Vector bundle over a GKM graph and combinatorial Borel－Hirzebruch formula and Leray－Hirsh theorem

岡山理科大学理学部応用数学科 黒木 慎太郎
Shintarô Kuroki
Dep．of Applied Math．Faculty of Science，Okayama University of Science

1．Introduction

This article is the research announcement of the paper［Ku21］．The aim of the paper ［Ku21］is to study an equivariant vector bundle over GKM manifolds from combinatorial point of view by using the notion of legs which are introduced in［KU］（also see［LS17］ for a non－compat edge）．In the paper［Ku21］，we will use the notations from［LS17］to define an equivariant vector bundle over a GKM graph；however，in this article，we will use the notations which used in $[\mathbf{K U}]$ ．

1．1．GKM manifold and GKM graph．We first briefly recall the GKM manifold and the（abstract）GKM graph（see［GZ01］and［Ku19］also）．Let T^{n} be the n－dimensional torus and $M^{2 m}$ be a $2 m$－dimensional，compact，connected，manifold with almost effective T^{n}－action．We denote such manifold as $\left(M^{2 m}, T^{n}\right)$ ，or $M^{2 m}, M,(M, T)$（if its torus action or dimensions of a manifold and a torus are obviously known from the context）．We call $\left(M^{2 m}, T^{n}\right)$ a GKM manifold if it satisfies the following properties：
（1）the set of fixed points is not empty and isolated，i．e．，M^{T} is 0 －dimensional；
（2）the closure of each connected component of 1－dimensional orbits is equivariantly diffeomorphic to the 2－dimensional sphere，called an invariant 2 －sphere．
Regarding fixed points as vertices and invariant 2－spheres as edges，this condition is equiva－ lent to that the one－skeleton of $\left(M^{2 m}, T^{n}\right)$ has the structure of a graph，where a one－skeleton of $\left(M^{2 m}, T^{n}\right)$ is the orbit space of the set of 0 －and 1－dimensional orbits．By attaching the tangential representations around the fixed points，we can define the labels on edges．This labeled graph is called a GKM graph of a GKM manifold (M, T) ．

Abstractly，the GKM graph can be defined as follows．Let Γ be an m－valent graph with the set of vertices $V(\Gamma)$ and the set of edges $E(\Gamma)$ ．We put a label $\alpha: E(\Gamma) \rightarrow$ $\operatorname{Hom}\left(T, S^{1}\right) \simeq H^{2}(B T) \simeq \mathbb{Z}^{n}$ on Γ ，where $B T^{n}$（often denoted by $B T$ ）is a classifying space of an n－dimensional torus T ．Note that the cohomology ring（over \mathbb{Z}－coefficient）of $B T^{n}$ is isomorphic to the polynomial ring

$$
H^{*}(B T) \simeq \underset{1}{\mathbb{Z}}\left[a_{1}, \ldots, a_{n}\right]
$$

where a_{i} is a variable with $\operatorname{deg} a_{i}=2$ for $i=1, \ldots, n$. Set

$$
\alpha_{(p)}=\left\{\alpha(e) \mid e \in E_{p}(\Gamma)\right\} \subset H^{2}(B T),
$$

where $E_{p}(\Gamma)$ is the set of out-going edges from the vertex p. Note that $\left|E_{p}(\Gamma)\right|=m$ because we assume Γ is an m-valent graph. An axial function on Γ is the function $\alpha: E(\Gamma) \rightarrow$ $H^{2}\left(B T^{n}\right)$ for $n \leq m$ which satisfies the following three conditions:
(1): $\alpha(e)= \pm \alpha(\bar{e})$, where \bar{e} is the edge e with the reversed orientation;
(2): for each vertex $p \in V(\Gamma)$, the set $\alpha_{(p)}$ is pairwise linearly independent, i.e., each pair of elements in $\alpha_{(p)}$ is linearly independent in $H^{2}(B T)$;
(3): for all $e \in E(\Gamma)$, there exists a bijective map $\nabla_{e}: E_{i(e)}(\Gamma) \rightarrow E_{t(e)}(\Gamma)$ from the out-going edges on the initial vertex $i(e)$ of e to the out-going edges on the terminal vertex $t(e)$ of e such that
(1) $\nabla_{\bar{e}}=\nabla_{e}^{-1}$,
(2) $\nabla_{e}(e)=\bar{e}$, and
(3) for each $e^{\prime} \in E_{i(e)}(\Gamma)$, there exists an integer $c_{e}\left(e^{\prime}\right)$ such that

$$
\begin{equation*}
\alpha\left(\nabla_{e}\left(e^{\prime}\right)\right)-\alpha\left(e^{\prime}\right)=c_{e}\left(e^{\prime}\right) \alpha(e) \in H^{2}(B T) . \tag{1.1}
\end{equation*}
$$

The collection $\nabla=\left\{\nabla_{e} \mid e \in E(\Gamma)\right\}$ is called a connection on the labelled graph (Γ, α); we denote the labelled graph with connection as (Γ, α, ∇), and the equation (1.1) is called a congruence relation. We call the integer $c_{e}\left(e^{\prime}\right)$ in the congruence relation an Euler number of e^{\prime} over e. The conditions as above are called an axiom of axial function.

Definition 1.1 (GKM graph [GZ01]). If an m-valent graph Γ is labeled by an axial function $\alpha: E(\Gamma) \rightarrow H^{2}\left(B T^{n}\right)$ for some $n \leq m$, then such labeled graph is said to be an (abstract) GKM graph, and denoted as (Γ, α, ∇) (or (Γ, α) if the connection ∇ is obviously determined).

In addtion, we often assume the following condition:
(4): for each $p \in V(\Gamma)$, the set $\alpha_{(p)}$ spans $H^{2}(B T)$.

The axial function which satisfies (4) is called an effective axial function.
Definition $1.2((m, n)$-type GKM graph $)$. Let (Γ, α, ∇) be an abstract GKM graph. If the axial function α is effective, (Γ, α, ∇) is said to be an (m, n)-type GKM graph.
1.2. Equivariant vector bundle over a GKM manifold. We next recall the equivariant (complex) vector bundle (see e.g. [Ka88, Ka91]). In particular, we introduce the equivariant vector bundle over a GKM manifold. Let M be a smooth manifold with T-action. Note that the T-action induces the diffeomorphism

$$
t: M \rightarrow M
$$

for each element $t \in T$. We often denote

$$
t \cdot p:=t(p)
$$

for the map from $p \in M$ to $t(p) \in M$ by the diffeomorphism $t \in T$. Let ξ be a complex vector bundle over M. We use the following notations:

- $E(\xi)$ denotes the total space of ξ;
- $\pi: E(\xi) \rightarrow M$ denotes the projection of the vector bundle;
- $F_{p}(\xi):=\pi^{-1}(p)$ denotes the fibre over $p \in M$.

We call ξ an equivariant (complex) vector bundle over M if it satisfies the following three conditions:
(1) $E(\xi)$ also has a T-action;
(2) The projection $\pi: E(\xi) \rightarrow M$ is T-equivariant; therefore, for $p \in M$ and $t \in T$, the diffeomorphism $p \mapsto t \cdot p$ induces the map on fibres $t^{*}: F_{p}(\xi) \rightarrow F_{t \cdot p}(\xi)$;
(3) The induced map $t^{*}: F_{p}(\xi) \rightarrow F_{t \cdot p}(\xi)$ is a complex linear isomorphism for every $p \in M$ and $t \in T$.
If M is a GKM manifold and $E(\xi)$ be its equivariant complex rank r vector bundle, then there is the following irreducible decomposition for the fibre on a fixed point $p \in M^{T}$:

$$
\begin{equation*}
F_{p}(\xi) \simeq V\left(\eta_{p, 1}\right) \oplus \cdots \oplus V\left(\eta_{p, r}\right) \tag{1.2}
\end{equation*}
$$

for $j=1, \ldots, r$, where $\eta_{p, j}: T \rightarrow S^{1}$ is a one-dimensional (possibly trivial) representation. Note that the orbit space of each factor may be regarded as $V\left(\eta_{p, j}\right) / T^{n} \simeq \mathbb{R}_{+}$(half line), i.e., leg with the initial vertex p. Therefore, we may define the r-legs with labels on each fixed point p. This property is the motivation to define the equivariant vector bundle over a GKM graph.

2. Equivariant vector bundle over a GKM graph and its projectivization

In this section, we define the equivariant vector bundle over a GKM graph and its projectiviation.
2.1. Equivariant vector bundle over a GKM graph. Let $\mathcal{G}:=(\Gamma, \alpha, \nabla)$ be an m-valent GKM graph with the axial function $\alpha: E(\Gamma) \rightarrow H^{2}\left(B T^{n}\right)$, where we denote $E=E(\Gamma)$ and $V=V(\Gamma)$. In this paper, we assume that there is no legs in E (see $[\mathbf{K U}]$), i.e., Γ is a compact graph.

By Section 1.2, we may define a(n) (equivariant complex) rank r vector bundle $\widetilde{\mathcal{G}}:=$ $(\widetilde{\Gamma}, \widetilde{\alpha}, \widetilde{\nabla})$ over \mathcal{G} as follows:
(1) the abstract (non-compact) graph $\widetilde{\Gamma}$ consists of $V(\widetilde{\Gamma})=V$ and $E(\widetilde{\Gamma})=E \cup L$, where L is the set of legs such that $L_{p}=L \cap E_{p}(\widetilde{\Gamma})=\left\{l_{p, 1}, \ldots, l_{p, r}\right\}$ for all $p \in V$;
(2) the label $\widetilde{\alpha}: E \cup L \rightarrow H^{2}\left(B T^{n}\right)$ such that $\left.\widetilde{\alpha}\right|_{E}=\alpha$ and $\alpha\left(l_{p, j}\right)=\eta_{p, j} \in H^{2}\left(B T^{n}\right)$;
(3) the connection $\widetilde{\nabla}=\left\{\widetilde{\nabla}_{e} \mid e \in E\right\}$ is defined by the collection of bijective maps $\widetilde{\nabla}_{e}: E_{i(e)} \cup L_{i(e)} \rightarrow E_{t(e)} \cup L_{t(e)}$ for the initial vertex $i(e)$ and the terminal vertex $t(e)$ of the edge e such that $\left.\widetilde{\nabla}_{e}\right|_{E_{i(e)}}=\nabla_{e}$.
Remark 2.1. Note that the labels on L_{p} might not be pairwise linearly independent (see Figure 1). Therefore, the vector bundle over a GKM graph might not be defined by the one-skelton of the (non-compact) manifold with torus actions (also see [GZ01] for the geometric meaning of pairwise linearly independence).

Figure 1. The labeled graph of the equivariant vector bundle which is induced from the tangent bundle over $\mathbb{C} P^{2}$ with the standard T^{2}-action. The middle triangle represents the GKM graph of $\mathbb{C} P^{2}$ with the standard T^{2}-action. Note that this labeled graph does not satisfy the pairwise linearly independent; for example around $p, \widetilde{\alpha}\left(e_{1}\right)=\alpha=\widetilde{\alpha}\left(l_{p, 1}\right), \widetilde{\alpha}\left(e_{2}\right)=\beta=\widetilde{\alpha}\left(l_{p, 2}\right)$.

2.2. Projectivization of an equivariant vector bundle over a GKM graph.

 Let $\widetilde{\mathcal{G}}=(\widetilde{\Gamma}, \widetilde{\alpha}, \widetilde{\nabla})$ be a rank $r+1$ vector bundle over a GKM graph $\mathcal{G}=(\Gamma, \alpha, \nabla)$ for some $r \geq 0$. We define the projectivization $P(\widetilde{\mathcal{G}}):=\left(\Gamma^{\prime}, \alpha^{\prime}, \nabla^{\prime}\right)$.The graph Γ^{\prime} of $P(\widetilde{\mathcal{G}})$ consists of the following vertices and edges:
(1) $V\left(\Gamma^{\prime}\right)=L$, i.e., each leg becomes a vertex of $P(\widetilde{\mathcal{G}})$;
(2) two legs $l_{p, i}, l_{q, j}$ are connecting by the edge if one of the following holds:

- $p=q$, i.e., $l_{p, i}, l_{p, j} \in L_{p}$;
- there exists an edge $e \in E$ such that $i(e)=p, t(e)=q$ and $\widetilde{\nabla}_{e}\left(l_{p, i}\right)=l_{q, j}$.

It is easy to check that Γ^{\prime} is an $m+r$ valent graph. We attach the label $\alpha^{\prime}: E^{\prime} \rightarrow H^{2}\left(B T^{n}\right)$ on every edge as follows:
(1) if $e \in E^{\prime}$ satisfies $i(e)=l_{p, i}, t(e)=l_{p, j}$, then

$$
\alpha^{\prime}(e)=\widetilde{\alpha}\left(l_{p, i}\right)-\widetilde{\alpha}\left(l_{p, j}\right) ;
$$

(2) if $e \in E^{\prime}$ satisfies $i(e)=l_{p, i}, t(e)=\widetilde{\nabla}_{f}\left(l_{p, i}\right)$ for some edge $f \in E$, then

$$
\alpha^{\prime}(e)=\widetilde{\alpha}(f)=\alpha(f)
$$

We can define the connection $\nabla_{e}^{\prime}: E_{i(e)}^{\prime} \rightarrow E_{t(e)}^{\prime}$ which satisfies the congruence relations as follows:
(1) if $e \in E^{\prime}$ is the edge with $i(e)=l_{p, i}, t(e)=l_{p, j}$, then for $f \in E_{i(e)}^{\prime}$ the edge $\nabla_{e}^{\prime}(f)$ is the edge which satisfies that
(a) if $t(f)=l_{p, k}$, then $i\left(\nabla_{e}^{\prime}(f)\right)=t(e)=l_{p, j}$ and $t\left(\nabla_{e}^{\prime}(f)\right)=t(f)=l_{p, k}$;
(b) if $t(f)=\widetilde{\nabla}_{g}\left(l_{p, i}\right)$ for some $g \in E$ in Γ such that $i(g)=p, t(g)=q$, then $i\left(\nabla_{e}^{\prime}(f)\right)=t(e)=l_{p, j}$ and $t\left(\nabla_{e}^{\prime}(f)\right)=\widetilde{\nabla}_{g}\left(l_{p, j}\right)$.
(2) if $e \in E^{\prime}$ is the edge with $i(e)=l_{p, i}, t(e)=\nabla_{f}\left(l_{p, i}\right)$ for some edge $f \in E$, then for $g \in E_{i(e)}^{\prime}$ the edge $\nabla_{e}^{\prime}(g)$ is the edge which satisfies that
(a) if $t(g)=l_{p, j}$, then $i\left(\nabla_{e}^{\prime}(g)\right)=t(e)=\widetilde{\nabla}_{f}\left(l_{p, i}\right)$ and $t\left(\nabla_{e}^{\prime}(g)\right)=\widetilde{\nabla}_{f}\left(l_{p, j}\right)$;
(b) if $t(g)=\widetilde{\nabla}_{h}\left(l_{p, i}\right)$ for some $h \in E$ in Γ such that $i(h)=p, t(h)=q$, then $i\left(\nabla_{e}^{\prime}(g)\right)=t(e)=\widetilde{\nabla}_{f}\left(l_{p, i}\right)$ and $t\left(\nabla_{e}^{\prime}(g)\right)=\widetilde{\nabla}_{\nabla_{h}(f)} \circ \widetilde{\nabla}_{f}\left(l_{p, i}\right)$.

Figure 2. The projectivization of the vector bundle in Figure 1. Geometrically this is nothing but the projectivization of the tangent bundle over $\mathbb{C} P^{2}$, i.e., $P\left(T \mathbb{C} P^{2}\right)$. We can also check that there is an equivariant diffeomorphism $P\left(T \mathbb{C} P^{2}\right) \simeq \mathcal{F l}\left(\mathbb{C}^{3}\right)$, i.e., the 6 -dimensional flag manifold with T^{2}-action.

3. Combinatorial Borel-Hirzebruch formula and Leray-Hirsh theorem

In this section, we will state the main theorem. Namely, we translate the BorelHirzebruch formula for the projectivization of complex vector bundle and the Leray-Hirsh theorem for the complex projective bundle to the combinatoral theorem for GKM graphs. In this section, we put

- $\mathcal{G}=(\Gamma, \alpha, \nabla)$ is an m-valent GKM graph with $\alpha: E \rightarrow H^{2}\left(B T^{n}\right)$, where $\Gamma=$ (V, E);
- $\widetilde{\mathcal{G}}=(\widetilde{\Gamma}, \widetilde{\alpha}, \widetilde{\nabla})$ is a $\operatorname{rank} r+1$ vector bundle over \mathcal{G}, where $L_{p}:=\left\{l_{p, 1}, \ldots, l_{p, r+1}\right\}$ is the legs over $p \in V$;
- $P(\widetilde{\mathcal{G}})=\left(\Gamma^{\prime}, \alpha^{\prime}, \nabla^{\prime}\right)$ is the projectivization of $\widetilde{\mathcal{G}}$.

Recall that the cohomology ring $H^{*}(\mathcal{G})$ of a GKM graph \mathcal{G} is defined as follows:

$$
H^{*}(\mathcal{G}):=\left\{f: V \rightarrow H^{*}\left(B T^{n}\right) \mid f(i(e))-f(t(e)) \equiv 0 \quad \bmod \alpha(e)\right\},
$$

where $H^{*}\left(B T^{n}\right)=\mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$. If $P(\widetilde{\mathcal{G}})$ is a GKM graph, then there is the natural embedding from $H^{*}(\mathcal{G})$ to $H^{*}(P(\widetilde{\mathcal{G}}))$ by taking $f(p)=f\left(l_{p, i}\right)$ for all $i=1, \ldots, r+1$, i.e.,

$$
\begin{equation*}
H^{*}(\mathcal{G}) \ni \bigoplus_{p \in V} f(p) \mapsto \bigoplus_{p \in V}\left(\bigoplus_{i=1}^{r+1} f(p)\right) \in H^{*}(P(\widetilde{\mathcal{G}})) \tag{3.1}
\end{equation*}
$$

3.1. Preliminary. To state the main theorem, we need to prepare some notations.

We first define the i th Chern class of $\widetilde{\mathcal{G}}$, say $c_{i}^{T}(\widetilde{\mathcal{G}}) \in H^{2 i}(\mathcal{G})$, for $i=0, \ldots, r+1$. Put

$$
\widetilde{\alpha}\left(l_{p, j}\right)=\eta_{p, j} \in H^{2}\left(B T^{n}\right)
$$

for all $j=1, \ldots, r+1$ on $p \in V$. We define the following i th symmetric polynomial in $H^{2 i}\left(B T^{n}\right)$:

$$
\begin{aligned}
\sigma_{p, i}(\widetilde{\mathcal{G}}) & :=\sigma_{i}\left(\eta_{p, 1}, \ldots, \eta_{p, r+1}\right) \\
& =\sum_{k_{1}+\cdots+k_{r+1}=i} \eta_{p, 1}^{k_{1}} \cdots \eta_{p, r+1}^{k_{r+1}} \in H^{2 i}\left(B T^{n}\right) \subset H^{*}\left(B T^{n}\right) .
\end{aligned}
$$

Set

$$
c_{i}^{T}(\widetilde{\mathcal{G}}):=\bigoplus_{p \in V} \sigma_{p, i}(\widetilde{\mathcal{G}}) \in \bigoplus_{p \in V} H^{*}\left(B T^{n}\right) .
$$

By using the GKM conditions, we have the following lemma:
Lemma 3.1. $c_{i}^{T}(\widetilde{\mathcal{G}}) \in H^{*}(\mathcal{G})$.
We next define the 1 st Chern class of the tautological line bundle of $P(\widetilde{\mathcal{G}})$, say $c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right) \in$ $H^{2}(P(\widetilde{\mathcal{G}}))$. The element $c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right): V^{\prime} \rightarrow H^{2}\left(B T^{n}\right)$ is defined as follows:

$$
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{p, j}\right):=\alpha\left(l_{p, j}\right)=\eta_{p, j} \in H^{2}\left(B T^{n}\right) .
$$

By the definition of the projectivization, we have the following lemma:
Lemma 3.2. If $P(\widetilde{\mathcal{G}})$ is a GKM graph, then $c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right) \in H^{*}(P(\widetilde{\mathcal{G}}))$.
Remark 3.3. Note that in order to state the main theorem, we only need the 1st Chern class of $\gamma_{\tilde{\mathcal{G}}}$. So in this article, we do not define $\gamma_{\widetilde{\mathcal{G}}}$. The tutological line bundle $\gamma_{\tilde{\mathcal{G}}}$ will be defined in [Ku21].
3.2. Main theorem. Note that by the embedding (3.1), we may regard the i th Chern class $c_{i}^{T}(\widetilde{\mathcal{G}}) \in H^{*}(\mathcal{G})$ as an element of $c_{i}^{T}(\widetilde{\mathcal{G}}) \in H^{*}(P(\mathcal{G}))$. Moreover, we may regard

$$
H^{*}(\mathcal{G}) \subset H^{*}(P(\mathcal{G}))
$$

Now we may state the main result.
Theorem 3.4 (Combinatorial Leray-Hirsh theorem). Let $\widetilde{\mathcal{G}}=(\widetilde{\Gamma}, \widetilde{\alpha}, \widetilde{\nabla})$ be a rank $r+1$ equivariant vector bundle over a GKM graph $\mathcal{G}=(\Gamma, \alpha, \nabla)$. Assume that the projectivization $P(\widetilde{\mathcal{G}}):=\left(\Gamma^{\prime}, \alpha^{\prime}, \nabla^{\prime}\right)$ satisfies the GKM conditions. Then its equivariant cohomology $H^{*}(P(\widetilde{\mathcal{G}}))$ is isomorphic to the following algebra over $H^{*}(\mathcal{G})$:

$$
H^{*}(P(\widetilde{\mathcal{G}})) \simeq H^{*}(\mathcal{G})\left[c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\right] /\left\langle\sum_{i=0}^{r+1}(-1)^{i} c_{i}^{T}(\widetilde{\mathcal{G}}) c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)^{r+1-i}\right\rangle,
$$

where $c_{i}^{T}(\widetilde{\mathcal{G}}) \in H^{2 i}(P(\widetilde{\mathcal{G}}))$ is the ith Chern class of $\widetilde{\mathcal{G}}$ and $c_{1}^{T}\left(\gamma_{\tilde{\mathcal{G}}}\right) \in H^{2}(P(\widetilde{\mathcal{G}}))$ is the 1 st Chern class of the tautological line bundle of $P(\widetilde{\mathcal{G}})$.

Namely, the equivariant cohomology of $P(\widetilde{\mathcal{G}})$ is generated by $c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)$ and there is the following unique relation:

$$
\begin{equation*}
\sum_{i=0}^{r+1}(-1)^{i} c_{i}^{T}(\widetilde{\mathcal{G}}) c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)^{r+1-i}=0 \tag{3.2}
\end{equation*}
$$

The relation (3.2) is also called a Borel-Hirzebruch formula for the ordinary projectivization of the complex vector bundle. So (3.2) may be regarded as a combinatorial BorelHirzebruch formula from GKM theoretical point of view..
3.3. Example. Let $P(\widetilde{\mathcal{G}})$ be the projectivization in Figure 2. In this final section, we check Theorem 3.4 by example in Figure 2.

The 1st Chern class $c_{1}^{T}\left(\gamma_{\tilde{\mathcal{G}}}\right)$ of the tautological line bundle of $P(\widetilde{\mathcal{G}})$ is given by the following equation by Figure 1 (see Figure 3):

$$
\begin{aligned}
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{q, 2}\right) & =\widetilde{\alpha}\left(l_{q, 2}\right)=\alpha-\beta ; \\
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{q, 1}\right) & =\widetilde{\alpha}\left(l_{q, 1}\right)=-\beta ; \\
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{r, 1}\right) & =\widetilde{\alpha}\left(l_{r, 1}\right)=-\alpha ; \\
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{r, 2}\right) & =\widetilde{\alpha}\left(l_{r, 2}\right)=\beta-\alpha ; \\
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{p, 2}\right) & =\widetilde{\alpha}\left(l_{p, 2}\right)=\beta ; \\
c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{p, 1}\right) & =\widetilde{\alpha}\left(l_{p, 1}\right)=\alpha .
\end{aligned}
$$

Figure 3. The 1st Chern class of the tautological line bundle $c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)$ for Figure 2.
The 1st Chern class $c_{1}^{T}(\widetilde{\mathcal{G}}) \in H^{2}(P(\widetilde{\mathcal{G}}))$ of the vector bundle $\widetilde{\mathcal{G}}$ is given by the following equation by Figure 1 (see Figure 4):

$$
\begin{aligned}
& c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 1}\right)=c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 2}\right)=\widetilde{\alpha}\left(l_{q, 1}\right)+\widetilde{\alpha}\left(l_{q, 2}\right)=-\beta+(\alpha-\beta)=\alpha-2 \beta ; \\
& c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{r, 1}\right)=c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{r, 2}\right)=\widetilde{\alpha}\left(l_{r, 1}\right)+\widetilde{\alpha}\left(l_{r, 2}\right)=-\alpha+(\beta-\alpha)=\beta-2 \alpha ; \\
& c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{p, 1}\right)=c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{p, 2}\right)=\widetilde{\alpha}\left(l_{p, 1}\right)+\widetilde{\alpha}\left(l_{p, 2}\right)=\alpha+\beta .
\end{aligned}
$$

Figure 4. The 1st Chern class $c_{1}^{T}(\widetilde{\mathcal{G}})$ of Figure 1.

The 2nd Chern class $c_{2}^{T}(\widetilde{\mathcal{G}}) \in H^{2}(P(\widetilde{\mathcal{G}}))$ of the vector bundle $\widetilde{\mathcal{G}}$ is given by the following equation by Figure 1 (see Figure 5):

$$
\begin{aligned}
& c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 1}\right)=c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 2}\right)=\widetilde{\alpha}\left(l_{q, 1}\right) \cdot \widetilde{\alpha}\left(l_{q, 2}\right)=-\beta(\alpha-\beta) ; \\
& c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{r, 1}\right)=c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{r, 2}\right)=\widetilde{\alpha}\left(l_{r, 1}\right) \cdot \widetilde{\alpha}\left(l_{r, 2}\right)=-\alpha(\beta-\alpha) ; \\
& c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{p, 1}\right)=c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{p, 2}\right)=\widetilde{\alpha}\left(l_{p, 1}\right) \cdot \widetilde{\alpha}\left(l_{p, 2}\right)=\alpha \beta .
\end{aligned}
$$

Figure 5. The 2nd Chern class $c_{2}^{T}(\widetilde{\mathcal{G}})$ of Figure 1.

Then we can check the following equation on the vertex $l_{q .2} \in V^{\prime}$:

$$
\begin{aligned}
& \left(\sum_{i=0}^{2}(-1)^{i} c_{i}^{T}(\widetilde{\mathcal{G}}) c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)^{2-i}\right)\left(l_{q, 2}\right) \\
= & \left(c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{q, 2}\right)\right)^{2}-c_{1}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 2}\right) \cdot c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\left(l_{q, 2}\right)+c_{2}^{T}(\widetilde{\mathcal{G}})\left(l_{q, 2}\right) \\
= & (\alpha-\beta)^{2}-(\alpha-\beta)(\alpha-2 \beta)+(-\beta(\alpha-\beta)) \\
= & 0 .
\end{aligned}
$$

It is also easy to check the similar equations for all vertices V^{\prime}. This shows that the combinatorial Borel-Hirzebruch formula (3.2) is true for $H^{*}(P(\widetilde{\mathcal{G}}))$ of $P(\widetilde{\mathcal{G}})$ in Figure 2.

By using [GKM98] and the well-known results of $H_{T^{2}}^{*}\left(\mathbb{C} P^{2}\right)$, we have the following application to the geometry:

Corollary 3.5. The equivariant cohomology of the T^{2}-action on $T \mathbb{C} P^{2} \simeq \mathcal{F l}\left(\mathbb{C}^{3}\right)$ is isomorphic to the following ring:

$$
\begin{aligned}
H_{T^{2}}^{*}\left(\mathcal{F} l\left(\mathbb{C}^{3}\right)\right) & \simeq H^{*}(P(\widetilde{\mathcal{G}})) \\
& \simeq H^{*}(\mathcal{G})\left[c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\right] /\left\langle c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)^{2}-c_{1}^{T}(\widetilde{\mathcal{G}}) \cdot c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)+c_{2}^{T}(\widetilde{\mathcal{G}})\right\rangle \\
& \simeq \mathbb{Z}\left[\tau_{1}, \tau_{2}, \tau_{3}, c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)\right] /\left\langle\tau_{1} \tau_{2} \tau_{3}, c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)^{2}-c_{1}^{T}(\widetilde{\mathcal{G}}) \cdot c_{1}^{T}\left(\gamma_{\widetilde{\mathcal{G}}}\right)+c_{2}^{T}(\widetilde{\mathcal{G}})\right\rangle,
\end{aligned}
$$

where τ_{i} 's are Thom class of the GKM subgraph of the GKM graph \mathcal{G} of $\mathbb{C} P^{2}$.
This is the computation of the equivariant cohomology of flag manifolds by using the Borel-Hirzebruch formula (also see [KLSS]).

The proof of Theorem 3.4 will be given in [Ku21]

Acknowledgment

The author would like to thank Grigory Solomadin for helpful discussions. This work was supported by JSPS KAKENHI Grant Number 17K14196 and 21K03262.

References

[BP15] V. M. Buchstaber and T. E. Panov, Toric topology, Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015.
[GKM98] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83.
[GKZ20] O. Goertsches, P. Konstantis and L. Zoller, Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions. arXiv:2003.11298.
[GSZ12] V. Guillemin, S. Sabatini and C. Zara, Cohomology of GKM fiber bundles, J. of Alg. Comb. vol 35, 19-59 (2012).
[GZ01] V. Guillemin and C. Zara, One-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 1072 (2001), 283-349.
[HM03] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), 1-68.
[Ka88] T. Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J, 111 (1988), 25-40.
[Ka91] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, London, 1991.
[Ku16] S. Kuroki, An Orlik-Raymond type classification of simply connected 6-dimensional torus manifolds with vanishing odd degree cohomology, Pacific J. of Math. 280 (2016), 89-114.
[Ku19] S. Kuroki, Upper bounds for the dimension of tori acting on GKM manifolds, J. of the Math. Soc. Japan, 71, No. 2 (2019), 483-513.
[Ku21] S. Kuroki, Vector bundle over a GKM graph and its projectivization, preprint.
[KLSS] S. Kuroki, E. Lee, J. Song and D.Y. Suh, Flag Bott manifolds and the toric closure of generic orbit associated to a generalized Bott manifold, Pacific J. of Math., 308-2 (2020), 347-392.
$[\mathrm{KU}]$ S. Kuroki and V. Uma, GKM graph locally modeled by $T^{n} \times S^{1}$-action on $T^{*} \mathbb{C}^{n}$ and its graph equivariant cohomology, arXiv:2106.11598.
[LS17] C.C.M. Liu and A. Sheshmani, Equivariant Gromov-Witten Invariants of algebraic GKM manifolds, SIGMA 13 (2017), 21 pages.
[MMP07] H. Maeda, M. Masuda and T. Panov, Torus graphs and simplicial posets, Adv. Math. 212 (2007), 458-483.

Department of Applied Mathematics Faculty of Science, Okayama Uniervsity of Science, 1-1 Ridai-cho Kita-ku Okayama-shi Okayama 700-0005, Okayama, Japan

E-mail address: kuroki@xmath.ous.ac.jp

