. Hyperfacet and Ring Z[G]. Under the above preparations, we can define

the hyperfacet.

Definition 2.7 (hyperfacet). We call a connected pre-hyperfacet a hyperfacet,
if its opposite side is also connected.

Remark 2.8. For the hyperfacet H, its opposite side H is also a hyperfacet.

 

Figure 3. The above figures are hyperfacets and their opposite
side of the left and right examples in Figure 2. Labels on ver-
tices mean values of their Thom classes on vertices. Note that the
boundary ∂H = H ∩H of the left example is connected, but the
right one is not connected.

Let H be the set of all hyperfacets in G, then we can put

H = {H1, · · · , Hm, H1, · · · , Hm}
by the finiteness of VΓ, Lemma 2.6, and Remark 2.8. Put

Z[X, H] = Z[X, H1, · · · , Hm, H1, · · · , Hm]

where Z[X, H1, · · · , Hm, H1, · · · , Hm] is a polynomial ring which is generated
by X and all elements in H, and put

I =
⟨
Hi +Hi −X,

∏
H∈H′

H
∣∣∣ i = 1, · · · , m, H′ ∈ I(H)

⟩
which is the ideal in Z[X, H] generated by Hi + Hi − X (i = 1, · · · , m) and∏

H∈H′∈I(H) H, where I(H) = {H′ ⊂ H | ∩ H′ = ∅}. We define a ring Z[G] as
follows:

Z[G] = Z[X, H]
/
I.
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3. Main theorem: ring structures of graph equivariant cohomologies

The aim of this section is to prove the following main theorem.

Theorem 3.1. Let G be a 2n-valent hypertorus graph and L = {L1, · · · , Lm}
a set of all connected (2n − 2)-valent hypertorus subgraphs in G. If G satisfies the
following two assumptions:

(1) For each L ∈ L, there are a hyperfacet H and its opposite side H such
that H ∩H = L, and such H, H are unique;

(2) For all subsets L′ ⊂ L, its intersection ∩L′ is empty or connected.

Then H∗
Tn×S1(G) ≃ Z[G].

Henceforth in this section the hypertorus graph G = (Γ, α, θ) satisfies as-
sumptions (1), (2) of Theorem 3.1. For example two left hypertorus graphs in
Figure 2 satisfy these assumptions. However the third example does not satisfy the
assumption (2) and the right (fourth) example does not satisfy the assumption (1).

In order to prove Theorem 3.1, we will prove that the following map is an
isomorphism:

Ψ : Z[G] → H∗
Tn×S1(G)

such that Ψ(X) = χ and Ψ(H) = τH , where χ(p) = x for all p ∈ VΓ and H is a
hyperfacet. Because τH + τH = χ and

∏
H∈H′ τH = 0 (H′ is a set of hyperfacets

whose intersection is empty), the map Ψ is well-defined. From the next section we
start to prove the bijectivity of Ψ. The proof will be divided into two steps:

(I) To study an equivariant graph cohomology of an x-forgetful graph G̃ and

to prove H∗
Tn(G̃) ≃ Z[G̃];

(II) To prove Ψ is surjective and injective.

In the first step, we will use the method of [MMP] (or [MP]) which was used
to show ring structures of graph equivariant cohomologies of torus graphs. In
the second step, we will use the method of [HP] which was applied to show ring
structures of equivariant cohomologies of hypertoric varieties.

3.1. x-forgetful graph G̃. In order to prove Theorem 3.1, as the first step, we

introduce an x-forgetful graph G̃ = (Γ, α̃, θ) of the hypertorus graph G = (Γ, α, θ).
Here an x-forgetful axial function

α̃ = F ◦ α : EΓ → (tn)∗Z

is defined by the x-forgetful map F : (tn)∗Z ⊕ Zx → (tn)∗Z.

Moreover we define a graph equivariant cohomology of G̃ as follows:

H∗
Tn(G̃) = {f : VΓ → H∗

Tn(pt) | f(p)− f(q) ≡ 0 (mod α̃(pq))}.

Fix {H1, · · · , Hm} in the set of all hyperfacetsH = {H1, · · · , Hm, H1, · · · , Hm},
and define the Thom class of L by

τL = F ◦ τH

for the (2n− 2)-valent hypertorus subgraph L = H ∩H. From the assumption (1)
of Theorem 3.1 and Lemma 2.6, there is a one to one corresponding between H and
L = H ∩H. Therefore we can put a set of all connected (2n− 2)-valent hypertorus
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Figure 4. An example of the x-forgetful graph for the left hyper-
torus graph in Figure 2.

subgraphs by L = {L1, · · · , Lm} where Li = Hi ∩ Hi for all i = 1, · · · , m.
Moreover we have

τL(p) =

{
0 p ̸∈ VL

α̃(nH(p)) p ∈ VL

by the definitions of τH and the x-forgetful map F , where nH(p) is a normal edge
(leg) of H on p. We also have F ◦ τH = −τL by the definition of the opposite side

of H. Since τH ∈ H∗
Tn×S1(G) (Lemma 2.4), we have τL ∈ H∗

Tn(G̃).
Next we define the following ring:

Z[G̃] = Z[L1, · · · , Lm]
/⟨ ∏

L∈L′

L
∣∣∣ L′ ∈ I(L)

⟩
,

where I(L) = {L′ ⊂ L | ∩ L′ = ∅} and ⟨
∏

L∈L′ L | L′ ∈ I(L)⟩ is an ideal which is
generated by the product

∏
L∈L′ L for all L′ ∈ I(L).

The goal of this section (the first step (I) of the proof of Theorem 3.1) is to

prove H∗
Tn(G̃) ≃ Z[G̃]. Define the map

Ψ′ : Z[G̃] → H∗
Tn(G̃)

by Ψ′(L) = τL. Obviously Ψ′ is a well-defined homomorphism. We will prove this
homomorphism is bijective.

First we prove the injectivity of Ψ′. In order to prove the injectivity of Ψ′, we
study the following ring:

Z[G̃]p = Z[L1, · · · , Lm]/⟨L | p ̸∈ VL⟩,

where ⟨L | p ̸∈ VL⟩ is an ideal which is generated by L such that p ̸∈ VL. As a
beginning, we prove the following lemma.

Lemma 3.2. For the x-forgetful graph G̃ = (Γ, α̃, θ), we have

Ip : Z[G̃]p ≃ Z[L | p ∈ VL] = Z[L1, · · · , Ln]
ιp≃ H∗

Tn(pt),

where the last isomorphism ιp is defined by ιp : L 7→ τL(p).

Proof. The first equivalence Z[G̃]p ≃ Z[L | p ∈ VL] is trivial by the definition

of Z[G̃]p. We prove Z[L | p ∈ VL] = Z[L1, · · · , Ln]
ιp≃ HTn(pt).

Because of the definition of the hypertorus graph, we can put

EΓ
p = {e+1 (p), · · · , e+n (p), e−1 (p), · · · , e−n (p)}
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for all p ∈ VΓ. There is a unique Li such that τLi(p) = α̃(e+i (p)) = −α̃(e−i (p)) for
all i = 1, · · · , n by Lemma 2.5. Hence we have Z[L | p ∈ VL] = Z[L1, · · · , Ln].
By the definition of the axial function of the hypertorus graph, we see

⟨α(e+1 (p)), · · · , α(e+n (p)), x⟩ ≃ t∗Z ⊕ Zx = H2(B(Tn × S1)).

Hence, by the definition of α̃, we have that

Z[α̃(e+1 (p)), · · · , α̃(e+n (p))] ≃ H∗
Tn(pt).

This means that ιp is an isomorphism. �

Next we will define ρ and prove Lemma 3.3.
Since there is a L ∈ L′ such that p ̸∈ VL for the set L′ such that ∩L∈L′L = ∅,

we have

⟨L | p ̸∈ VL⟩ ⊃ ⟨
∏
L∈L′

L | L′ ∈ I(L)⟩.

Therefore there exists the natural projection

ρp : Z[G̃] → Z[G̃]p,
and for this ρp we can easily see that

Ker ρp = ⟨L | p ̸∈ VL⟩/⟨
∏
L∈L′

L | L′ ∈ I(L)⟩.

Define the homomorphism

ρ =
⊕
p∈VΓ

ρp : Z[G̃] →
⊕
p∈VΓ

Z[G̃]p

by ρ(Y ) =
⊕

p∈VΓ ρp(Y ) for Y ∈ Z[G̃]. Then we have the following lemma.

Lemma 3.3. ρ is injective.

Proof. Obviously we have

Ker ρ =

 ∩
p∈VΓ

⟨L | p ̸∈ VL⟩

/⟨ ∏
L∈L′

L

∣∣∣∣∣ L′ ∈ I(L)

⟩
.

We may only show that∩
p∈VΓ

⟨L | p ̸∈ VL⟩ ⊂ ⟨
∏
L∈L′

L | L′ ∈ I(L)⟩(⊂ Z[L1, · · · , Lm]).

Take a non-zero element

A =
∑

a1,··· ,am∈N∪{0}

k(a1, · · · , am)La1
1 · · ·Lam

m

∈
∩

p∈VΓ

⟨L | p ̸∈ VL⟩ ⊂ Z[L1, · · · , Lm],

where k(a1, · · · , am)(= k) ∈ Z − {0}. Because
∑

k(a1, · · · , am)La1
1 · · ·Lam

m ∈
⟨L | p ̸∈ VL⟩, we have that each term kLa1

1 · · ·Lam
m ∈ ⟨L | p ̸∈ VL⟩ for all p ∈ VΓ.

Hence we have each term

kLa1
1 · · ·Lam

m ∈
∩

p∈VΓ

⟨L | p ̸∈ VL⟩.
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This means, for each term kLa1
1 · · ·Lam

m and all vertices p ∈ VΓ, there is r ∈
{1, · · · , m} such that p ̸∈ VLr and ar ̸= 0. We put the set of such Lr by L′′.
Because for all p ∈ V there is Lr ∈ L′′ such that p ̸∈ VLr , we have ∩L′′ = ∅. This
means L′′ ∈ I(L). Therefore each term kLa1

1 · · ·Lam
m is in ⟨

∏
L∈L′ L | L′ ∈ I(L)⟩.

We conclude A ∈ ⟨
∏

L∈L′ L | L′ ∈ I(L)⟩. �

From the above two lemmas: Lemma 3.2 and 3.3, we can prove the injectivity
of Ψ′.

Proposition 3.4. Ψ′ is injective.

Proof. Define ρ′ : H∗
Tn(G̃) →

⊕
p∈VΓ H∗

Tn(pt) by ρ′(f) =
⊕

p∈VΓ f(p). Then
we can show the following diagram is commutative:

Z[G̃] ρ−→
⊕

p∈VΓ Z[G̃]p
Ψ′ ↓ ↓ ⊕pIp

H∗
Tn(G̃)

ρ′

−→
⊕

p∈VΓ H∗
Tn(pt)

by chasing generators L1, · · · , Lm. Now ρ is injective by Lemma 3.3, and the right
map ⊕pIp is bijective by Lemma 3.2. Consequently Ψ′ is injective. �

Next we prove the surjectivity of Ψ′. In order to prove the surjectivity, we will
define an ideal I(K) of H∗

Tn(pt).
Let K be an intersection L1∩· · ·∩Lb( ̸= ∅). Note that the graph K is connected

because of the assumption (2) of Theorem 3.1. K is also a (2n−2b)-valent subgraph

of G̃ = (Γ, α̃, θ), that is, the restricted bijection θKpq = θpq|EK
p

: EK
p → EK

q is well-

defined for pq ∈ EK
p . We define an ideal I(K) (in H∗

Tn(pt)) on K as follows:

I(K) = ⟨α̃(ϵ) | ϵ ∈ EK⟩,
that is, this ideal is generated by all x-forgetful axial functions of edges and legs in
K. The following lemma holds for this I(K).

Lemma 3.5. Let f be an element in H∗
Tn(G̃). If f(p) ̸∈ I(K) for some p ∈ VK ,

then f(q) ̸∈ I(K) for all q ∈ VK .

Proof. Assume f(p) ̸∈ I(K) and f(q) ∈ I(K). Since K is connected, there is
a path in K from q to p, which is constructed by edges

qr1, r1r2, · · · , rs−1rs, rsp ∈ EK ⊂ EK .

Because of the congruence relation, we have

f(q)− f(p)

= (f(q)− f(r1)) + (f(r1)− f(r2)) + · · ·+ (f(rs−1)− f(rs)) + (f(rs)− f(p))

= A1α̃(qr1) +A2α̃(r1r2) · · ·+Asα̃(rs−1rs) +A′α̃(rsp)

∈ I(K),

where A1, · · · , As, A
′ ∈ H∗

Tn(pt) and the last relation is known by the definition of
I(K). Since f(q), A1α̃(qr1), · · · , Asα̃(rs−1rs), A′α̃(rsp) ∈ I(K), we have f(p) ∈
I(K). This gives a contradiction. �

From the above lemma, we can prove the surjectivity of Ψ′.

Proposition 3.6. Ψ′ is surjective.
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Proof. Assume that f(p) ∈ H∗
Tn(pt) has a non-zero constant term k ∈ Z−{0}

for some p ∈ VΓ, that is, f(p) = k + g(p) where g(p) ∈ H>0
Tn (pt) ∪ {0}. Because

f ∈ H∗
Tn(G̃) satisfies the congruence relation, we see that f(q) = k + g(q) for all

q ∈ VΓ and g ∈ H>0
Tn (G̃)∪ {0}, where H>0

Tn (G̃)∪ {0} is the set of g ∈ H∗
Tn(G̃) whose

constant term is 0. So we can take k ∈ Z ⊂ Z[G̃] such that f = Ψ′(k) + g. Hence it

suffices to prove the case that g ∈ H∗
Tn(G̃)−{0} satisfies g(p) = 0 or g(p) ∈ H>0

Tn (pt)

for all p ∈ VΓ, that is, g ∈ H>0
Tn (G̃)(= H>0

Tn (G̃) ∪ {0} − {0}).
Assume that g ∈ H>0

Tn (G̃). Put Z(g) = {p ∈ VΓ | g(p) = 0}. If Z(g) = ∅,
then g(p) ∈ H∗

Tn(pt) = Z[τL1(p), · · · , τLn(p)] because of Lemma 3.2, where Li is
the (2n− 2)-valent hypertorus subgraph such that p ∈ VLi . So there is an element

A ∈ Z[G̃] such that Ψ′(A)(p) = g(p). Hence p ∈ Z(g −Ψ′(A)).
So we can assume Z(g) ̸= ∅. Take p ∈ VΓ\Z(g), that is, g(p) ̸= 0. Let

kτa1

L1
· · · τan

Ln
(p) be a monomial appearing in g(p), where k is a non-zero integer, p ∈

VLi and ai ≥ 0 (i = 1, · · · , n). Since g(p) ∈ H>0
Tn (pt), we can assume a1, · · · , ab ̸=

0 and ab+1 = · · · = an = 0. Put K = ∩b
i=1Li. Then g(p) ̸∈ I(K) because g(p)

contains the monomial kτa1

L1
· · · τab

Lb
(p) and τLi(p) (i = 1, · · · , b) is defined by the

axial function of the normal edge or leg of K on p. Hence g(q) ̸∈ I(K) for all
q ∈ VK , because of Lemma 3.5. In particular g(q) ̸= 0 for all q ∈ VK . Let r ̸∈ VK .
Then we see kτa1

L1
· · · τab

Lb
(r) = 0. Put g′ = g − kτa1

L1
· · · τab

Lb
= g − Ψ′(kLa1

1 · · ·Lab

b ),

then g′(r) = g(r) for all r ̸∈ VK .
Therefore we see that g(q) ̸= 0 for all q ∈ VK and g′(r) = g(r) for all r ̸∈

VK . Hence Z(g′) ⊃ Z(g) holds. Note that the number of monomials in g′(p) is
strictly smaller than that in g(p). Again we apply the same argument for g′ = g −
Ψ′(kLa1

1 · · ·Lab

b ). Then we get g” = g′ −Ψ′(k′L
a′
1

i1
· · ·La′

c
ic
) such that Z(g”) ⊃ Z(g′)

and the number of monomials in g”(p) is strictly smaller than that in g′(p), where
{Li1 , · · · , Lic} ⊂ {L1, · · · , Ln} and k′ is non-zero integer. Repeating this argument,

we obtain B ∈ Z[G̃] such that Z(g − Ψ′(B)) contains Z(g) as a proper subset.

Moreover repeating this procedure, we can take C ∈ Z[G̃] such that Z(g−Ψ′(C)) =
VΓ. This gives g −Ψ′(C) = 0. Therefore we conclude that Ψ′ is surjective. �

Consequently Ψ′ is an isomorphic map by Proposition 3.4 and 3.6, and we have

H∗
Tn(G̃) ≃ Z[G̃].

Remark 3.7. From the above argument, we know that the assumption (2) of
Theorem 3.1 does not need to prove the “injectivity” of Ψ′, but it needs to prove the

“surjectivity” of Ψ′. Hence the assumption (2) of Theorem 3.1 means that H∗
Tn(G̃)

(resp. H∗
Tn×S1(G)) is generated by elements of H2

Tn(G̃) (resp. H2
Tn×S1(G)), that is,

τL ∈ H2
Tn(G̃) (resp. τH , χ ∈ H2

Tn×S1(G)). In fact, there exists a generator which

is not in H2
Tn×S1(G) for the graph equivariant cohomology of the third example in

Figure 2.1, note that this example does not satisfy the assumption (2) of Theorem
3.1 because the intersection of two lines (2-valent hypertorus subgraphs) are dis-
connected two vertices. In the future paper, we hope to find the generalized result
of Theorem 3.1 without the assumption (2).

3.2. Proof of Main theorem. Let G be a hypertorus graph which satisfies
the assumptions (1), (2) of Theorem 3.1, that is, G satisfies the following two
assumptions:
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(1) For each L ∈ L, there are a hyperfacet H and its opposite side H such
that H ∩H = L;

(2) For all subsets L′ ⊂ L, its intersection ∩L′ is empty or connected.

Let us recall the homomorphism Ψ : Z[G] → H∗
Tn×S1(G). This Ψ is defined as

follows:

Ψ(X) = χ, Ψ(H) = τH .

The goal of this section is to prove Ψ is the isomorphism.
By the assumption (1), we can put the set of all hyperfacets by

H = {H1, · · · , Hm, H1, · · · , Hm},
and the set of all connected (2n− 2)-valent hypertorus subgraphs by

L = {L1, · · · , Lm}
such that Li = Hi ∩Hi.

First we consider the following diagram:

Z[X,H1, · · · , Hm]
π̂−→ Z[G]

ϕ′ ↓ ↓ Ψ

Z[X,H1, · · · ,Hm]
π−→ H∗

Tn×S1(G)
ϕ ↓ ↓ F

Z[L1, · · · , Lm]
π′

−→ H∗
Tn(G̃).

We explain about the above diagram. π̂ is the natural projection, ϕ′ is defined
by ϕ′(X) = X, ϕ′(Hi) = Hi, ϕ

′(Hi) = X − Hi and π(X) = χ, π(Hi) = τHi . So
the top diagram is commutative. On the other hand π′ is defined by π′(Li) = τLi

(π′ is surjective from Proposition 3.6), ϕ is defined by ϕ(X) = 0, ϕ(Hi) = Li (i =
1, · · · , m) and F(f) = F ◦f where f ∈ H∗

Tn×S1(G) and F : H∗
Tn×S1(pt) → H∗

Tn(pt)

is the x-forgetful map (x is the generator of Zx ⊂ (tn)∗Z ⊕ Zx = H2
Tn×S1(pt)). So

the bottom diagram is also commutative.
We will use the above diagram to prove Ψ is the isomorphism.
3.2.1. Surjectivity of Ψ. Let us start to prove the surjectivity of Ψ. In order to

prove the surjectivity, we will prove Proposition 3.11 which states the surjectivity
of π (in the diagram). Moreover, in order to prove the surjectivity of π (Proposition
3.11), we need to prove the following three lemmas Lemma 3.8, 3.9 and 3.10.

Lemma 3.8. Let χ be in H∗
Tn×S1(G) such that χ(p) = x for all p ∈ VΓ. Then

we have Ker F = H∗
Tn×S1(G)χ,

Proof. Let f ∈ Ker F . By the definition of F , we have F(f)(p) = F ◦f(p) = 0
for all p ∈ VΓ. Since F : H∗

Tn×S1(pt) = Z[x, α1, · · · , αn] → Z[β1, · · · , βn] =

H∗
Tn(pt) is defined by F (x) = 0 and F (αi) = βi for all i = 1, · · · , n, we have

Ker F = ⟨x⟩ ⊂ H∗
Tn×S1(pt). So f(p) = g(p)x for all p ∈ VΓ, where g(p) is a

polynomial in H∗
Tn×S1(pt). Because f ∈ H∗

Tn×S1(G), it satisfies the congruence
relation

f(p)− f(q) = g(p)x− g(q)x = (g(p)− g(q))x ≡ 0 (mod α(pq))

for all edges pq. By the definition of the hypertorus graph, we see α(pq) ̸= x. Hence
g ∈ HTn×S1(G). Therefore for all f ∈ Ker F , there exists some g ∈ H∗

Tn×S1(G)
such that f = gχ. Hence Ker F ⊂ H∗

Tn×S1(G)χ. On the other hand, we can easily

show Ker F ⊃ H∗
Tn×S1(G)χ. So we have that Ker F = H∗

Tn×S1(G)χ. �
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Lemma 3.9. Let f ∈ H∗
Tn×S1(G). Then there exists f2i ∈ H∗

Tn×S1(G) which

satisfies f2i(p) = 0 or a 2i degree homogeneous polynomial in H∗
Tn×S1(pt) such that

f = f0 + f2 + · · ·+ f2l.

Proof. Since f(p) ∈ H∗
Tn×S1(pt), we have that f(p) = f0(p) + · · · + f2l(p)

where f2i(p) ∈ H2i
Tn×S1(pt) for all p ∈ VΓ. Because f satisfies the congruence

relation for all edges qr, we see that

f(q)− f(r) = (f0(q)− f0(r)) + · · ·+ (f2l(q)− f2l(r)) = Aα(qr)

for some A ∈ H∗
Tn×S1(pt). Moreover A can be divided into A = A0 + · · ·+ A2l−2,

where A2i ∈ H2i
Tn×S1(pt). Hence f2i(q) − f2i(r) = A2i−2α(qr). This concludes

f2i ∈ H∗
Tn×S1(G) for all i = 0, · · · , l. �

We call each f2i in Lemma 3.9 a 2i degree homogeneous class (i = 0, · · · , l).
We denote deg f2i = 2i and f2i ∈ H2i

Tn×S1(G).

Lemma 3.10. If f ̸∈ Im π, then there are A ∈ Z[X,H1, · · · , Hm] and g ̸∈ Im π
such that

π(A)− f = gχ,

where g can be denoted by g =
∑

k g2jk whose all homogeneous classes g2jk ̸∈ Im π.

Proof. Assume f ̸∈ Im π. Since ϕ is surjective by the assumption (1) of
Theorem 3.1 and π′ is surjective by Proposition 3.6, there is a non-zero element
B ∈ Z[X,H1, · · · ,Hm] such that F(f) = π′ ◦ϕ(B). Because π′ ◦ϕ = F ◦π, we have

π′ ◦ ϕ(B) = F ◦ π(B) = F(f).

Hence π(B)− f ∈ Ker F . Because of Lemma 3.8, there is a g′ ∈ H∗
Tn×S1(G) such

that

π(B)− f = g′χ.

Since f ̸∈ Im π and π(X) = χ, we have

g′ ̸∈ Im π.

Form Lemma 3.9, we can divide g′ into g′ = g0 + · · ·+ g2l where g2i is a 2i degree
homogeneous class. If g2i ∈ Im π, then g′−g2i ̸∈ Im π. Therefore g′ can be divided
into two terms (0 ̸=)g =

∑
k g2jk ̸∈ Im π and h =

∑
k′ g2ik′ ∈ Im π such that

g′ = g + h,

where homogeneous classes g2jk ̸∈ Im π and g2ik′ ∈ Im π. Since

g′χ = gχ+ hχ = gχ+ π(CX)

for some C ∈ Z[X,H1, · · · ,Hm], we see that there is an element A = B − CX ∈
Z[X,H1, · · · , Hm] such that π(A)− f = gχ. �

Next we prove Proposition 3.11.

Proposition 3.11. The homomorphism π : Z[X,H1, · · · , Hm] → H∗
Tn×S1(G)

is surjective.
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Proof. If we show all homogeneous classes f ∈ H∗
Tn×S1(G) are in Im π, then

we have that the graph equivariant cohomology H∗
Tn×S1(G) is included in Im π by

Lemma 3.9, that is, π : Z[X,H1, · · · ,Hm] → H∗
Tn×S1(G) is surjective. We prove all

homogeneous classes are in Im π.
Let f be a minimal degree homogeneous class in H∗

Tn×S1(G)\Im π. Then f(p)

is a non-zero homogeneous polynomial or f(p) = 0 for all p ∈ VΓ by the definition
of the homogeneous class. Because of Lemma 3.10, we have the following two cases
for all p ∈ VΓ and f ̸∈ Im π:

π(A)(p)− f(p) = g(p)x (if f(p) ̸= 0);(3.1)

π(A)(p) = g(p)x (if f(p) = 0),(3.2)

for some A ∈ Z[X,H1, · · · ,Hm] and g ̸∈ Im π whose all homogeneous classes are
not in Im π.

Because f ̸∈ Im π, in particular f ̸= 0, we can take a vertex p ∈ VΓ such that
f(p) ̸= 0. Then we have the above case (3.1):

π(A)(p)− f(p) = g(p)x.

Here, put the minimal degree homogeneous class of π(A) by π(A′) ∈ HTn×S1(G).
If π(A′)(p) ̸= f(p), then there is a term in g(p)x whose degree is less than or equal
to deg f . So there is a non-zero homogeneous terms g2jk(p) of g(p) such that

deg g2jk(p) = 2jk = deg g2jk = deg g2jkx− 1 < deg f.

Moreover this homogeneous class g2jk ̸∈ Im π from Lemma 3.10. This gives a
contradiction, since f is a minimal degree homogeneous class in H∗

Tn×S1(G)\Im π.

Hence the minimal degree homogeneous class π(A′) satisfies π(A′)(p) = f(p), when
f(p) ̸= 0. We also have deg π(A′) = deg f .

If f(p) ̸= 0 for all p ∈ VΓ, then f = π(A′) by the above argument. This gives a
contradiction, by the assumption f ̸∈ Im π. Therefore we can take a vertex q ∈ VΓ

such that f(q) = 0. Then we have the case (3.2): π(A)(q) = g(q)x. Because π(A′)
is the minimal degree homogeneous class of π(A), we also have

π(A′)(q) = g′(q)x

holds for some homogeneous class g′ ̸∈ Im π of g (by Lemma 3.10). If g′(q)x = 0 for
all such q, then we have f = π(A′). This gives a contradiction, by the assumption
f ̸∈ Im π. Hence there is some q ∈ VΓ such that f(q) = 0 and g′(q)x ̸= 0.
However deg g′(q) = deg g′ = deg g′χ − 1 < deg π(A′) = deg f . This also
gives a contradiction, because g′ is a homogeneous class in H∗

Tn×S1(G)\Im π and

f is a minimal degree homogeneous class in H∗
Tn×S1(G)\Im π. Consequently all

homogeneous classes of H∗
Tn×S1(G) are in Im π. �

Now π̂ is surjective by the definition of Z[G], and ϕ′ is also surjective by its
definition. Moreover π is surjective by Proposition 3.11. Since Ψ ◦ π̂ = π ◦ ϕ′, we
have the following corollary.

Corollary 3.12. Ψ is surjective.

3.2.2. Injectivity of Ψ. Finally we will prove the injectivity of Ψ. In this section
we put

Ij = {1, · · · , l} − {j}
for j = 1, · · · , l.
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First we need to prove Proposition 3.14. In order to prove Proposition 3.14, we
prepare the following lemma.

Lemma 3.13. If ∩l
k=1Lk = ∅ and Lk = Hk ∩Hk (k = 1, · · · , l), then we can

take a hyperfacet Hj as Hj ∩ (∩k∈IjLk) = ∅ for all j = 1, · · · , l.

Proof. Assume ∩l
k=1Lk = ∅. If Lj ∩ (∩k∈IjLk) = ∩k∈IjLk = ∅, then Hj ∩

(∩k∈IjLk) = Hj ∩ (∩k∈IjLk) = ∅ for each Hj and Hj such that Hj ∩Hj = Lj . So
we may assume, for all j = 1, · · · , l,∩

k∈Ij

Lk ̸= ∅.

If p ∈ V∩k∈Ij
Lk satisfies τHj (p) = α(nHj (p)), then p ∈ VLj by the definition of

the Thom class τHj . However this gives a contradiction, since Lj ∩ (∩k∈IjLk) =

∩l
k=1Lk = ∅. Hence all vertices p ∈ V∩k∈Ij

Lk satisfy

τHj (p) =

{
0 (if p ̸∈ VHj )
x (if p ∈ VHj )

by the definition of the Thom class τHj .

Assume τH1(p) = x for all p ∈ V∩l
k=2Lk . Retaking H1 as H1, we can put

τH1(p) = 0 for all p ∈ V∩l
k=2Lk by the equation τH1(p) + τH1

(p) = x. This implies

that H1 satisfies H1 ∩ (∩l
k=2Lk) = ∅. So we may assume that there is a vertex

p ∈ V∩l
k=2Lk such that τH1(p) = 0, that is, p ̸∈ VH1 . Because we assume the

assumption (2) of Theorem 3.1, we can take edges from p to the other vertex

q ∈ V∩l
k=2Lk as follows:

pr1, r1r2, · · · , ru−1ru, ruq ∈ E∩l
k=2Lk .

Because rt ∈ V∩l
k=2Lk for t = 0, · · · , u, we see τH1(r1) = 0 or x by the above

argument. Hence we have τH1(p)− τH1(r1) = 0 or −x. Moreover we have τH1(p)−
τH1

(r1) ≡ 0 (mod α(pr1)) by the congruence relation. Because of the definition
of the hypertorus graph, we also have α(e) ̸= x for all edges e ∈ EΓ. So we have

τH1(r1) = 0. Inductively we have τH1(q) = 0 for all q ∈ V∩l
k=2Lk . This implies that

we can take H1 as H1 ∩ (∩l
k=2Lk) = ∅. Since we can apply the same argument for

the other Hj (j = 2, · · · , l), we can take Hj as

Hj ∩ (∩k∈IjLk) = ∅
for all j = 1, · · · , l. �

From Lemma 3.13, we have the following key fact.

Proposition 3.14. Assume the hypertorus graph G satisfies two assumptions
(1), (2) of Theorem 3.1. If ∩l

k=1Lk = ∅ and Lk = Hk ∩Hk (k = 1, · · · , l), then
we can take a hyperfacet Hk such that ∩l

k=1Hk = ∅.

Proof. If ∩l
k=1Lk = ∅ and Lk = Hk ∩Hk (k = 1, · · · , l), we can take Hj as

Hj ∩ (∩k∈IjLk) = ∅ for all j = 1, · · · , l from Lemma 3.13. Set

H′ =
{
H1, · · · , Hl | Hj ∩ (∩k∈IjLk) = ∅, j = 1, · · · , l

}
.

Let us show ∩H′ = ∅. In order to show it, we use the inductive argument. The first
step of the induction has already shown in Lemma 3.13. Set R = {1, · · · , l}, S ⊂ R
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and T = R−S. Assume that the hyperfacet Hj satisfies (∩j∈SHj)∩ (∩k∈TLk) = ∅
for all S ⊂ R whose number |S| ≤ s− 1 (s ≥ 2).

Assume (∩s
j=1Hj) ∩ (∩l

k=s+1Lk) ̸= ∅ and take p ∈ V(∩s
j=1Hj)∩(∩l

k=s+1Lk). Then

we have
∏s

j=1 τHj (p) ̸= 0. Because ∩l
k=1Lk = (∩j∈SHj) ∩ (∩k∈TLk) = ∅ for all

S ⊂ R such that |S| ≤ s− 1, we see that p ̸∈ VLj for all j = 1, · · · , s. So τHj (p) ̸=
α(nHj (p)) for all j = 1, · · · , s. Hence we have, for all p ∈ V(∩s

j=1Hj)∩(∩l
k=s+1Lk),

s∏
j=1

τHj (p) = xs.

Therefore we have, for q ∈ V∩l
k=s+1Lk ,

s∏
j=1

τHj (q) =

{
0 (if q ̸∈ V(∩s

j=1Hj)∩(∩l
k=s+1Lk))

xs (if q ∈ V(∩s
j=1Hj)∩(∩l

k=s+1Lk)).

Because of the assumption (2) of Theorem 3.1, for all q ∈ V∩l
k=s+1Lk , we can take

edges from q to p ∈ V(∩s
j=1Hj)∩(∩l

k=s+1Lk). Applying the similar argument in the

proof of Lemma 3.13, we have
∏s

j=1 τHj (q) = xs for all q ∈ V∩l
k=s+1Lk . This implies

∩l
k=s+1Lk ⊂ ∩s

j=1Hj . So we have

l∩
k=s

Lk ⊂
l∩

k=s+1

Lk ⊂
s∩

j=1

Hj ⊂
s−1∩
j=1

Hj .

This gives a contradiction, since we assume (∩s−1
j=1Hj) ∩ (∩l

k=sLk) = ∅ as an as-

sumption of the induction. Therefore we have (∩s
j=1Hj) ∩ (∩l

k=s+1Lk) = ∅. From
the above argument, we also have (∩j∈S′Hj) ∩ (∩k∈T ′Lk) = ∅ for all S′ ⊂ R such
that |S′| = s and T ′ = R− S′.

Inductively, we see that (∩j∈SHj) ∩ (∩k∈TLk) = ∅ for all S ⊂ R such that
|S| ≤ l − 1 and T = R− S. So we have

l∏
j=1

τHj (p) =

{
0 (if p ̸∈ V∩l

j=1Hj )

xl (if p ∈ V∩l
j=1Hj ),

because ∩l
k=1Lk = ∅. If ∩l

j=1Hj ̸= ∅, then there is a vertex p ∈ VΓ such that∏l
j=1 τHj (p) = xl. By the definition of the hyperfacet, we see ∩l

j=1Hj ̸= Γ. So

we can take a vertex q ∈ VΓ such that
∏l

j=1 τHj (q) = 0. Since Γ is connected, we
can take edges from p to q. Similarly this gives a contradiction by the congruence
relation. Consequently we conclude that if ∩l

j=1Lj = ∅ then we can take Hj such

that ∩l
j=1Hj = ∅. �

Next we will prove Proposition 3.17. In order to prove it, we prepare some
notations and lemmas: Lemma 3.15 and 3.16.

Let π̃ : Z[X, H1, · · · , Hm] → Z[G] be the natural homomorphism such that
π̃(X) = X, π̃(Hi) = Hi for i = 1, · · · , m. Because Hi = X −Hi in Z[G], we have

π̃ ◦ ϕ′ = π̂ : Z[X, H1, · · · , Hm] → Z[G].

Since π̂ is surjective, π̃ is also surjective. Moreover we have

Ψ ◦ π̃ = π : Z[X, H1, · · · , Hm] → H∗
Tn×S1(G)
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by definitions of Ψ and π. Hence we have the following commutative diagram:

Z[X,H1, · · · , Hm]
π̂−→ Z[G]

ϕ′ ↓
π̃

↗ ↓ Ψ

Z[X,H1, · · · ,Hm]
π→ H∗

Tn×S1(G)
ϕ ↓ ↓ F

Z[L1, · · · , Lm]
π′

−→ H∗
Tn(G̃).

Then we have the following lemma.

Lemma 3.15. For the ideal (in Z[X,H1, · · · , Hm])

I =
⟨
Hi +Hi −X,

∏
H∈H′

H
∣∣∣ i = 1, · · · , m, H′ ∈ I(H)

⟩
,

where I(H) = {H′ ⊂ H | ∩ H′ = ∅}, it satisfies the following two properties:

(i) Ker π̃ = ϕ′(I);
(ii) Ker π′ = ϕ ◦ ϕ′(I).

Proof. Since π̂ is the natural projection, we know I = Ker π̂. So we see
π̃(ϕ′(I)) = π̂(I) = π̂(Ker π̂) = {0}. Hence ϕ′(I) ⊂ Ker π̃. Let A be an element
in Ker π̃. Because ϕ′ is surjective, there is an element B ∈ Z[X, H1, · · · , Hm]
such that ϕ′(B) = A. Now π̂(B) = π̃ ◦ ϕ′(B) = π̃(A) = 0. So B ∈ Ker π̂ = I.
Hence A = ϕ′(B) ∈ ϕ′(I), that is, Ker π̃ ⊂ ϕ′(I). Therefore we conclude the first
property: Ker π̃ = ϕ′(I).

From Proposition 3.4 and 3.6, we know Ker π′ = ⟨
∏

L∈L′ L | L′ ∈ I(L)⟩
where I(L) = {L′ ⊂ L | ∩ L′ = ∅}. Take a generator

∏
L∈L′ L ∈ Ker π′. From

Proposition 3.14, for L′ = {L1, · · · , Ll} ∈ I(L), there is a set of hyperfacets
H′ = {H1, · · · , Hl} ∈ I(H) such that Hk ∩ Hk = Lk. By the definition of

the ideal I, a product
∏l

k=1 Hk is one of the generators of I. Moreover we see

ϕ ◦ ϕ′(I) ∋ ϕ ◦ ϕ′(
∏l

k=1 Hk) = ±
∏l

k=1 Lk by definitions of ϕ′ and ϕ. Hence we
have Ker π′ ⊂ ϕ ◦ ϕ′(I). Moreover we have π′ ◦ ϕ ◦ ϕ′(A) = {0} for all A ∈ I,
because ϕ′(H +H −X) = 0 and ϕ ◦ ϕ′(

∏
H∈H′ H) = ±

∏
L∈L′ L ∈ Ker π′. So we

have Ker π′ ⊃ ϕ ◦ ϕ′(I). Therefore we conclude the second property: Ker π′ =
ϕ ◦ ϕ′(I). �

In order to prove Proposition 3.17, we also prepare the following lemma.

Lemma 3.16. Let I ⊂ Z[x1, · · · , xl] be an ideal generated by homogeneous
polynomials, that is, I = ⟨p1, · · · , pm⟩ where pi is a homogeneous polynomial of
Z[x1, · · · , xl] such that deg pi ≤ deg pj for i < j. For A ∈ I, we denote A =
A1+· · ·+An where Ai is a homogeneous term (i = 1, · · · , n) and deg Ai < deg Aj

for i < j. Then Ai ∈ I for all i = 1, · · · , n.

Proof. Because A ∈ I, we can denote A = X1p1 + · · · +Xmpm where Xi ∈
Z[x1, · · · , xl]. Then we can put Xk = Xk1 + Xk2 + · · · + Xksk where Xki is a
homogeneous term (i = 1, · · · , sk) and deg Xki < deg Xkj for i < j. Hence we
see that

A = (X11 + · · ·+X1s1)p1 + · · ·+ (Xm1 + · · ·+Xmsm)pm

= A1 + · · ·+An.
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Because Ai is a homogeneous term, we have Ai =
∑

j∈Di
Xjhjpj where Di =

{j | deg Xjhj + deg pj = deg Ai}. Therefore Ai ∈ I for all i = 1, · · · , n. �

Using the above two lemmas, we have the following lemma.

Proposition 3.17. Ker π̃ = Ker π.

Proof. By Lemma 3.15 (i), the commutativity of the previous diagram and
Ker π̂ = I, we see π(Ker π̃) = π ◦ ϕ′(I) = Ψ ◦ π̂(I) = 0. Hence Ker π̃ = ϕ′(I) ⊂
Ker π.

Let A(∈ Z[X, H1, · · · , Hm]) be a minimal degree homogeneous polynomial
in Ker π\ϕ′(I). By the previous diagram, π′ ◦ ϕ(A) = F ◦ π(A) = 0. So ϕ(A) ∈
Ker π′ = ϕ ◦ ϕ′(I) by Lemma 3.15 (ii). Therefore we can take B ∈ ϕ′(I)(⊂ Ker π)
such that ϕ(A) = ϕ(B). By the definition of ϕ, we have

A−B ∈ Ker ϕ = Z[X, H1, · · · , Hm]X.

So there is a polynomial C ∈ Z[X, H1, · · · , Hm] such that

A−B = CX.

Since A, B ∈ Ker π, we have π(A − B) = 0 = π(CX) = π(C)χ. Because 0 =
π(C)χ ∈ H∗

Tn×S1(G), we have that 0 = π(C)(p)x ∈ H∗
Tn×S1(pt) for all p ∈ VΓ.

Since H∗
Tn×S1(pt) is a free H∗

S1(pt)(= Z[x])-module, we see that π(C)(p) = 0 for

all p ∈ VΓ. Hence π(C) = 0, that is, C ∈ Ker π. If C ∈ ϕ′(I), then CX ∈ ϕ′(I)
because I is the ideal and ϕ′(X) = X. So we have A = B + CX ∈ ϕ′(I). This
gives a contradiction, since A ∈ Ker π\ϕ′(I). Hence we have

C ∈ Ker π\ϕ′(I).

Now we can denote C =
∑l

i=1 Ci ∈ Ker π\ϕ′(I) where Ci is a homogeneous
polynomial and deg Ci < deg Cj for i < j. Then we see that there is a term

Ck ∈ Ker π\ϕ′(I) of C =
∑l

i=1 Ci. If there is a term Ci ∈ ϕ′(I), then B′ = B +
CiX ∈ ϕ′(I) because B ∈ ϕ′(I) and ϕ′(X) = X. Moreover we have ϕ(B′) = ϕ(A)
because ϕ(X) = 0 and ϕ(A) = ϕ(B). Hence we can put

A = B + CX ∈ Ker π\ϕ′(I)

where C =
∑l′

k=1 Cjk such that Cjk ∈ Ker π\ϕ′(I) for all k = 1, · · · , l′ and
B ∈ ϕ′(I) such that ϕ(A) = ϕ(B). From the definitions of I and ϕ′, we have that
the ideal ϕ′(I) is generated by homogeneous polynomials of the polynomial ring
Z[X, H1, · · · , Hm]. Hence we have that all homogeneous terms Bh of B ∈ ϕ′(I)
are elements in ϕ′(I) from Lemma 3.16. Since Bh ∈ ϕ′(I) and Cjk ∈ Ker π\ϕ′(I),
we have Cjk ̸= −Bh. Therefore, since A is a homogeneous polynomial, we have
that B and C are also homogeneous polynomials. In particular C ∈ Ker π\ϕ′(I)
and deg A = deg CX > deg C. This gives a contradiction, since A is a minimal
degree homogeneous polynomial in Ker π\ϕ′(I). Hence we have Ker π\ϕ′(I) = ∅,
that is, Ker π = ϕ′(I) = Ker π̃ by Lemma 3.15 (i). �

So we can prove the injectivity of Ψ.

Corollary 3.18. Ψ is injective.

Proof. Let A be in Ker Ψ. Then there is an element B ∈ Z[X, H1, · · · , Hm]
such that π̃(B) = A, because π̃ is surjective. So we have π(B) = Ψ ◦ π̃(B) =
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Ψ(A) = 0. Hence B ∈ Ker π = Ker π̃ by Proposition 3.17. Therefore we have
π̃(B) = 0 = A. Hence we conclude that Ψ is injective. �

Because of Corollary 3.12 and 3.18, we have that Ψ is the isomorphism. Con-
sequently the proof of Theorem 3.1 is complete, that is, we get H∗

Tn×S1(G) ≃ Z[G].

4. Application: Mayer-Vietoris exact sequence of graph

Let G = (Γ, α, θ) be a hypertorus graph which satisfies the assumptions (1)
and (2) of Theorem 3.1. In this final section, we give one application of Theorem
3.1. The purpose of this section is to prove the following theorem.

Theorem 4.1. If G is not a minimal hypertorus graph, then there is the fol-
lowing exact sequence:

{0} −→ H∗
Tn×S1(G) ρ1−→ H∗

Tn×S1(G1)⊕H∗
Tn×S1(G2)

ρ2−→ H∗
Tn×S1(G3) −→ {0}.

We start to prepare notations which appear in Theorem 4.1.

4.1. Neighborhood and Minimal hypertorus graph. In order to define
a minimal hypertorus graph, we define a neighborhood N(H) = (VN(H), EN(H)) of
the subgraph H = (VH , EH) in Γ = (VΓ, EΓ).

Definition 4.2 (neighborhood of subgraph). Let H be a subgraph of Γ. Let
N(H) be a 2n-valent graph which satisfies the following properties:

VN(H) = VH ;

EN(H)
p = EH

p if |EH
p | = 2n;

EN(H)
q = EH

q ∪ {l(n(q)1), · · · , l(n(q)k)} if |EH
q | = 2n− k,

where {n(q)1, · · · , n(q)k} = EΓ
q −EH

q . Here if n(q) is a leg (in Γ) then l(n(q)) = n(q),
if not so then we regard the edge n(q) (in Γ) as a leg (in N(H)) whose initial vertex
is q. We call N(H) a neighborhood of the subgraph H in Γ.

hyper facet its neighborhood

Figure 5. Two neighborhoods in the left graph in Figure 2.

Remark 4.3. We do not call a neighborhood N(H) a subgraph of Γ, if N(H)
has a leg l(n(q)) such that n(q) is an edge in Γ. Of course the neighborhoods N(H)
is a 2n-valent hypertorus graph for every hypertorus subgraph H.

Let us define a minimal hypertorus graph.
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Definition 4.4 (minimal hypertorus graph). We call G is aminimal hypertorus
graph, if we can put a set of all hyperfacets in G as follows:

H = {H1, · · · , Hm, H1, · · · , Hm}

such that N(Hi) = Γ for all i = 1, · · · ,m.

For example left two hypertorus graphs in Figure 2 are minimal hypertorus
graphs. However the following graph in Figure 6 is not a minimal hypertorus
graph, because we can divide Γ into the upper graph H and the lower graph H for
the middle line (2-valent hypertorus subgraph) in Figure 6.

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

  

Figure 6. An example which is not a minimal hypertorus graph.

Remark 4.5. For an n-valent torus graph in [MMP], if we put n legs on all
vertices, then we can construct a 2n-valent hypertorus graph. We can regard this
hypertorus graph as a tangent bundle over a torus graph. We can easily check this
hypertorus graph is a minimal hypertorus graph.

Next we define G1, G2 and G3 in Theorem 4.1. If a hypertorus graph G =
(Γ, α, θ) is not minimal hypertorus graph, then there are a hyperfacet H and its
opposite side H such that

N(H), N(H) ̸= Γ.

Put N(H) = Γ1, N(H) = Γ2 and N(H) ∩N(H) = N(L) = Γ3, where L = H ∩H.
Then we can easily check that all Γi are 2n-valent graph, all restricted connections
θi = {θe | e ∈ EΓi ⊂ EΓ} are well-defined connections on Γi and all restricted
axial functions αi = α|EΓi are also well-defined axial functions on Γi (i = 1, 2, 3).
Therefore Gi = (Γi, αi, θi) is a hypertorus graph for all i = 1, 2, 3, and we can
define each graph equivariant cohomologies H∗

Tn×S1(Gi).
The expressions ρ1, ρ2 and ρ3 will be defined in the next section.

4.2. Proof of Theorem 4.1. Henceforth in this section a non-minimal hy-
pertorus graph G = (Γ, α, θ) satisfies assumptions (1), (2) of Theorem 3.1. Take
some hyperfacet H in G such that N(H), N(H) ̸= Γ. Put N(H) = Γ1, N(H) = Γ2

and N(H) ∩N(H) = N(L) = Γ3, where L = H ∩H.
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4.2.1. Preliminary. In order to prove Theorem 4.1, first we study some prop-
erties for Gi = (Γi, αi, θi) (i = 1, 2, 3).

The following lemma shows that all (2n− 2)-valent hypertorus subgraphs in Gi

come from (2n− 2)-valent hypertorus subgraphs in G.
Lemma 4.6. Put Γ1 = N(H), Γ2 = N(H), Γ3 = N(L) and L = H ∩H, where

H is a hyperfacet in G. The following statements hold for (2n−2)-valent hypertorus
subgraphs in Gi.

(1) If L′ is a (2n − 2)-valent hypertorus subgraph in Gi, then there is unique

(2n− 2)-valent hypertorus subgraph L̂ in G such that L′ = Γi ∩ L̂.
(2) If a (2n − 2)-valent hypertorus graph L′ in Gi satisfies L′ ∩ L ̸= ∅, then

L′ ∩ L = L̂ ∩ L. In particular L′ ∩ L is connected in Gi.
(3) If L′

a = Γi∩L̂a and L′
b = Γi∩L̂b are two distinct (2n−2)-valent hypertorus

subgraphs in Gi, then L̂a ̸= L̂b, where L̂a, L̂b are (2n−2)-valent hypertorus
subgraphs in G.

Proof. First we prove the statement (1). Let L′ be a (2n−2)-valent hypertorus

subgraph in Gi. Then we can take (n−1)-pairs EL′

p (⊂ EΓi
p ) for p ∈ VL′

. Conversely,
for such (n− 1)-pairs, a (2n− 2)-valent hypertorus subgraph which is through this
(n − 1)-pairs is L′, by Lemma 2.5. Now we see EΓi

p = EΓ
p , and we can also take

a unique (2n − 2)-valent hypertorus subgraph L̂ in G, by Lemma 2.5. Moreover

L′ = Γi ∩ L̂ by their uniqueness.
Next we prove the statement (2). Assume a (2n−2)-valent hypertorus subgraph

L′ in Gi satisfies L′ ∩ L ̸= ∅. By the statement (1), we can take (2n − 2)-valent

hypertorus subgraph L̂ in G such that L′ = Γi ∩ L̂. Because L ⊂ Γi, we have
L′∩L = L̂∩L. By the assumption (2) of Theorem 3.1, we also have L′∩L = L̂∩L
is connected.

Finally we prove the statement (3). Assume two (2n − 2)-valent hypertorus
subgraphs L′

a and L′
b satisfy that L′

a ̸= L′
b in Gi. By the statement (1), we have

L′
a = Γi ∩ L̂a and L′

b = Γi ∩ L̂b for (2n− 2)-valent hypertorus subgraphs L̂a, L̂b in

G. If L′
a = L̂a or L′

b = L̂b, that is, L̂a or L̂b is a hyperfacet in Gi, then we can easily

prove L̂a ̸= L̂b because L′
a ̸= L′

b. Hence we can assume L′
a ̸= L̂a and L′

b ̸= L̂b.
In this case, we also see L′

a ∩ L ̸= ∅ and L′
b ∩ L ̸= ∅. If L′

a ∩ L′
b ̸= ∅ in Γi, then

E L̂a
p = EL′

a
p ̸= EL′

b
p = E L̂b

p for p ∈ VL′
a∩L′

b , by Lemma 2.5. Hence L̂a ̸= L̂b because of
Lemma 2.5. If L′

a ∩ L′
b = ∅ in Γi, then L′

a ∩ L separates from L′
b ∩ L in Γi and Γ.

By the statement (2), we have that L′
a ∩L = L̂a ∩L and L′

b ∩L = L̂b ∩L. Hence, if
La = Lb, there are two connected components L′

a∩L and L′
b∩L in La∩L = Lb∩L.

This gives a contradiction, since the assumption (2) of Theorem 3.1 holds for G.
Therefore we have L̂a ̸= L̂b. �

The following lemma is the key lemma to prove Theorem 4.1.

Lemma 4.7. Assume G satisfies the assumptions (1) and (2) of Theorem 3.1.
Then the following statements hold:

(1) All hyperfacets in Gi can be denoted by Γi ∩ F for unique hyperfacet F of
G and its opposite side is Γi ∩ F , for i = 1, 2, 3;

(2) Gi also satisfies the assumptions (1) and (2) of Theorem 3.1.

Proof. First we prove the statement (1). Take hyperfacet F ′ and its opposite
side F ′ in Gi. For its boundary L′ = F ′ ∩ F ′, there is a unique (2n − 2)-valent
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hypertorus subgraph L̂ in G such that L′ = Γi ∩ L̂ by Lemma 4.6 (1). Because
G satisfies the assumption (1) of Theorem 3.1, we can take unique hyperfacet F

and its opposite side F such that F ∩ F = L̂. Since F ∪ F = Γ, we can assume
F ∩F ′−L′ ̸= ∅. Moreover we have Γi∩(F ∪F ) = (Γi∩F )∪(Γi∩F ) = Γi = F ′∪F ′.
We can easily show Γi ∩ F is a hyperfacet in Γi and Γi ∩ F is its opposite side.
Now L′ divides Γi into two hyperfacets F ′, F ′, and Γi ∩ L̂ also divides Γi into two
hyperfacets Γi∩F , Γi∩F . Therefore we have Γi∩F = F ′ and Γi∩F = F ′, because
L′ = Γi ∩ L̂ and F ∩ F ′ − L′ ̸= ∅.

Next we prove Gi satisfies the assumption (1) of Theorem 3.1. Put a (2n− 2)-

valent hypertorus subgraph L′ = Γi ∩ L̂ in Γi, by Lemma 4.6 (1). Since G satisfies

the assumption (1) of Theorem 3.1, for a (2n − 2)-valent hypertorus subgraph L̂

there is a unique hyperfacet F and its opposite side F such that L̂ = F ∩ F .
Then we can easily show that Γi ∩F is a hyperfacet, Γi ∩F is its opposite side and
(Γi∩F )∩(Γi∩F ) = L′. Conversely, take hyperfacet F ′ in Γi such that F ′∩F ′ = L′.
Then we see F ′ = Γi ∩ F and F ′ = Γi ∩ F by the statement (1). Hence Gi satisfies
the assumption (1) of Theorem 3.1.

Finally we prove Gi satisfies the assumption (2) of Theorem 3.1. Take some
distinct (2n − 2)-valent hypertorus subgraphs L′

1, · · · , L′
k in Gi, and put L′ =

{L′
1, · · · , L′

k}. By Lemma 4.6 (1), (3), we can take distinct (2n − 2)-valent

hypertorus subgraphs L̂1, · · · , L̂k in G such that Γi ∩ L̂j = L′
j , and put L =

{L̂1, · · · , L̂k}. Assume ∩L′ = L′
1 ∩ · · · ∩ L′

k = Γi ∩ (∩L) ̸= ∅. If ∩L ⊂ Γi,
we can easily show ∩L = ∩L′. Hence ∩L′ is connected by the assumption (2) of
Theorem 3.1. If ∩L ̸⊂ Γi, that is, L ∩ (∩L) ̸= ∅ and ∩L ̸⊂ L. By the assumption
(2) of Theorem 3.1, L ∩ (∩L) is connected. For Γ3 = N(L), because Γ3 is a hy-
pertorus graph which attaches two legs on each vertex VL for L, the intersection
∩L′ = Γ3 ∩ (∩L) is the graph which attaches two legs on each vertex of the con-
nected subgraph L∩(∩L). Hence ∩L′ is connected in Γ3. Next, for Γ1 = N(H) and
Γ2 = N(H), we have that two subgraphs Γ1 ∩ (∩L) and Γ2 ∩ (∩L) are connected,
because H∪H = Γ, H∩H = L and L∩ (∩L) is connected by the assumption (2) of
Theorem 3.1. Therefore ∩L′ = Γi∩(∩L) is connected in Γi (i = 1, 2). Consequently
Gi satisfies the assumption (2) of Theorem 3.1. �

Because of Theorem 3.1 and Lemma 4.7, we have the following isomorphism:

Ψi : Z[Gi] → H∗
Tn×S1(Gi),

for all Gi = (Γi, αi, θi), such that Ψi(X) = χ|VΓi and Ψi(Γi ∩ F ) = τF |VΓi , where
χ|VΓi and τF |VΓi are the restricted to VΓi of χ, τF ∈ H∗

Tn×S1(G) (i = 1, 2, 3), and
F is a hyperfacet of G.

4.2.2. Exact sequence on H∗
Tn×S1(G). Next we consider the graph equivariant

cohomologies H∗
Tn×S1(G) and H∗

Tn×S1(Gi) (i = 1, 2, 3).
Define the homomorphisms

ρ1 : H∗
Tn×S1(G) → H∗

Tn×S1(G1)⊕H∗
Tn×S1(G2)

by ρ1(f) = f |VΓ1 ⊕ f |VΓ2 , and

ρ2 : H∗
Tn×S1(G1)⊕H∗

Tn×S1(G2) → H∗
Tn×S1(G3)

by ρ2(g ⊕ h) = g|VΓ3 − h|VΓ3 .
We have the following lemma.
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Lemma 4.8. The following sequence is exact:

{0} −→ H∗
Tn×S1(G) ρ1−→ H∗

Tn×S1(G1)⊕H∗
Tn×S1(G2)

ρ2−→ H∗
Tn×S1(G3).

Proof. First we prove ρ1 is injective. If ρ1(f) = f |VΓ1 ⊕ f |VΓ2 = 0, then
f(p) = 0 for all p ∈ VΓ1 ∪ VΓ2 = VΓ, that is, f = 0 ∈ H∗

Tn×S1(G). This means

Ker ρ1 = {0}, hence ρ1 is injective.
Next we have ρ2 ◦ ρ1(f) = f |VΓ3 − f |VΓ3 = 0. Hence Im(ρ1) ⊂ Ker(ρ2).
Finally we take g ⊕ h ∈ Ker(ρ2), then g|VΓ3 = h|VΓ3 . Hence the following map

f : VΓ → H∗
Tn×S1(pt) is well-defined and in H∗

Tn×S1(G):

f(p) =

{
g(p) if p ∈ VΓ1

h(p) if p ∈ VΓ2 .

So we have Im(ρ1) ⊃ Ker(ρ2). �

4.2.3. Proof of Theorem 4.1. To prove Theorem 4.1, we prepare some facts for
Z[G].

Let A ∈ Z[X, H1, · · · , H2m]. Then we can denote it by

A =
∑

(a1,··· ,a2m,a)

k(a1,··· ,a2m,a)H
a1
1 · · ·Ha2m

2m Xa

for some k(a1,··· ,a2m,a) ∈ Z and (a1, · · · , a2m, a) ∈ (N∪{0})2m+1, whereH1, · · · ,H2m

are all hyperfacets in G. Define Γi ∩A as follows:

Γi ∩A =
∑

(a1,··· ,a2m,a)

k(a1,··· ,a2m,a)(Γi ∩H1)
a1 · · · (Γi ∩H2m)a2mXa,

where if Γi ∩ Hj = ∅, Γi ∩ Hj = Γi (resp. Γi ∩ Hj = Γi, Γi ∩ Hj = ∅) as a

subgraph in Γ then Γi ∩Hj = 0, Γi ∩Hj = X (resp. Γi ∩Hj = X, Γi ∩Hj = 0)
for j = 1, · · · , 2m. We define the homomorphism ρ̂1 as follows:

ρ̂1 : Z[G] → Z[G1]⊕ Z[G2]

such that ρ̂1([A]) = [Γ1 ∩ A]1 ⊕ [Γ2 ∩ A]2, where [A] ∈ Z[G] and [B]i ∈ Z[Gi] for
i = 1, 2, 3. Because of the definition of Γi ∩ A and Lemma 4.7 (1), we can easily
see that ρ̂1([Hi + Hi − X]) = [0]1 ⊕ [0]2 and ρ̂1([

∏
F∈H′ F ]) = [0]1 ⊕ [0]2, where

a subset H′ ⊂ H satisfies ∩H′ = ∅. Therefore ρ̂1 is well-defined homomorphism.
Because Γ3 = Γ1 ∩ Γ2, we can similarly show that the following homomorphism is
well-defined:

ρ̂2 : Z[G1]⊕ Z[G2] → Z[G3]

such that ρ̂2([B]1 ⊕ [C]2) = [Γ3 ∩B]3 − [Γ3 ∩ C]3 ∈ Z[G3].
By the definitions of ρ̂j and ρj (j = 1, 2), we can easily show the following

lemma.

Lemma 4.9. The following diagram is commutative:

Z[G] ρ̂1−→ Z[G1]⊕ Z[G2]
ρ̂2−→ Z[G3] −→ {0}

Ψ ↓ Ψ1 ⊕Ψ2 ↓ Ψ3 ↓
{0} −→ H∗

T (G)
ρ1−→ H∗

T (G1)⊕H∗
T (G2)

ρ2−→ H∗
T (G3)

From Theorem 3.1 and Lemma 4.7, we have that Ψ, Ψ1 ⊕ Ψ2 and Ψ3 are
isomorphic maps.

Moreover we have the following lemma.
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Lemma 4.10. The following sequence is exact:

Z[G] ρ̂1−→ Z[G1]⊕ Z[G2]
ρ̂2−→ Z[G3] −→ {0}.

Proof. Because all hyperfacets of G3 are induced from G1 (by Lemma 4.7 (1)),
we can get all generators (hyperfacets) [F ′]3 and [X]3 of Z[G3] by ρ̂2([F ]1 ⊕ [0]2) =
[Γ3 ∩F ]3 = [F ′]3 for some generator [F ]1 ∈ Z[G1] such that Γ3 ∩F = F ′ in Γ3, and
ρ̂2([X]1 ⊕ [0]2) = [Γ3 ∩X]3 = [X]3. Hence we see ρ̂2 is surjective.

Finally Im(ρ̂1) = Ker(ρ̂2) comes from the commutative diagram (Lemma 4.9)

Z[G] ρ̂1−→ Z[G1]⊕ Z[G2]
ρ̂2−→ Z[G3] −→ {0}

Ψ ↓ Ψ1 ⊕Ψ2 ↓ Ψ3 ↓
{0} −→ H∗

T (G)
ρ1−→ H∗

T (G1)⊕H∗
T (G2)

ρ2−→ H∗
T (G3)

where its bottom sequence is exact by Lemma 4.8 and Ψ, Ψ1⊕Ψ2, Ψ3 are isomorphic
maps. �

From Lemma 4.8 and 4.10, we have that the top and bottom sequences in
Lemma 4.9 are exact. Hence we have that ρ̂1 is injective and ρ2 is surjective by the
snake lemma. Therefore we have the following two sequences are exact:

{0} −→ Z[G] ρ̂1−→ Z[G1]⊕ Z[G2]
ρ̂2−→ Z[G3] −→ {0};

{0} −→ H∗
T (G)

ρ1−→ H∗
T (G1)⊕H∗

T (G2)
ρ2−→ H∗

T (G3) −→ {0}.
In particular, we conclude Theorem 4.1.
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