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1. Introduction

This article is mainly an overview of the paper [KKLS] which we generalize the flag
Bott tower by two ways and compute their equivariant cohomology. We first briefly recall
a history of the generalizations of the Bott tower.

A Bott tower is the following tower of bundles:

Bm
πm−→ Bm−1

πm−1−→ · · ·B2
π2−→ B1

π1−→ {pt}
where each πi is the projectivization of sum of two line bundles. By definition, this is
the iterated CP 1-bundles. Since each stage is obtained by the sum of line bundles, the
total space has the maximal Tm-action and this becomes a toric manifold (cf. CP -tower
defined in [KS1, KS2]). This object is introduced by Grossberg-Karshon in [GK] with
the aim of the comparison between the Bott-Samelson variety and its maximal torus action
which does not preserve the complex structure defined by Raoul Bott, i.e., a Bott tower.
Grossberg-Karshon construct a one-parameter family between the Bott-Samelson variety
and the Bott tower in [GK].

In [MS], Masuda-Suh define a generalized Bott tower which is the following tower of
bundles:

GBm
πm−→ GBm−1

πm−1−→ · · ·GB2
π2−→ GB1

π1−→ {pt}
where each πi is the projectivization of sum of several (may not be two) line bundles. By
definition, the generalized Bott tower is an iterated complex projective space bundles and
has the structure of a toric manifold. Masuda-Suh in [MS] ask the cohomological rigidity
problem to this class of toric manifolds, i.e., if the cohomology rings of two generalized Bott
towers are isomorphic, then are they diffeomorphic? The cohomological rigidity problem
is still open and now it is regarded as one of the central problems in toric topology.

On the other hand, there seems to be no natural Bott-Samelson counterpart of a gen-
eralized Bott tower. Under this motivation, in [KLSS], Kuroki-Lee-Suh-Song define a flag
Bott tower by the following tower of bundles:

FBm
πm−→ FBm−1

πm−1−→ · · ·FB2
π2−→ FB1

π1−→ {pt}
1
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where each πi is the flagifization of sum of several line bundles. Since Fl(C2) ∼= CP 1, the
flag Bott tower is a generalization of the Bott tower. Moreover, this generalization is more
direct generalization of the Bott tower in [GK] than the generalized Bott tower. In fact,
there is a Bott-Samelson counterparts of a flag Bott tower, called a flag Bott-Samelson
variety (sse [FLS] or [Ku] also). We also note that there is a nice torus action on the flag
Bott tower, and the flag Bott tower has the structure of a GKM manifold.

Now we have two generalizations of Bott towers. The following figure shows the rela-
tions among them:

The purpose of the paper [KKLS] is to define a (nice) class which contains both of the
generalized Bott towers and the flag Bott towers. In [KKLS], we introduce the flag Bott
tower of general Lie types by the following two constructions:

(1) Iterated pull-back bundles from the universal bundles;
(2) Quotient of the product of compact connected Lie groups.

We introduce them in Section 2 with the other generalizations. One of the merits of the
first construction is to compute the (equivariant) cohomology by using the classical method
introduced by Borel and Leray-Hirsh. On the other hand, one of the merits of the second
construction is to define the torus action explicitly. The second main theorem of the paper
[KKLS] is to compute the equivariant cohomology of the flag Bott towers of general Lie
types for the explicit definition of torus actions (see Section 3). We show an example of the
computation of an equivariant cohomology ring in Section 4. In the final section, Section 5,
we also introduce the other construction of the symplectic flag bundles. We can also define
the flag Bott tower of type C by this way.

2. Flag Bott tower of general Lie types

In this section, we introduce the two definitions of the flag Bott tower of general Lie
types. We also introduce the other generalizations of Bott towers.

2.1. Two definitions. Let Ki be a compact, connected Lie group, Ti be its maximal
torus, and Zi ⊂ Ki be the centralizer of a circle subgroup of Ti, 1 ≤ i ≤ m. Recall that
Ki/Zi is often called a (generalized) flag manifold.

The first definition is the pull-back definition (see [KKLS, Definition 3.1]):
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Definition 2.1. An m-stage flag Bott tower F• = {Fj | 0 ≤ j ≤ m} of general Lie
type (or an m-stage flag Bott tower) associated to (K•, Z•) = {(Kj, Zj) | 1 ≤ j ≤ m} is
the following tower of bundles:

Fm
πm−→ Fm−1

πm−1−→ · · ·F2
π2−→ F1

π1−→ {pt}
where each πi : Fi → Fi−1 (i = 1, . . . ,m) is a Ki/Zi-bundle associated to a characteristic
map

fi : Fi−1 → BTi → BKi.

The assumption of fi in this definition means that each Ki/Zi-bundle admits the re-
duction of the structure group Ki to its maximal torus Ti. For the (flag and generalized)
Bott tower this assumption corresponds to the assumption that each vector bundles split
into line bundles.

The second definition is the quotient definition (see [KKLS, Definition 3.5]):

Definition 2.2. Let (K•, Z•) = {(Kj, Zj) | 1 ≤ j ≤ m}. Given a family of ho-

momorphisms {φ(ℓ)
j : Zj → Tℓ | 1 ≤ j < ℓ ≤ m}, the space Fφ

m is defined by the orbit
space

Fφ
m := (K1 × · · · ×Km)/(Z1 × · · · × Zm),

where (z1, . . . , zm) ∈ Z1 × · · · ×Zm acts on (g1, . . . , gm) ∈ K1 × · · · ×Km from the right by

(g1, . . . , gm) · (z1, . . . , zm)

:= (g1z1, φ
(2)
1 (z1)

−1g2z2,

2∏
j=1

φ
(3)
j (zj)

−1g3z3, . . . ,

m−1∏
j=1

φ
(m)
j (zj)

−1gmzm).

It is easy to check that Fφ
m admits the tower of generalized flag bundles. Moreover, since

the image of φ
(ℓ)
j commutes with Tℓ, we have that F

φ
m admits the natural T1×· · ·×Tm-action

by the left multiplication.
We have the following proposition (see [KKLS, Proposition 3.6]):

Proposition 2.3. Let F• = {Fj | 0 ≤ j ≤ m} be an m-stage flag Bott tower of general
Lie type associated to (K•, Z•), where Kj are simply-connected for all 1 ≤ j ≤ m. Then

there exists a family of homomorphisms {φ(ℓ)
j : Zj → Tℓ | 1 ≤ j < ℓ ≤ m} such that F•

and Fφ
• are isomorphic as flag Bott towers.

Remark 2.4. In the proof of [KKLS, Proposition 3.6], we need to assume all Kj’s
are simply-connected (e.g. U(n) is not simply-connected). However, we can weaken this
condition under some technical assumptions (see [KKLS, Remark 3.8]).

By taking an appropriate circle subgroups, we can take Kj/Zj as both of flag manifolds
and complex projective spaces (see Examples in [KKLS, Section 3]). Therefore, these
constructions may be regarded as the generalization of both of GBm and FBm.

Remark 2.5. Some of the flag Bott towers of general Lie types also can be constructed
from the vector bundles like (flag or generalized) Bott tower; e.g. the tower of partial flag
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bundles or the tower of flag manifolds of type C. In Section 5, we will give a construction
of the symplectic flag bundle, i.e., the flag bundle of type C, from the even-dimensional
complex vector bundle.

Remark 2.6. Note that the centralizer of T 1 ⊂ Sp(1) is T 1 itself. Therefore, for
example, the quaternionic projective space Sp(n)/Sp(n− 1)× Sp(1) can not be obtained
by the generalized flag manifold Kj/Zj. Hence, the tower of quaternionic projective spaces
is not the flag Bott tower of general Lie types (see the next subsection and Section 5).

2.2. Other generalizations. One can consider the several generalizations of Bott
towers. For example, the CP -towers defined in [KS1, KS2] may also be regarded as the
generalization of Bott towers, though they do not have a nice torus action. In this subsec-
tion, we introduce two straightforward generalizations which may fit in toric topology.

2.2.1. The homogeneous space Bott tower. Let Hj be a maximal rank subgroup of Kj,
i.e., a maximal torus Tj ⊂ Kj is also a maximal torus of Hj. If we change Zj into Hj

in the definitions above, then it is easy to obtain the generalized object whose fibres are
the homogeneous spaces Kj/Hj. We call this object a homogeneous space Bott tower (with
maximal ranks). The homogeneous space Bott tower also contains the tower of quaternionic
projective spaces.

With the method similar to that demonstrated in the quotient construction Fφ
m, we can

define a natural torus action on the homogeneous space Bott tower defined by the quotient
construction. Since the Tj-action on Kj/Hj admits the structure of a GKM manifold (see
[GHZ]), the T1 × · · · × Tm-action on the homogeneous space Bott tower also admits the
structure of a GKM manifold.

2.2.2. The GKM Bott tower. Let Mj be a manifold with a torus Tj-action, 1 ≤ j ≤ m.
Consider the following tower of bundles:

Xm
πm−→ Xm−1

πm−1−→ · · ·X2
π2−→ X1

π1−→ {pt}

where each πi : Xi → Xi−1 (i = 1, . . . ,m) is a Mi-bundle associated to a characteristic
map

fi : Xi−1 → BTi,

i.e., the pull back of the following bundle:

Xi −→ ETi ×Ti
Mi

πi ↓ ↓
Xi−1

fi−→ BTi

If we assume all Mi’s are simply connected, by the similar methods in [HY], every torus
actions on Xi−1 lift to actions on Xi. Therefore, if all Mi’s are simply connected, then Xm

has the T1 × · · · × Tm-action which induced from the actions on the lower stages of the
tower. Moreover, if all Mi’s are simply connected GKM manifolds, then Xm admits the
structure of a GKM manifold like a homogeneous space Bott tower. We call such a Xm a
GKM Bott tower. The GKM fibre bundle is studied in [GSZ].
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Remark 2.7. In general, there may be no quotient construction of the GKM Bott
tower. However, if each Mj is a (quasi)toric manifold, then we can obtain this tower by the
quotient construction because all (quasi)toric manifolds can be obtained by the quotients
of the free torus actions on the moment-angle manifolds (see [BP]).

3. Equivariant cohomology ring

In this section, we introduce the equivariant cohomology ring of the flag Bott tower of
general Lie types. We first prepare notations. Let Fφ

m be the flag Bott tower of general
Lie types in Definition 2.2 and T = T1 × · · · × Tm, where Tj ≃ T nj . Let R be a PID in
which torsion primes of all Kj are invertible. In this paper, we consider the cohomology
over R-coefficient. The symbol W (Z) represents the product of Weyl groups

∏m
j=1W (Zj).

Let uj and yj stand for (uj,1, . . . , uj,nj
) and (yj,1, . . . , yj,nj

), respectively for j = 1, . . . ,m.
The symbol uj shall be used for the generators of the cohomology H∗(BTj) ≃ R[uj], where
Tj ≃ T nj is one of the factors of the torus T acting on Fφ

m. On the other hand, the symbol
yj shall be used for the generators of the cohomology H∗(BTj) ≃ R[yj], where Tj is a
maximal torus of Zj ⊂ Kj. Recall the cohomology ring formula:

H∗(BKj) ≃ R[yj]
W (Kj)

and

H∗(BZj) ≃ R[yj]
W (Zj).

Then, we have the following theorem [KKLS, Corollary 4.3]:

Theorem 3.1. There is the following isomorphism:

H∗
T(F

φ
m;R) ≃ R[u1, . . . ,um]⊗R (R[y1, . . . ,ym])

W (Z)
/
⟨I1, . . . , Im⟩

where Iℓ, for 1 ≤ ℓ ≤ m, is the ideal generated by the polynomials

h(yℓ)− h

(
uℓ +

ℓ−1∑
j=1

Φ
(ℓ)
j (yℓ)

)
for h ∈ R[yℓ]

W (Kℓ) and

Φ
(ℓ)
j (yℓ) :=

(
(φ

(ℓ)
j )∗(yℓ,1), . . . , (φ

(ℓ)
j )∗(yℓ,nℓ

)
)
.

Here, in the statement of this theorem, the invariant polynomial h ∈ R[yℓ]
W (Kℓ) means

h(yℓ) = h(yℓ,1, . . . , yℓ,nℓ
)

and

h

(
uℓ +

ℓ−1∑
j=1

Φ
(ℓ)
j (yℓ)

)
=h(uℓ,1 + (φ

(ℓ)
1 )∗(yℓ,1) + · · ·+ (φ

(ℓ)
ℓ−1)

∗(yℓ,1), . . .

. . . , uℓ,nℓ
+ (φ

(ℓ)
1 )∗(yℓ,nℓ

) + · · ·+ (φ
(ℓ)
ℓ−1)

∗(yℓ,nℓ
)),
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where T′ = T1 × · · · × Tℓ−1 and

(φ
(ℓ)
j )∗ : H∗(BTℓ) → H∗

T′(F
φ
ℓ−1) ≃ R[u1, . . . ,uℓ−1]⊗R (R[y1, . . . ,yℓ−1])

∏ℓ−1
j=1 W (Zj)

/
⟨I1, . . . , Iℓ−1⟩

is the induced homomorphism of Bφ
(m)
j ◦ u which appears in the following composition

maps:

f̃ℓ : ET′ ×T′ Fφ
ℓ−1

u

−−−→ B

(
ℓ−1∏
j=1

Zj

)
B(mul)◦Bφ

−−−−−−−−−−−→ BTℓ

Bι

−−−→ BKℓ,

where u is the characteristic map which determines the following fibre bundle:

ℓ−1∏
j=1

Zj → ET′ ×T′

ℓ−1∏
j=1

Kj → ET′ ×T′ Fφ
ℓ−1

and mul is the multiplication of Tℓ and φ :=
∏ℓ−1

j=1 φ
(ℓ)
j :

∏ℓ−1
j=1 Zj → Tℓ. Note that f̃ℓ is the

characteristic map which determines the following fibre bundle:

Kℓ/Zℓ → ET′ ×T′ Fφ
ℓ → ET′ ×T′ Fφ

ℓ−1.

4. An explicit example

The invariant polynomial rings of the Weyl group W (SU(n + 1)) is well-known as
follows:

R[t1, . . . tn]
W (SU(n+1)) ≃ R[σ̃2, . . . , σ̃n]

where σ̃i(t1, . . . , tn) := σi(t1, . . . , tn, t1 + · · · + tn) for the degree i elementary symmetric
polynomial σi with n+ 1 variables. For example,

R[t]W (SU(2)) ≃ R[t2];

R[t1, t2]
W (SU(3)) ≃ R[t21 + 3t1t2 + t22, t1t2(t1 + t2)].

Moreover, the invariant polynomial rings of the Weyl group W (G2) ≃ D6 is as follows (see
[Ke]):

R[t1, t2]
W (G2) = R[(t1 − t2)

2, t21t
2
2(t1 + t2)

2].

Define the 2-stage flag Bott tower of general Lie types

Fφ
2 := G2 ×T 2 (SU(2)/T 1)

by the homomorphism φ : T 2 → T 1 such that (t1, t2) 7→ t1t2. Namely, the following fibre
bundle:

SU(2)/T 1 → Fφ
2 → G2/T

2,

Then, T 2 × T 1 acts on Fφ
2 naturally. Since H∗(G2;Z) has 2-torsion, we may apply The-

orem 3.1 for the computation of the equivariant cohomology over F3 (i.e., the finite field
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of order 3) coefficient. By using the formula of the invariant polynomials as above and
Theorem 3.1, we have the following ring isomorphism:

H∗
T 2×T 1(F

φ
2 ;F3) ∼= F3[u1,1, u1,2, u2,1, y1,1, y1,2, y2,1]/⟨I1, I2⟩

where

I1 = (1 + (y1,1 − y1,2)
2)(1 + y21,1y

2
1,2(y1,1 + y1,2)

2)− (1 + (u1,1 − u1,2)
2)(1 + u2

1,1u
2
1,2(u1,1 + u1,2)

2)

and

I2 = (1 + y22,1)− (1 + (u2,1 + Φ
(2)
1 (y2,1))

2)

= y22,1 − u2
2,1 − 2u2,1(y1,1 + y1,2)− (y1,1 + y1,2)

2

where Φ
(2)
1 may be regarded as the homomorphism H∗(BT 1;F3) → H∗(BT 2;F3) such that

y2,1 7→ y1,1 + y1,2 which is the induced homomorphism from φ : T 2 → T 1.

5. More direct computation of the equivariant cohomology of Sp(n)/T n

In the previous paper [KS2], we interpret the flag manifold of type C, i.e., Sp(n)/T n

as the tower of complex projective spaces (which is not the generalized Bott tower). So it
is natural to ask how we can compute the equivariant cohomology of Sp(n)/T n by using
the Borel-Hirzebruch formula. In this final section, we briefly introduce the other kind of
the construction of Sp(n)/T n by using the quaternionic flag manifold Sp(n)/Sp(1)n and
compute its equivariant cohomology by using this construction and the Borel-Hirzebruch
formula.

5.1. The relation with the quaternionic flag manifold. Let Fn be Sp(n)/T n,
and Bn be the quaternionic flag manifold Sp(n)/Sp(1)n. It is easy to check that there
is a Sp(1)n/T n ≃ (S2)n fibration on the natural projection map qn : Fn → Bn. We first
interpret this map as the morphism of two towers, i.e., we will construct the fibration
qn : Fn → Bn from the following set of maps q• = {qj : Fj → Bj}, say q• : F• → B•:

q∗nEn+1 q∗n−1En q∗n−2En−1 q∗1E2 q∗0E1

Fn Fn−1 Fn−2 · · · F1 F0

En+1 En En−1 E2 E1

Bn Bn−1 Bn−2 · · · B1 B0

qn

pn

qn−1

pn−1

qn−2

pn−2 p2 p1

q1 q0=id

πn πn−1 πn−2 π2 π1
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We first define the rightest block as follows:

q∗1E2

zzvv
vv
vv
vv
v

��

q∗0Hn ≡ (C⊕ C)n

��

wwppp
ppp

ppp
ppp

p

CP 2n−1

q1

��

p1 // {∗}

q0(=)

��

E2

zzuuu
uuu

uuu
u

Hn

wwooo
ooo

ooo
ooo

oo

HP n−1 π1 // {∗}

where H is the quaternionice space and the left vertical map is induced from the following
CP 1-bundle:

q1 : CP 2n−1 = P(C2n) −→ HP n−1 = HP (Hn)

which may be regarded (in the homogeneous space languages) as

Sp(n)/U(1)× Sp(n− 1) −→ Sp(n)/Sp(1)× Sp(n− 1).

Note that

E2 = HP n−1 ×Hn

and

q∗1E2 = CP 2n−1 × (C⊕ C)n.

In order to get the next tower (see the following diagram), we first take the tautological
quaternionic line bundle of E2, say γ2, and the normal bundle γ⊥

2 in E2 with respect to
the usual Hermitian metric of the quaternionic space. Then, we can define the following
pull-back bundles:

q∗2E3

xxqqq
qqq

qqq
qq

��

q∗1γ
⊥
2 ⊂ q∗1E2

��

xxppp
ppp

ppp
pp

P(q∗1γ⊥
2 )

q2

��

p2 // CP 2n−1

q1

��

E3 = π∗
2γ

⊥
2

xxqqq
qqq

qqq
q

γ⊥
2 ⊂ E2

xxppp
ppp

ppp
pp

HP (γ⊥
2 )

π2 // HP n−1
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Here, each map is defined as follows:

π2 : HP (γ⊥
2 ) =

∪
y∈HPn−1

HP ((γ⊥
2 )y) −→ HP n−1

is the quaternionic projectivization whose fibre is HP n−2 ≃ HP ((γ⊥
2 )y), where (γ

⊥
2 )y is the

fibre of γ⊥
2 over y ∈ HP n−1;

p2 : P(q∗1γ⊥
2 ) =

∪
x∈CP 2n−1

P((q∗1γ⊥
2 )x) −→ CP 2n−1

is the complex projectivization whose fibre is CP 2n−3 ≃ P((q∗1γ⊥
2 )x), where (q∗1γ

⊥
2 )x is the

fibre of q∗1γ
⊥
2 over x ∈ CP 2n−1;

q2 : P(q∗1γ⊥
2 ) =

∪
x∈CP 2n−1

P((q∗1γ⊥
2 )x) −→ HP (γ⊥

2 ) =
∪

y∈HPn−1

HP ((γ⊥
2 )y)

is defined by

q2(x, ℓ) = (q1(x), [ℓ])

where [ℓ] ∈ HP ((γ⊥
2 )q1(x)) ≃ HP n−2 is the image of ℓ ∈ P((q∗1γ⊥

2 )x) ≃ CP 2n−3 which
induced from the map

CP 2n−3 = Sp(n− 1)/U(1)× Sp(n− 2) → HP n−2 = Sp(n− 1)/Sp(1)× Sp(n− 2).

In other words, we construct the map from the fibres of

CP 2n−3 −→ F2 = P(q∗1γ⊥
2 ) = Sp(n)/U(1)× U(1)× Sp(n− 2)

p2−→ CP 2n−1 = F1

to the fibres of

HP n−2 −→ B2 = HP (γ⊥
2 ) = Sp(n)/Sp(1)× Sp(1)× Sp(n− 2)

π2−→ HP n−1 = B1

Similarly we can define Ej+1 = π∗
jγ

⊥
j and define the diagram q• : F• → B• by iteration.

Then, from this tower, we get

Fn ≃ SpF l(C2n) ≃ Sp(n)/T n, Bn ≃ FlH(Hn) ≃ Sp(n)/Sp(1)n,

and the fibre bundle qn : Fn → Bn whose fibre is the trivial Bott-tower, where SpF l(C2n)
is the set of the symplectic flags in C2n for some symplcecti structure ω and FlH(Hn) is
the set of the quaternionic flags in Hn.

5.2. The symplectic flag bundle and the Bott tower of type C. We next gen-
eralize this construction for more general manifolds. Let us define the following diagram:

q∗nEn+1 q∗n−1En q∗n−2En−1 q∗1E2 q∗0E1

Fn Fn−1 Fn−2 · · · F1 F0

En+1 En En−1 E2 E1

Bn Bn−1 Bn−2 · · · B1 B0

qn

pn

qn−1

pn−1

qn−2

pn−2 p2 p1

q1 q0=id

πn πn−1 πn−2 π2 π1
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Here, B0 = F0 = M is any smooth manifold (cf. this was the point in the previous
construction), E1 is a quaternionic vector bundle over B0 and q∗0E1 is a complex vector
bundle over F0 forgetting the quaternionic structure. Here, similarly, the first and the
second blocks are defined by the following pull-back bundles:

q∗2E3

xxppp
ppp

ppp
pp

��

q∗1E2 ≡ q∗1γ2 ⊕ q∗1γ
⊥
2

��

vvllll
lll

lll
lll

l
q∗0E1

��

}}||
||
||
||

P(q∗1γ⊥
2 )

q2

��

p2 // P(q∗0E1)

q1

��

p1 // M

q0

��

E3 := π∗
2γ

⊥
2

xxppp
ppp

ppp
pp

E2 := π∗
1E1 ≡ γ2 ⊕ γ⊥

2

vvllll
lll

lll
lll

l
E1

}}||
||
||
||
|

HP (γ⊥
2 )

π2 // HP (E1)
π1 // M

where γ2 ⊂ E2 is the tautological quaternionic line bundle. By iterating this process, we
obtain the morphism (of towers) between the symplectic flag bundle Fn = SpF l(E1) and
the quaternionic flag bundle Bn = FlH(E1) over M .

Remark 5.1. Iterating this construction from the point, i.e., M = {∗}, we also obtain
the map between the flag Bott tower of type C and the tower of quaternionic flag manifolds.

5.3. Cohomology of symplectic flag bundle. From the previous construction, the
Sp(n)/T n-bundle p : Fn → M is obtained by the symplectic flag of the following sum of
quaternionic line bundles:

p∗(q∗0E1) ≡ ⊕n
j=1q

∗
jγj+1

where the 1-dim quaternionic vector bundles q∗jγj+1 in the right-hand means the pull-back
to the top stage (we abuse the notation). By this decomposition, we can compute its Chern
class as follows:

c(p∗(q∗0E1)) = c(⊕n
j=1q

∗
jγj+1) =

n∏
j=1

c(q∗jγj+1)(5.1)

Note that γj+1 is the complex 2-dimensional bundle forgetting quaternionic structure.
Therefore, γj+1 split into two complex line bundles with different orientations, i.e., q∗jγj+1 ≡
ξj+1 ⊕ ξj+1 for some line bundle ξj+1. Thus, we have

c(q∗jγj+1) = c(ξj+1)c(ξj+1) = (1 + xj+1)(1− xj+1) = 1− x2
j+1 = 1− p1(q

∗
jγj+1)

where xj+1 = c1(ξj+1) is the first Chern class of ξj+1 and p1(q
∗
jγj+1) is the first Pontrjagin

class of q∗jγj+1. Note that xn+1 = 0. Therefore, by using the Borel-Hirzebruch formula,
we have that the equation (5.1) is the unique relation in the cohomology of H∗(Fn) as
H∗(M)-algebra:
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Proposition 5.2. There is the following H∗(M)-algebra isomorphism:

H∗(Fn) ≃ H∗(M)[x1, . . . , xn]/⟨c(E1) =
n∏

j=1

(1− x2
j)⟩

for some degree 2 elements xj and c(E1) ∈ H∗(M).

Remark 5.3. Because E1 has the quaternionic structure, the splitting principle shows
that it’s Chern class behaves like the vector bundle splits into n complex line bundles and
its reversed oriented complex line bundles. Therefore, c(E1) is written by

∏n
j=1(1− y2j ) for

some yj ∈ H2(M). This gives the same formula with [FP, (6.10) in p73].

5.4. Severl cohomology rings. Several formula of cohomology rings can be obtained
by Proposition 5.2. For example, if M = {∗}, we have the following well-known formula
of Sp(n)/T n:

H∗(Sp(n)/T n) ≃ Z[x1, . . . , xn]/⟨1 =
n∏

j=1

(1− x2
j)⟩

If T1 acts on M and E1 is an equivariant vector bundle, then the formula in Propo-
sition 5.2 just changes into the equivariant counterpart of the ordinary cohomology as
follows:

H∗
T1
(Fn) ≃ H∗

T1
(M)[x1, . . . , xn]/⟨cT1(E1) =

n∏
j=1

(1− x2
j)⟩

More explicitly, by the similar reason in Remark 5.3, there exists σj ∈ H2
T1
(M) which

corresponds to the first Chern class appeared in the decomposition of the pull-back of the
equivariant bundle E1 such that

H∗
T1
(Fn) ≃ H∗

T1
(M)[x1, . . . , xn]/⟨

n∏
j=1

(1− σ2
j ) =

n∏
j=1

(1− x2
j)⟩

If we consider the T = T1 × T2-action on Fn such that T2 acts only on each fibre (i.e.,
acts on M trivially), then

H∗
T (Fn) ≃ H∗(BT2)⊗H∗

T1
(M)[x1, . . . , xn]/⟨

n∏
j=1

(1− (σj + tj)
2) =

n∏
j=1

(1− x2
j)⟩

where tj ∈ H2(BT2) (j = 1, . . . , n) is determined by the character of the representation
tj : T2 → S1 on the line bundle corresponding to σj. In particular, if M = {∗} and
T1 = {e}, this formula gives the well-known formula of equivariant cohomology of flag
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manifold of type C:

H∗
T (Sp(n)/T

n) ≃ H∗(BT )[x1, . . . , xn]/⟨
n∏

j=1

(1− t2j) =
n∏

j=1

(1− x2
j)⟩

≃ Z[x1, . . . , xn, t1, . . . , tn]/⟨
n∏

j=1

(1− t2j) =
n∏

j=1

(1− x2
j)⟩

where we may take tj as the standard basis of H∗(BT ) (T = T n). This formula coincides
with our formula in Theorem 3.1 for the 1-stage flag Bott tower of type C.
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