(27) Shintar\^o Kuroki and Tomoo Matsumura: Gale duality of GKM graphs and the group of axial functions, in preparation.
(26) Yael Karshon and Shintar\^o Kuroki: Classification of locally standard torus manifolds up to equivariant diffeomorphism, in preparation.
(25) Shintar\^o Kuroki and Grigory Solomadin: 2,3,n-independency of tangential weights of G/K, in preparation.
(24) Shintar\^o Kuroki and Bidhan Paul: Equivariant cohomology of odd-dimensional complex quadrics from a combinatorial point of view, arXiv:2407.17921, submitted.
(23) Donghoon Jang, Shintar\^o Kuroki, Mikiya Masuda, Takashi Sato and Haozhi Zeng: Automorphisms of GKM graphs and regular semisimple Hessenberg varieties, arXiv:2405.16399, submitted.
(22) Shintar\^o Kuroki and Grigory Solomadin: Borel-Hirzebruch type formula for the graph equivariant cohomology of a projective bundle over a GKM-graph, arXiv:2207.11380, submitted.
(20) Shintar\^o Kuroki and Vikraman Uma: GKM graph locally modeled by $T^{n}\times S^{1}$-action on $T^{*}\mathbb{C}^{n}$ and its graph equivariant cohomology, A. Bahri, L. Jeffrey, T. Panov, D. Stanley, S. Theriault (eds), Toric Topology and Polyhedral Products, Fields Institute Communications, vol 89. Springer, Cham. (2024), pp.179--238. (DOI: https://doi.org/10.1007/978-3-031-57204-3_11) arXiv:2106.11598.
(19) Alastair Darby, Shintar\^o Kuroki and Jongbaek Song: Equivariant cohomology of torus orbifolds, Canadian Journal of Mathematics, Volume 74, Issue 2, April 2022, pp.299--328. (DOI: https://doi.org/10.4153/S0008414X20000760) arXiv:1809.03678.
(18) Shintar\^o Kuroki, Eunjeong Lee, Jongbaek Song and DongYoup Suh: Flag Bott manifolds and the toric closure of generic orbit associated to a generalized Bott manifold, Pacific Journal of Mathematics 308-2 (2020), 347--392. (DOI 10.2140/pjm.2020.308.347) arXiv:1708.02082.
(17) Shizuo Kaji, Shintar\^o Kuroki, Eunjeong Lee and DongYoup Suh: Flag Bott manifolds of general Lie type and their equivariant cohomology rings, Homology, Homotopy and Applications, vol. 22(1), (2020), 375--390. (DOI: https://dx.doi.org/10.4310/HHA.2020.v22.n1.a21) arXiv:1905.00303.
(16) Shintar\^o Kuroki: Upper bounds for the dimension of tori acting on GKM manifolds, Journal of the Mathematical Society of Japan, Vol. 71, No. 2 (2019), 483--513. (DOI 10.2969/jmsj/79177917); arXiv:1510.07216.
(15) Shintar\^o Kuroki and Mikiya Masuda: Root systems and symmetries of a torus manifold, Transformation Groups, Volume 22, Issue 2 (2017), 453--474. (DOI 10.1007/s00031-016-9387-4); arXiv:1503.05264.
(14) Shintar\^o Kuroki and Zhi L\"u: Projective bundles over small covers and the bundle triviality problem, Forum Mathematicum, Volume 28, Issue 4 (2016), Pages 761--781. (ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: 10.1515/forum-2015-0007, July 2015); also see [pdf](version_2014-Nov.30th); OCAMI preprint series 13-21 or arXiv:1401.4759
(13) Shintar\^o Kuroki: An Orlik-Raymond type classification of simply connected 6-dimensional torus manifolds with vanishing odd degree cohomology, Pacific Journal of Mathematics 280-1 (2016), 89--114. (DOI 10.2140/pjm.2016.280.89); [pdf] or arXiv:1305.3174
(23) Shintar\^o Kuroki: On a certain condition for the projectivization of a leg bundle to become a GKM graph, RIMS Kokyuroku 2276, 1--7 (2024). [pdf]
(22) Shintar\^o Kuroki: Equivariant cohomology of complex quadrics from a combinatorial point of view, RIMS Kokyuroku 2231, 85--99 (2022). [pdf]
(21) Shintar\^o Kuroki: Vector bundle over a GKM graph and combinatorial Borel-Hirzebruch formula and Leray-Hirsh theorem, RIMS Kokyuroku 2199, 42--52 (2021). [pdf]
(20) Shintar\^o Kuroki and Ryoto Yukitou: Gale dual of the GKM graph with a complexity one axial function, The Bulletin of the Okayama University of Science. No.55 A, 1--10 (2019). [pdf]
(19) Shintar\^o Kuroki: On equivariant cohomology rings of flag Bott towers, RIMS Kokyuroku 2135, 95--107 (2019), [pdf]
(18) Shintar\^o Kuroki: Quasitoric manifolds, root systems and J-constructions of polytopes, RIMS Kokyuroku 2060, 77--81 (2018). [pdf]
(17) Shintar\^o Kuroki: Flagified Bott manifolds and their maximal torus actions, RIMS Kokyuroku 2016, 154--160 (2017). [pdf]
(16) Shintar\^o Kuroki: Classification of effective GKM graphs with combinatorial type $K_{4}$, The Bulletin of the Okayama University of Science, No.52 A, 7--15 (2016). [pdf]