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Abstract. In this article, we classify GKM graphs (Γ, α,∇) with effective axial function, where
the graph Γ is combinatorially equivalent to the complete graph K4. As a result, they are
equivalent to one of the following distinct GKM graphs: Gst; G0(1, 1); G0(−1,−1); G0(k,±1);
G1(m); G2; G3, where k and m are integers which satisfy |k| ≥ 2 and m ≥ 1.
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1. Introduction

The toric geometry may be regarded as the geometry of the spaces with complexity zero torus actions,
i.e., the real 2n-dimensional (complex n-dimensional) with nice Tn-actions. As is well-known, the theory of
toric geometry is successfully developed and it is widely studied in several different areas of mathematics:
algebraic geometry, symplectic geometry or topology, etc (see e.g. [BP, Od]). Recently, the theory about
manifolds with complexity one torus actions (i.e., (2n+2)-dimensional manifolds with n-dimensional torus
actions) are also studied, in particular, in algebraic geometry and symplectic geometry (see e.g. [KT1,
KT2, Ti]). However, unlike toric geometry, from topological point of view, the spaces with complexity
one torus actions is still developing (also see [Ku1]). In order to develop such theory, it may be useful to
have good examples.

In this article, we introduce some examples from “combinatorial” point of view by classifying the GKM
graphs (introduced in [GZ]) with combinatorial type K4, i.e., the complete graph with four vertices. Recall
that the GKM graphs are the combinatorial counterpart of the GKM manifolds which contains wide classes
of manifolds with torus actions. For example, by classification of toric manifolds, a toric manifold whose
GKM graph is K4 is nothing but the 3-dimensional complex projective space CP 3 with the standard torus
action (also see Figure 1). Due to the definition of GKM graph, other GKM graphs whose combinatorial
type is K4 must be induced from the complexity one GKM manifolds (if there are geometric counterparts).
Therefore, to classify such GKM graphs should be useful to study the complexity one GKM manifolds in
the future.

The goal of this article is to classify GKM graphs with combinatorial type K4 up to equivalence, and
the main theorem can be stated as follows (see propositions in Section 3):

Theorem 1.1. The GKM graph (K4, α,∇) is equivalent to one of the following GKM graphs:

Gst, G0(1, 1), G0(−1,−1), G0(k,±1), G1(m), G2, G3,

where k and m are integers such that |k| ≥ 2 and m ≥ 1.

The organization of this paper is as follows. In Section 2, we recall the basics of GKM graphs. In
Section 3, we prove Theorem 1.1. In the final section (Section 4), we propose some questions derived from
our classification.

2. GKM graph

2.1. Definition. We first recall the definition of GKM graph. Let Γ = (V (Γ), E(Γ)) be an abstract
graph with vertices V (Γ) and oriented edges E(Γ). For the given orientation on e ∈ E(Γ), we denote its
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initial vertex by i(e) and its terminal vertex by t(e). The symbol e ∈ E(Γ) represents the edge e with its
orientation reversed. We assume no loops in E(Γ) and Γ is connected in this article. Set

Ep(Γ) = {e ∈ E(Γ) | i(e) = p}.

A finite connected graph Γ is called an m-valent graph if |Ep(Γ)| = m for all p ∈ V (Γ).
Let Γ be an m-valent graph. We next define a label α : E(Γ) → H2(BT ) on Γ. Recall that BTn

(often denoted by BT ) is a classifying space of an n-dimensional torus T , and its cohomology ring (over
Z-coefficient) is isomorphic to the polynomial ring

H∗(BT ) ≃ Z[a1, . . . , an],

where ai is a variable with deg ai = 2 for i = 1, . . . , n. So its degree 2 part H2(BT ) is isomorphic to Zn.
Put a label by a function α : E(Γ) → H2(BT ) on edges of Γ. Set

α(p) = {α(e) | e ∈ Ep(Γ)} ⊂ H2(BT ).

An axial function on Γ is the function α : E(Γ) → H2(BTn) for n ≤ m which satisfies the following three
conditions:

(1): α(e) = −α(e);
(2): for each p ∈ V (Γ), the set α(p) is pairwise linearly independent, i.e., each pair of elements in

α(p) is linearly independent in H2(BT );
(3): for all e ∈ E(Γ), there exists a bijective map ∇e : Ei(e)(Γ) → Et(e)(Γ) such that

(1) ∇e = ∇−1
e ,

(2) ∇e(e) = e, and
(3) for each e′ ∈ Ei(e)(Γ), the following relation (called a congruence relation) holds:

α(∇e(e
′))− α(e′) ≡ 0 mod α(e) ∈ H2(BT ).(2.1)

The collection ∇ = {∇e | e ∈ E(Γ)} is called a connection on the labelled graph (Γ, α); we denote the
labelled graph with connection as (Γ, α,∇). The conditions as above are called an axiom of axial function.
In addition, we also assume the following condition:

(4): for each p ∈ V (Γ), the set α(p) spans H2(BT ).

The axial function which satisfies (4) is called an effective axial function.

Definition 2.1 (GKM graph [GZ]). If an m-valent graph Γ is labeled by an axial function α :
E(Γ) → H2(BTn) for some n ≤ m, then such labeled graph is said to be an (abstract) GKM graph, and
denoted as (Γ, α,∇). If such α is effective, (Γ, α,∇) is said to be an (effective) (m,n)-type GKM graph.

Figure 1. A (3,3)-type GKM graph Gst. We omit the label on the different
direction because it is determined automatically by the axiom (1).

In this article, we only consider a complete graph with four vertices, denoted as K4, i.e., the 3-
valent graph with four vertices. An effective GKM graph whose combinatorial structure is K4 must be a
(3, 3)-type or (3, 2)-type GKM graph (see Figure 1).
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2.2. Equivalence relation. We next define the equivalence relation among GKM graphs. We call
two abstract graphs Γ and Γ′ are combinatorially equivalent if there is a bijective map

f : Γ = (V (Γ), E(Γ)) → (V (Γ′), E(Γ′)) = Γ′

such that f(e) = f(e) for all e ∈ E(Γ) and the following diagram commutes:

E(Γ)

i

��

f // E(Γ′)

i

��
V (Γ)

f // V (Γ′)

where i is the projection onto the initial vertex of an edge. Then, the equivalence relation on GKM graphs
can be defined as follows:

Definition 2.2. Let G = (Γ, α,∇) and G′ = (Γ′, α′,∇′) be GKM graphs. We call G and G′ are
equivalent (or ρ-equivalent), denoted as G ≃ G′, if there is a combinatorial equivalent map f : Γ → Γ′ and
an isomorphism ρ : H2(BTn) → H2(BTn) such that the following diagrams are commutative:

E(Γ)

f

��

α // H2(BTn)

ρ

��
E(Γ′)

α′ // H2(BTn)

(2.2)

and

Ei(e)(Γ)

f

��

∇e // Et(e)(Γ)

f

��
Ei(f(e))(Γ

′)
∇′

f(e) // Et(f(e))(Γ
′)

(2.3)

for all e ∈ E(Γ).

3. The classification

In this section, we classify GKM graphs with combinatorial type K4.

3.1. Classification of abstract connections. We first ignore the axial functions and classify the
possible connections on K4 up to equivalence. Namely we classify the following abstract connection on
K4:

∇ = {∇e | e ∈ E(K4), ∇e = ∇−1
e , ∇e(e) = e}.

We denote K4 with an abstract connection ∇ as (K4,∇). We define two (K4,∇) and (K4,∇′) are
equivalent if there is a combinatorial equivalent map f : K4 → K4 such that f satisfies the commutative
diagram (2.3). The following result is the classification of such (K4,∇).

Lemma 3.1. There are exactly seven abstract connections, say ∇st and ∇(k) (k = 1, . . . , 6), on K4 up
to equivalence.

Proof. It is easy to check that there is the unique connection on Gst in Figure 1. We call this
connection the standard connection ∇st.

In order to get the other abstract connections, we may change the bijections ∇st
e (and ∇st

e ) for
e ∈ E(K4). By definition ∇e = ∇−1

e , we may only consider the one direction of e ∈ E(K4), i.e., we
may only think bijections on 6 edges. Moreover, by using definition ∇e(e) = e and the fact that K4 is a
3-valent graph, there are two possible bijections on each edge e ∈ E(K4).

We first consider the case when only one bijection ∇st
e on an edge e ∈ E(K4) is changed, denote such

connection as ∇1,e. Because K4 is the complete graph, for any other edge e′ ∈ E(K4) two (K4,∇1,e) and

(K4,∇1,e′) are equivalent. Therefore, the abstract connection which satisfies that the only one bijection

is different from ∇st is unique up to equivalence; therefore, we can denote it as ∇(1).
Because K4 is the complete graph, we can apply the similar method for the other cases when bijections

on k edges in the connection are different from the standard connection. Namely, there is the unique

connection∇(k) (up to equivalence) whose exactly k bijections∇(k)
e are different from those in the standard

connection ∇st, where k = 1, . . . , 6. This establishes the statement. □
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3.2. Classification of all axial functions. Now we may prove the main theorem. In the beginning,
we introduce the following well-known fact from the toric geometry:

Proposition 3.2. The (3, 3)-type GKM graph (K4, α,∇) is equivalent to Gst (Figure 1).

Therefore, we may only consider the case when (K4, α,∇) is a (3, 2)-type GKM graph. We first show
a rough classification.

Lemma 3.3. The (3, 2)-type GKM graph (K4, α,∇st) is equivalent to G0(m,n) (Figure 2), where
m, n are non-zero integers which satisfy one of the following conditions: m = ±1, n = ±1, n = −m or
n = 2−m.

Figure 2. A (3,2)-type GKM graph G0(m,n) with the standard connection ∇st,
where m and n are non-zero integers.

Proof. To show the statement, we use the figures, see Figure 3 and Figure 4.

Figure 3. The axial functions
around e.

Figure 4. The axial functions
around e′, e′′.

Fix the axial function around the middle vertex like in the Figure 3, i.e., α, β and mα+nβ for the fixed
basis α, β ∈ H2(BT 2). Because they are pairwise linearly independent, we may choose m,n ∈ Z \ {0}.
Recall that the connection is the standard connection ∇st. So by using the congruence relation along
e ∈ E(K4), we also have integers k, h ∈ Z in Figure 3. Next, by using the congruence relation along
e′, e′′ ∈ E(K4) (see Figure 4), we have h = −1, k = m− 1. By routine work, we also have j = n− 1.

In our article, we also assume that the effectiveness condition, i.e., the condition (4) in Section 2.1.
Therefore, to satisfy the condition (4) around the vertex s (see Figure 4), we have one of the following
equations:

m = ±1, n = ±1, or, m+ n− 1 = ±1.

This establish the statement. □

Proposition 3.4. The GKM graphs which appeared in Lemma 3.3 are equivalent to one of the
following distinct GKM graphs:

G0(1, 1), G0(−1,−1), G0(k, 1), G0(k,−1)

where |k| ≥ 2.
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Proof. It is easy to check that G0(m,n) ≃ G0(n,m) for all m,n ∈ Z \ {0}. Therefore, we may
write G0(m,n) as G0(k, 1)(≃ G0(1, k)), G0(k,−1)(≃ G0(−1, k)), G0(h,−h)(≃ G0(−h, h)) or G0(j, 2 − j)(≃
G0(2− j, j)) for some integers k, h, j such that k ̸= 0, h ≥ 2, j ≥ 4.

We first consider G0(k, 1) and G0(−k, k) as Figure 5. Then, the identity map on two graphs with

Figure 5. The left is G0(k, 1) and the right is G0(−k, k) for k ≤ −2.

the isomorphism ρ : H2(BT 2) → H2(BT 2) defined by α 7→ α − β and β 7→ −kα + (k − 1)β induces the
equivalence G0(k, 1) ≃ G0(−k, k).

We next consider G0(k,−1) and G0(k, 2− k) as Figure 6. Then, the identity map on two graphs with

Figure 6. The left is G0(k,−1) and the right is G0(k, 2− k) for k ≥ 4.

the isomorphism defined by α 7→ α− β and β 7→ −β induces the equivalence G0(k,−1) ≃ G0(k, 2− k).
We next claim that G0(k, 1) ̸≃ G0(k

′,−1) for any integers k, k′ such that |k|, |k′| ≥ 2 (also see the left
graphs in Figure 5 and Figure 6). Note that if |k| ≥ 2 (resp. |k′| ≥ 2), there are exactly two (2, 2)-type
GKM subgraphs in G0(k, 1) (resp. G0(k

′,−1)), say K1 and K2 (resp. K′
1 and K′

2). Moreover, both of
e = K1 ∩ K2 and e′ = K′

1 ∩ K′
2 are the edge whose axial function is labelled by α (see Figure 5 and

Figure 6). Assume that there is an equivalent map G0(k, 1) ≃ G0(k
′,−1). Then, this equivalent map

preserves (2, 2)-type GKM subgraphs; therefore, e 7→ e′ and also f 7→ f ′ (they are edges in the twisted
position with e and e′, see Figure 5 and Figure 6). Hence, this shows that every equivalent map satisfies
α 7→ ±α and kα 7→ ±(k′α− 2β). However, this gives a contradiction because if α 7→ ±α then kα 7→ ±kα.
Consequently we have that G0(k, 1) ̸≃ G0(k

′,−1).
We finally claim that G0(1, 1) ≃ G0(1,−1) ≃ G0(−1, 1) ̸≃ G0(−1,−1). Because G0(m,n) ≃ G0(n,m),

we have that

G0(1,−1) ≃ G0(−1, 1).

See Figure 7. In Figure 7, by taking the isomorphism α 7→ −α+ β and β 7→ β, we have that

G0(1, 1) ≃ G0(1,−1).

Note that G0(1, 1) has two pair of two edges with the same axial functions, i.e., α and β (see the left of
Figure 7). On the other hand, G0(−1,−1) does not have such pair. If they are equivalent then such pair
must be preserved. Hence, we have

G0(1, 1) ̸≃ G0(−1,−1).

This establishes the statement of this proposition. □
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Figure 7. The left is G0(1, 1) and the right is G0(1,−1).

With the method similar to that demonstrated in the proof of Proposition 3.4, we have the following
series of propositions:

Proposition 3.5. The (3, 2)-type GKM graph (K4, α,∇(1)) is equivalent to G1(m) (Figure 8) for
some m ∈ N; namely, G1(m) ≃ G1(m

′) if and only if |m| = |m′|( ̸= 0).

Figure 8. A (3,2)-type GKM graph G1(m) (m ∈ N) with the connection ∇(1),

i.e., ∇(1)
e ̸= ∇st

e . This axial function is nothing but the axial function of G0(m, 1).

Proposition 3.6. The (3, 2)-type GKM graph (K4, α,∇(2)) is equivalent to G2 (Figure 9).

Figure 9. A (3,2)-type GKM graph G2 with the connection ∇(2), i.e., ∇(2)
e ̸= ∇st

e

and ∇(2)
e′ ̸= ∇st

e′ . This axial function is nothing but the axial function of G0(1, 1).

Proposition 3.7. The (3, 2)-type GKM graph (K4, α,∇(3)) is equivalent to G3 (Figure 10).

We also have the following proposition.

Proposition 3.8. For k = 4, 5, 6, there are no axial functions α such that (K4, α,∇(k)) is a GKM
graph.

Consequently, we establish Theorem 1.1.
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Figure 10. A (3,2)-type GKM graph G3 with the connection ∇(3), i.e., ∇(3)
e ̸=

∇st
e , ∇(3)

e′ ̸= ∇st
e′ and∇(3)

e′′ ̸= ∇st
e′′ . This axial function is not induced from G0(m,n)

for any m,n ∈ Z \ {0}.

4. Final remarks

We finally remark some facts and ask some questions for future works.

4.1. The group of axial functions. We have introduced the group of axial functions A(Γ, α,∇) for
GKM graph (Γ, α,∇) in [Ku2]. The rank of this free abelian group evaluates the maximal axial function
which is the extension of α. It is not so difficult to compute them for our GKM graphs in Theorem 1.1.
The following is the results of computations.

Theorem 4.1. The group of axial functions for each GKM graph in Theorem 1.1 is as follows:

A(G0(1, 1)) ≃ A(G0(−1,−1)) ≃ A(G0(k,±1)) ≃ Z3;

A(G1(m)) ≃ A(G2) ≃ A(G3) ≃ Z2.

Therefore, we see that G0(1, 1), G0(−1,−1) and G0(k,±1) can be induced from Gst.

4.2. GKM cohomology. The most important invariant of GKM graphs is the equivariant coho-
mology of GKM graph (introduced in [GZ]). We call them a GKM cohomology in this paper and denote
it as H∗

T (Γ, α,∇). It is well-known that

H∗
T (Gst) ≃ Z[τ1, τ2, τ3, τ4]/⟨τ1τ2τ3τ4⟩,

where deg τi = 2 (i = 1, 2, 3), and its H∗(BT 3)-algebraic structure is obtained by

α 7→ τ1 − τ4; β 7→ τ2 − τ4; γ 7→ τ3 − τ4.

Because G0(m,n) is obtained by changing γ to mα+nβ (also see Section 4.1), its GKM cohomology is as
follows:

H∗
T (G0(m,n)) ≃ H∗

T (Gst)/I,

where

I = ⟨(τ3 − τ4)−m(τ1 − τ4)− n(τ2 − τ4)⟩.

Note that we do not need to use the connection to define the GKM cohomology, though the connection is
essential to define the group of axial functions (see [Ku2]). Therefore,

H∗
T (G1(m)) ≃ H∗

T (G0(m, 1)),

H∗
T (G2) ≃ H∗

T (G0(1, 1)).

This establishes that the following theorem:
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Theorem 4.2. The following isomorphism holds:

H∗
T (G0(1, 1)) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(τ1 + τ2 − τ4)⟩;

H∗
T (G0(−1,−1)) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(−τ1 − τ2 + 3τ4)⟩;

H∗
T (G0(k, 1)) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(kτ1 + τ2 − kτ4)⟩;

H∗
T (G0(k,−1)) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(kτ1 + τ2 + (2− k)τ4)⟩;

H∗
T (G1(m)) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(mτ1 + τ2 −mτ4)⟩;

H∗
T (G2) ≃ Z[τ1, τ2, τ4]/⟨τ1τ2τ4(τ1 + τ2 − τ4)⟩.

If we divide them by τ1 − τ4 and τ2 − τ4, i.e., H
>0(BT 2), we obtain the ordinary cohomology coun-

terparts, say H∗(Γ, α,∇).

Corollary 4.3. The following isomorphism holds:

H∗(G0(m,n)) ≃ H∗(G1(m)) ≃ H∗(G2) ≃ Z[τ4]/⟨τ4
4 ⟩ ≃ H∗(CP 3).

So the following case is still remaining:

Problem 4.4. Compute H∗
T (G3) without using geometry (see [FIM]).

Remark 4.5. Note that the complex quadric Q3 = SO(5)/SO(3)× SO(2) with T 2-action is a GKM
manifold whose combinatorial type of GKM graph is K4. Therefore, by Corollary 4.3 (and H∗(CP 3) ̸≃
H∗(Q3) over integer coefficients), we have that the GKM graph G3 must be obtained from Q3 with
T 2-action. So by [GKM] H∗

T (G3) ≃ H∗
T (Q3).

In addition, because every G0(m,n) is defined by the restricted T 2-action of the standard T 3-action
on CP 3 (see Section 4.1). So it is natural to ask whether there are some nice geometric objects for the
other GKM graphs G1(m), G2.

Problem 4.6. Are there any equivariantly formal, simply connected GKM manifolds which define
GKM graphs G1(m) and G2?
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