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1. Introduction

This article is the research announcement of the paper [Ku] about the computation of the
torus equivariant cohomology of the complex quadrics by GKM theory.

1.1. Basic properties of the complex quadrics. The complex quadrics Qm is the follow-
ing space defined by the quadratic equations:

Qm :=

{
[z1 : · · · : zm+2] ∈ CPm+1

∣∣∣∣∣
m+2∑
i=1

z2i = 0

}
.

We first recall some properties of this space.
Since this space is the solutions of the equation

∑m+2
i=1 z2i = 0 in CPm+1, its dimension

satisfies that dimQm = 2m. Moreover, the equation
∑m+2

i=1 z2i = 0 regards as the (standard
Euclidean) inner product 〈z, z〉 = 0 for z = (z1, . . . , zm+2). So there is the transitive SO(m+ 2)-
action on Qm by the standard multiplication. By computing the isotropy subgroup of the point
[0 : · · · : 0 : 1 :

√
−1] ∈ Qm, there is a diffeomorphism onto the following homogeneous space:

Qm ' SO(m+ 2)/SO(m)× SO(2).

This structure shows that the maximal torus of SO(m+ 2) acts on Qm, i.e., Tn+1 acts on Q2n+1

and Q2n respectively. Note that the Tn+1-action on Q2n defined by this way is non-effective
because the maximal torus Tn+1 in SO(2n+ 2) has the non-trivial center Z2 = {±I2n+2}.

1.2. The cohomology ring and the main theorem of this paper. The cohomology ring
of Qm over the integer coefficient has the following ring structure (see [La72, La74] for H∗(Q2n)
or [EKM08, Excercise 68.3] for H∗(Qm) as the Chow ring1):

H∗(Qm) '

 Z[c, x]/〈cn+1 − 2x, x2〉 if m = 2n+ 1, where deg c = 2, deg x = 2n+ 2
Z[c, x]/〈c2n+1 − 2cx, x2 − c2nx〉 if m = 4n, where deg c = 2, deg x = 4n
Z[c, x]/〈c2n+2 − 2cx, x2〉 if m = 4n+ 2, where deg c = 2, deg x = 4n+ 2

Note that the ring structure of H∗(Q2n) depends on whether n is even or odd.
The purpose of this paper is to understand the difference of ring structures of H∗(Q2n) from

GKM theory, i.e., we describe the difference between H∗(Q4n) and H∗(Q4n+2) by using the
combinatorics of graphs. In order to do that, we first compute the GKM graph Q2n of the
effective Tn+1-action on Q2n in Section 2. Note that by the ring structure of H∗(Q2n) as above,
we have Hodd(Q2n) = 0, i.e., Q2n is equivariantly formal. Therefore, by using GKM theroy (see
[GKM98, GZ01]), the equivariant cohomologyH∗

Tn+1(Q2n) is isomorphic to the graph equivariant
cohomology H∗(Q2n) of the GKM graph Q2n (see Section 3). The main theorem of this paper is
to show the ring structure of H∗(Q2n) by generators and relations. As a consequence of the main

1Since Qm also can be regarded as the homogeneous space of the affine algebraic group SO(m+2,C), it follows

from [EH13, Appendix C.3.4] that its Chow ring is isomorphic to its cohomology ring, i.e., A∗(Qm) ≃ H2∗(Qm;Z).
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theorem in Section 3 (see Lemma 3.1 and Theorem 3.12), we have the following ring structure of
the equivariant cohomology of Q2n with Tn+1-action (the notations will intrduce in Section 3)

Theorem 1.1. There exists the following isomorphism as a ring:

H∗
Tn+1(Q2n) ' Z[Q2n].

In particular, the generators of Z[Q2n] are given by (generalized) GKM subgraphs of Q2n.
This gives the unified formula of the ring structures of H∗

T 2n+1(Q4n) and H∗
T 2n+2(Q4n+2). We

finally describe that the difference between the ring structures of H∗(Q4n) and H∗(Q4n+2) by
using the relations in Z[Q2n] (see Section 4).

2. The GKM graph of the effective Tn+1-action on Q2n

In this section, we compute the GKM graph of the Tn+1-action on Q2n. The basic facts of
the GKM graph (including the definition) refer to [GZ01, Ku09].

2.1. The Tn+1-action on Q2n which preserves the complex structure. Recall that
the (even degree) complex quadrics Q2n is diffeomorphic to the following space of solutions of the
quadric equation (see [Se06, Chapter V.1, 1.1 Theorem.]).

Q2n :=

{
[z1 : · · · : z2n+2] ∈ CP 2n+1

∣∣∣∣∣
n+1∑
i=1

ziz2n+3−i = 0

}
.

For this space, there exists the natural Tn+1-action on Q2n defined by

[z1 : · · · : z2n+2] 7→ [z1t1 : z2t2 : · · · : zn+1tn+1 : t−1
n+1zn+2 : · · · t−1

2 z2n+1 : t−1
1 z2n+2],(2.1)

where (t1, . . . , tn+1) ∈ Tn+1. This is equivariantly diffeomorphic to Q2n with Tn+1 ⊂ SO(2n+ 2)
action in Section 1, and this action also has the finite kernel Z2 which is the center of Tn+1 in
SO(2n + 2). So if we divide Tn+1 by Z2, then we obtain the effective Tn+1-action on Q2n. It
is easy to check that this Tn+1-action preserves the complex structure on CP 2n+1, because this
Tn+1-action is induced from the representation of Tn+1 → GL(2n+2,C) and GL(2n+2,C) action
on CP 2n+1 preserves the complex structure on CP 2n+1 := (C2n+2 \ {0})/C∗.

Henceforth, the notation Q2n represents the space defined as above with the Tn+1-action
defined in (2.1).

2.2. GKM graph of the Tn+1-action on Q2n. By definition, the GKM graph consists of
the fixed points (vertices) and the invariant 2-spheres (edges), and the labels on edges (the axial
function of the GKM graph) which are defined by the tangential representations on fixed points.
In this section, we compute them for the Tn+1-action (2.1) on Q2n.

Because of (2.1), the fixed points of Q2n are

QT
2n = {[ei] | i = 1, . . . , 2n+ 2},

where [ei] = [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ CP 2n+1 (only ith coordinate is 1). Moreover, the invariant
S2(' CP 1)’s are

[zi : zj ] := [0 : · · · : 0 : zi : 0 : · · · : 0 : zj : 0 · · · : 0] ∈ Q2n+2(2.2)

where i+ j 6= 2n+ 3. Therefore, we can define the graph Γ2n := (V2n, E2n) from the Tn+1-action
on Q2n as follows (also see Figure 1):

• the set of vertices V2n = [2n+ 2] := {1, . . . , 2n+ 2};
• the set of edges E2n = {ij | i, j ∈ [2n+ 2] such that i 6= j, i+ j 6= 2n+ 3}.

Remark 2.1. For convenience, we often denote the vertex j ∈ V2n such that i + j = 2n + 3
by i. Namely,

V2n = [2n+ 2] = {1, 2, . . . , n+ 1, n+ 1, n, . . . , 1}.
By this notation, the set of edges can be written by

E2n = {ij | i, j ∈ V2n such that j 6= i, i}
2
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Figure 1. The graph induced from the T 3-action on Q4 (left) and the T 4-action
on Q6 (right).

We next compute the tangential representations around fixed points and put the label on
edges, called an axial function on edges and denoted by α : E2n → H2(BTn+1). Recall that
the tangential representations around the fixed points decompose into the complex 1-dimensional
irreducible representations. Each complex 1-dimensional irreducible representation corresponds
to the tangential representation on the fixed point of the invariant 2-sphere. So it is enough to
compute the tangential representation on each invariant 2-sphere [zi : zj ] ∈ Q2n (see (2.2)). By
the definition of Tn+1-action on [zi : zj ], we may write the action t = (t1, . . . , tn+1) ∈ Tn+1 on
[zi : zj ] by

[zi : zj ] 7→ [pi(t)zi : pj(t)zj ],

where pi : T
n+1 → S1 is the surjective homomorphism defined by

pi(t) =

{
ti if i ∈ [n+ 1]
t−1

i
if i ∈ {n+ 2, . . . , 2n+ 2}

Therefore, the axial function α : E2n → H2(BTn+1) is defined by the following equation (see
Figure 2):

α(ij) = xj − xi,(2.3)

where xi ∈ H2(BTn+1) ' (tn+1
Z )∗ ' Hom(Tn+1, S1) is the element corresponding to pi ∈

Hom(Tn+1, S1) defined by

• xi = pi for i ∈ [n+ 1];
• xi = −pi = −xi for i ∈ {n+ 2, . . . , 2n+ 2}.

1

2

3

6

5

4

x2 − x1 −x3 − x1

x3 − x1 −x2 − x1

Figure 2. The axial function around the vertex 1 of the GKM graph induced
from the T 3-action on Q4. Note that 6 = 1, 5 = 2, 4 = 3.

2.3. GKM graph of the effective Tn+1-action. Since the Tn+1-action (2.1) on Q2n is
not effective, the axial function defined by (2.3) does not satisfy the effectiveness conditions. For
example, around the vertex 1 ∈ V2n, the axial functions are

x2 − x1, . . . , xn+1 − x1,−xn+1 − x1, . . . ,−x2 − x1 ∈ (tn+1
Z )∗,(2.4)
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and it is easy to check that these vectors are not primitive because any n+ 1 vectors do not span
(tn+1

Z )∗, e.g., x2−x1, . . . , xn+1−x1 and −xn+1−x1, i.e., the effectiveness condition does not hold.
Therefore, we can not use the usual GKM theory directly2.

However, if we replace the labels with primitive vectors, then we can get the axial function
defined from the effective Tn+1(' Tn+1/Z2)-action on Q2n, where Z2 = {±1} is the kernel of
the non-effective Tn+1-action in (2.1). For example, we replace vectors (2.4) with the following
vectors (respectively)

x1, . . . , xn+1, −xn−1 + xn + xn+1, . . . , −x1 + xn + xn+1.

Then, these vectors are primitive. Moreover, by using the connection on the GKM graph, other
axial functions are automatically determined. Therefore, we may define the axial function as
follows (also see Remark 2.3 and Figure 3):

Definition 2.2. Set f : V2n → H2(BTn+1) as

f(j) =

{
xj−1 − xn+1 j = 1, . . . , n+ 2
xn − x2n+2−j j = n+ 3, . . . , 2n+ 2

where x0 = 0 and 〈x1, . . . , xn+1〉 = H2(BTn+1)3. Then the axial function α : E2n → H2(BTn+1)
is defined by

α(ij) := f(j)− f(i)

for j 6= i, i.

We denote the GKM graph (Γ2n, α) (or equivalently (Γ2n, f), called a 0-cochain presentation)
for Γ = (V2n, E2n) defined in Definition 2.2 by Q2n.

−x3

x1 − x3

x2 − x3

x2

x2 − x1

0

δ1−→

1

2

3

6

5

4

x1 x3

x2 x2 − x1 + x3

Figure 3. The GKM graph Q2n when n = 2. The right figure shows that the
axial function α : E4 → H2(BT 3) of Q4 around the vertex 1. The left figure
shows its 0-cochain presentation f : V4 → H2(BT 3).

2.4. Remarks from the sheaves on graphs. Due to [BM01], we can define the structure
sheaf (or the sheaf of rings) over the graph Γ (with an appropriate topology) from the GKM graph
(Γ, α), say M (also see [Ku16]), whose global sections are isomorphic to the graph equivariant
cohomology, i.e., H0(Γ;M) ' H∗(Γ, α) (see Section 3). On the other hand, by using [Ha21], we
may also regard the axial function α : E2n → H2(BTn+1) as the element of the 1-cochain of the
structure sheaf (in the sense of [BM01]), i.e.,

C1(Γ2n;M) :=
⊕

e∈E2n

H∗(BTn+1).

2More precisely, this means that the graph equivariant cohomology (see Section 3) is not isomorphic to the
equivariant cohomology over integer coefficient (also see [KKLS20, Remark 4.5]). To apply the GKM theory for the

non-effective torus action, we need to modify the definition of the graph equivariant cohomology (see Appendix A).
3More precisely, H2(BTn+1) in Definition 2.2 is H2(B(Tn+1/Z2)) by identifying them as Tn+1/Z2 ≃ Tn+1.
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On the other hand, the map f : V2n → H2(BTn+1) in Definition 2.2 is the element of the 0-cochain
of the structure sheaf, i.e.,

C0(Γ2n;M) :=
⊕

p∈V2n

H∗(BTn+1).

The axial function defined in Definition 2.2 is nothing but the image of the connection homomor-
phism

δ1 : C0(Γ2n;M) → C1(Γ2n;M)

which is defined by δ1(f)(e) := f(q) − f(p) for f ∈ C0(Γ2n;M) and the oriented edge e = pq.
Namely, there is the following relation between the axial function α and the 0-cochain presentation
f :

δ1(f) = α.

This is the reason why we call f in Definition 2.2 a 0-cochain presentation of the axial function α
(also see [KM]).

Remark 2.3. There are several choices of 0-cochain presentations because every elements in
(δ1)−1(α) can be a 0-cochain presentation. However, using a 0-cochain presentation f is much
simpler to draw figures (see Figure 3) than using the axial function α. So in this paper, we fix one
of the 0-cochain presentations as in Definition 2.2 instead of using the axial function.

Remark 2.4. Let (Γ, α) be a GKM graph and M be its structure sheaf in [BM01]. Then we
may define the following sheaf cohomologies (see [Ha21]):

H0(Γ;M) := Ker(δ1) ' H∗(Γ, α);

H1(Γ;M) := C1(Γ;M)/Im(δ1).

By Remark 2.3, it is easy to check that there exists a 0-cochain presentation f if and only if
α ∈ Im(δ1), i.e.,

[α] = 0 ∈ H1(Γ;M).

Therefore, if H1(Γ;M) = 0, then the axial function which defines M has a 0-cochain presentation.

Remark 2.5. There is an example that does not have any 0-cochain presentations of the
axial function α. By easy computations, we can not take any 0-cochain presentation of the axial
function of the torus graph defined from the standard T 2-action on S4 (see e.g. [MMP07]). This
implies that the axial function [α] ∈ H1(Γ;M) is a non-zero class for the structure sheaf of the
torus graph of the T 2-action on S4. More generally, if there is a multi-edge in the GKM graph,
then we cannot take a 0-cochain presentation of the axial function α.

3. Graph equivariant cohomology H∗(Q2n) and equivariant cohomology H∗
Tn+1(Q2n)

The graph equivariant cohomology of the GKM graph Q2n is defined by

H∗(Q2n) := {h : V2n → H∗(BTn+1) | h(i)− h(j) ≡ 0 mod α(ij) for ij ∈ E2n}.(3.1)

Because Hodd(Q2n) = 0, it follows from [GKM98, FP07] that we have the following lemma:

Lemma 3.1. For the effective Tn+1-action on Q2n, the following isomorphism holds:

H∗
Tn+1(Q2n) ' H∗(Q2n).

So to compute the equivariant cohomology of Q2n, it is enough to compute the graph equivari-
ant cohomology H∗(Q2n). In this section, we introduce the generators and relations of H∗(Q2n).
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3.1. Degree 2 generators. We first define the degree 2 generators, i.e., we will define the
generators in H2(Q2n).

Definition 3.2 (degree 2 generators). Let I ⊂ V2n be the set I = V2n \ {i} for some i ∈
V2n = [2n+ 2]. Define MI : V2n → H2(BTn+1) by

MI(j) =

{
α(ji) = f(i)− f(j) j 6= i

α(ik) + α(ik) = f(k) + f(k)− 2f(i) j = i

where k can be taken any k ∈ V2n \ {i, i}.

Notice that the following proposition holds for the axial function on Q2n:

Proposition 3.3. For every j, k ∈ V2n \ {i, i}, the following equation holds:

α(ij) + α(ij) = α(ik) + α(ik)

It follows from Proposition 3.3 that Definition 3.2 is well-defined.
By checking MI(j)−MI(k) ≡ 0 mod α(jk) for every jk ∈ E2n, we have the following lemma.

Lemma 3.4. For every i ∈ V2n, MI ∈ H2(Γ, α), where I = V2n \ {i}.

Example 3.5. For I = V4 \ {6} = V4 \ {1}, Figure 4 shows the class MI ∈ H2(Q4).

MI(1) = f(2) + f(2)− 2f(6) = x2 + x3

MI(2) = x2 − x1 + x3

MI(3) = x3

MI(6) = MI(1) = 0

MI(5) = MI(2) = x1

MI(4) = MI(3) = x2

Figure 4. MI for I = V4 \ {1}.

Note that MI(j) for j 6= i is the normal axial function α(ji) of j of the full-subgraph I ⊂ V2n
4.

3.2. Higher degree generators. We next define the degree 2k generators, i.e., we will
define the generators in H2k(Q2n) for k ≥ n.

Definition 3.6 (degree (≥)2n generators). Let K ⊂ V2n = [2n + 2] be a subset that sat-
isfies if i ∈ K, then i 6∈ K (or equivalently {i, i} 6⊂ K for all i ∈ V2n). Define ∆K : V2n →
H4n−2(|K|−1)(BTn+1) by

∆K(j) =


∏

k ̸∈K∪{j}

α(jk) =
∏

k ̸∈K∪{j}

(f(k)− f(j)) j ∈ K

0 j 6∈ K

The following lemma is straightforward.

Lemma 3.7. Let |K| be the cardinality of the finite set K. Then ∆K ∈ H4n−2(|K|−1)(Γ, α).

4It is easy to check that such class in H2(Q2n) is unique, that is, MI(i) is automatically determined (also see
Section 5).
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Remark 3.8. By the definition of edges E2n, every pair {i, j} of vertices in K are connected
by an edge ij ∈ E2n. Therefore, the full subgraph of K consists of a complete subgraph in Q2n.
Note that the generator ∆K is nothing but the Thom class of the GKM subgraph whose vertices
consist of K (see [MMP07]).

Geometrically, ∆K is the equivariant Thom class of the projective space in Q2n whose fixed
points consist of K. For example, there exists the following subspace in Q2n:

{[z1 : z2 : · · · : zn+1 : 0 : · · · : 0] ∈ Q2n | zi ∈ C} ' CPn.

Then, for K = [n + 1], the generator ∆K is the equivariant Thom class of this CPn (Figure 5
shows this class when n = 2).

Example 3.9. For the GKM graph Q4, the set of vertices K = {1, 2, 3} satisfies the condition
which defines ∆K . Figure 5 shows the generator ∆K ∈ H4(Q4).

∆K(1) = x3(x2 − x1 + x3)

∆K(2)

∆K(3) = x2(x3 − x1)

∆K(6) = 0

∆K(5) = 0

∆K(4) = 0

Figure 5. ∆K for K = {1, 2, 3}, where ∆K(2) = (x3 − x1)(x2 − x1 + x3).

Example 3.10. For the GKM graph Q4, the set of vertices L = {1, 2} also satisfies the
condition which defines ∆L. Figure 6 shows the generator ∆L ∈ H6(Q4).

∆L(1) = x2x3(x2 − x1 + x3)

∆L(2)

∆L(3) = 0

∆L(6) = 0

∆L(5) = 0

∆L(4) = 0

Figure 6. ∆L for L = {1, 2}, where ∆L(2) = (x2 − x1)(x3 − x1)(x2 − x1 + x3)

3.3. Relations among generators. We next introduce five relations among MI ’s and ∆K ’s.

Relation 1. We define the following elements for J ⊂ V2n:

GJ :=

{
MJ if J = V2n \ {i} for some i ∈ V2n

∆J if J satisfies that {i, i} 6⊂ J for every i ∈ V2n

7



Then, the following relation holds: ∏
∩J=∅

GJ = 0.(3.2)

∆{1}(1)

0

0

0

0

0

×

0

MI(2)

MI(3)

MI(6)

MI(5)

MI(4)

=

0

0

0

0

0

0

Figure 7. Figure of Relation 1. This represents the relation ∆{1} ·MI = 0 for
I = V4 \ {1}.

Relation 2. We define the element X ∈ H2(Q2n) as the map X : V2n → H2(BTn+1) defined
by

X(k) := α(kj) + α(kj),

for all k ∈ V2n \ {j, j}, where j ∈ V2n can be taken any element if j 6= k, k (by Proposition 3.3).
Let i ∈ V2n, I = V2n \ {i} and I = V2n \ {i}. Then, the following relation holds:

MI +MI = X.(3.3)

+ =

x2 + x3

x2 − 2x1 + x3

x3 − x2

−x2 − x3

2x1 − x2 − x3

x2 − x3

MI(1) = 0

MI(6) = 0

Figure 8. Figure of Relation 2. This represents the relation MI + MI = X

where I = V4 \ {6} and I = V4 \ {1}.

Relation 3. Assume that the subset I ⊂ V2n satisfies that |I| = n and there exists the unique
pair {a, a} ⊂ Ic. By using the pigeonhole principle, in this case K = (I ∪{a})c and L = (I ∪{a})c
satisfy the condition which can define the generators ∆K ,∆L ∈ H2n(Q2n). Then, the following
relation holds: ∏

i∈I

MV2n\{i} = ∆(I∪{a})c +∆(I∪{a})c .(3.4)

8



×

1

4

=

2

3

6

+

3

6

5

Figure 9. Figure of Relation 3. This represents the following relation:

MV4\{4} ·MV4\{1} = ∆{2,3,6} +∆{3,5,6},

where I = {1, 4} ⊂ V4 (for n = 2). Note that in this case Ic = {2, 3, 5, 6} and
a = 2, a = 5. Moreover, (I ∪ {5})c = {2, 3, 6} and (I ∪ {2})c = {3, 5, 6}.

Relation 4. Let I = V2n \ {i} for some i ∈ V2n and K ⊂ V2n be a subset which can define
the generator ∆K . Assume that K 6⊂ I and K∩I 6= ∅ (equivalently {i} ⊊ K). Then, the following
relation holds:

∆K ·MI = ∆K∩I .(3.5)

2

3

6

×

1

2

6

4

5

=

6

2

Figure 10. Figure of Relation 4. This represents the relation ∆{2,3,6} ·MV4\{3} = ∆{2,6}.

Relation 5. Let K,H ⊂ V2n be subsets with |K| = |H| = n + 1 which define ∆K ,∆H ∈
H2n(Q2n). Then, the following relation holds:

∆K ·∆H = ∆K∩H ·

|K∩H|−1∑
i=0

(−1)iXi · σ|K∩H|−1−i(MI | K ∪H ⊂ I)

 ,(3.6)

where X ∈ H2(Q2n) is the element defined in Relation 2 and σj is the symmetric polynomial with
degree j.

2

3

6

×

3

6

5

=

3

6

×

3

6

Figure 11. Figure of Relation 5 (also see Figure 12), where K = {2, 3, 6}, H =
{3, 5, 6}. This represents the following relation:

∆{2,3,6} ·∆{3,5,6} =∆{3,6} · (σ1(MV4\{1},MV4\{4})−X)

=∆{3,6} · (MV4\{4} +MV4\{1} −X),

because K ∩H = {3, 6} and K ∪H = {2, 3, 5, 6} ⊂ I (so I = V4 \{1} or V4 \{4}).
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+

1

4

−x2 − x3

x3 − x2

−

X(1)

X(2)

x3 − x2

−x2 − x3

X(5)

X(4)

=

A(3)

A(6)

A(1)

A(2) A(4)

A(5)

Figure 12. Figure about the element A = MV4\{4} +MV4\{1} −X in Figure 11.
Note that A(3) = A(6) = −x2 by Figure 3. Moreover, A(1), A(2), A(4), A(5)
might not be 0 ∈ H2(BT 3); however, ∆{3,6}(1) = ∆{3,6}(2) = ∆{3,6}(4) =
∆{3,6}(5) = 0.

3.4. Main theorem. Now we may state the main theorem of this paper. To do that, we
first define the following notations.

Definition 3.11. Set

M := {MI | I = V2n \ {i} for i ∈ V2n}, D := {∆K | K ⊂ V2n such that if i ∈ K then i 6∈ K}.

Put the polynomial ring generated by M,D by

Z[M,D].

Let I be the ideal in Z[M,D] generated by the 5 relations defined in Section 3.3. Then, we define

Z[Q2n] := Z[M,D]/I.

The following theorem is the main theorem of this paper.

Theorem 3.12. There is the following isomorphism:

Z[Q2n] ' H∗(Q2n).

We prove this theorem in [Ku].
Together with Lemma 3.1, we have Theorem 1.1.

4. Combinatorial interpretation of the difference between H∗(Q4n) and H∗(Q4n+2)

In this section, we first compute the ordinary cohomology from Theorem 1.1 and consider the
meaning of the difference between H∗(Q4n) and H∗(Q4n+2) from a combinatorial point of view.

4.1. Ordinary cohomology H∗(Q2n). Let H∗(BTn+1) = Z[x1, . . . , xn+1]. The elements
x1, . . . , xn+1 can be interpreted as the elements in graph equivariant cohomology.

Lemma 4.1. For j = 1, . . . , n+ 1,

xj = MV2n\{j+1} −MV2n\{1} ∈ H2(Q2n).

Because Hodd(Q2n) = 0, as a module we have

H∗
Tn+1(Q2n) ' H∗(Q2n)⊗Z H∗(BTn+1).

Therefore, as a ring

H∗(Q2n) ' H∗
Tn+1(Q2n)/〈x1, . . . , xn+1〉.

Consequently, together with Theorem 1.1 and Lemma 4.1, we obtain the following unified formula
of two rings H∗(Q4n) and H∗(Q4n+2):

Theorem 4.2 (ordinary cohomology). There is the following isomorphism:

H∗(Q2n) ' Z[Q2n]/〈MV2n\{j+1} −MV2n\{1} | j = 1, . . . , n+ 1〉.
10



4.2. H∗(Q2n) from a combinatorial point of view. Using the relation MV2n\{j+1} −
MV2n\{1} = 0 and the Relation 2, in Z[Q2n]/〈MV \{j+1} −MV \{1} | j = 1, . . . , n+ 1〉, there is the
following relation:

Relation 6. MI = MI′ for all I, I ′ ⊂ V2n with |I| = |I ′| = 2n+ 1

Moreover, for K ⊂ V2n such that |K| = n + 1 and {i, i} 6⊂ K for every i ∈ V2n, i.e.,
∆K ∈ H2n(Q2n) can be defined, by using Relation 3, we have the following relations:

Relation 7. There are the following two relations:

(1) ∆Kc = Mn
I −∆K if n ≡ 0 mod 2;

(2) ∆Kc = ∆K if n ≡ 1 mod 2.

Relation 7 shows the difference between H∗(Q4n) and H∗(Q4n+2). We shall explain these
differences by H∗(Q6) and H∗(Q8).

4.2.1. H∗(Q4) from a combinatorial point of view. By using Relation 7 (2), in H∗(Q4), we
know that the three subgraphs in Figure 13 define the same class in H4(Q4).

∆K ∆K ∆K

Figure 13. Three (same) classes in H4(Q4).

Note that any pair of subgraphs in Figure 13 has always an intersection. This shows that
∆2

K(= x2) 6= 0 in H∗(Q4) ' Z[c, x]/〈c3 − 2cx, x2 − c2x〉.
On the other hand, M2

I −∆K can be illustrated as in Figure 14.

∆K

×

∆Kc = M2
I −∆K

= 0

Figure 14. ∆K(MI −∆K) = 0.

Note that the subgraphs in Figure 14 have no intersections. Therefore, by using Relation 1,
there exists the relation ∆K(M2

I −∆K)(= x2 − c2x) = 0 in H∗(Q4) ' Z[c, x]/〈c3 − 2cx, x2 − c2x〉.
4.2.2. H∗(Q6) from a combinatorial point of view. By using Relation 7 (1), in H∗(Q6), for

example, the two subgraphs in Figure 15 have an intersection, i.e., the multiplication of these
classes are non-zero.
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∆K M3
I −∆K

Figure 15. Two classes ∆K and M3
I −∆K in H6(Q6).

Note that any pair of subgraphs obtained by ∆K and M3
I −∆K (see Figure 15) has always an

intersection. This shows that ∆K(M3
I −∆K)(= x2 − c3x) 6= 0 in H∗(Q6) ' Z[c, x]/〈c4 − 2cx, x2〉.

On the other hand, ∆K can be also obtained by the subgraph as in Figure 16.

∆K

×

∆Kc = ∆K

= 0

Figure 16. Figure shows the realtion ∆2
K = x2 = 0 in H∗(Q6).

Figure 16 shows that the class ∆K is also identified with the class ∆Kc in H∗(Q6). Therefore,
by Relation 1, there is the relation ∆2

K(= x2) = 0 in H∗(Q6) ' Z[c, x]/〈c4 − 2cx, x2〉.

5. The problem inspired by algebraic geometry

We end this paper by asking about the related problem of the main theorem in this paper.

Problem 5.1. Let (Γ, α) be a GKM graph. Can every element x ∈ H∗(Γ, α) be written by the
linear combinations of classes defined by generalized GKM subgraphs?

Here, a class defined by a generalized GKM subgraph5 seems to be a Thom class of the
ordinary GKM subgraphs. This problem reminds us of the following question (this sentence is
quoted from [EH13, Appendix C.2.4 “The Hodge conjecture”]):

• “the question of which cohomology classes on a smooth projective variety X can be
represented as linear combinations of the fundamental classes of algebraic varieties; that
is, what is the image of η : A(X) → H∗(X)?”

For a GKM graph (Γ, α), the counterpart of the Chow ring A(X) is a ring defined by some GKM
subgraphs in GKM graph (Γ, α), and the counterpart of the cohomology ring H∗(X) is the graph
equivariant cohomology H∗(Γ, α).

Problem 5.1 is affirmatively solved for the case when (Γ, α) is a torus graph by Maeda-Masuda-
Panov [MMP07] or more general orbifold torus graph by Darby-Kuroki-Song [DKS22]. They
introduce the face ring Z[Γ, α] of a(n) (orbifold) torus graph which is defined by all (orbifold)
GKM subgraphs in a(n) (orbifold) torus graph, and they prove that Z[Γ, α] ' H∗(Γ, α). This
result shows that all elements in H∗(Γ, α) can be represented as the linear combinations of Thom
classes of (orbifold) GKM subgraphs.

The main theorem of the present paper also answers to Problem 5.1 affirmatively for the case
when (Γ, α) = Q2n by introducing a ring Z[Q2n] in Definition 3.11 which is generated by different

5The definition is still vague but we do not want to use the global classes defined by the element x ∈ H∗(Γ, α)
such that x(p) ̸= 0 for all vertices p ∈ V (Γ). For example, the Chern classes of tautological line bundle defined in
[KS] are such global classes. Also, see the generator x in Figure 18 in Appendix A.
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types of generators and relations from Maeda-Masuda-Panov’s and Darby-Kuroki-Song’s. Note
that the generators in this paper are defined from the subgraphs in Q2n. Moreover, they are
genuine GKM subgraphs, called ∆K , or non-GKM subgraphs in the usual sense, called MI (see
Section 3). Geometrically, ∆K is nothing but the (equivariant) Thom class of some smooth
subvariety (see Remark 3.8), and MI corresponds to some non-smooth subvarieties (isomorphic
to the Schubert varieties (also see [La72])). The definition of MI is purely combinatorics but
this class is uniquely determined (as the “minimal” class which is only non-zero on the vertices
I = V2n \ {i}). So there should be a nice geometric (or cohomological) interpretation.

Appendix A. GKM description for non-effective T 1-actions on CP 1

Let T 1(= T ) be the 1-dimensional torus. For every T 1-action on CP 1, there exists a non-
negative integer n such that the action is weak (i.e., up to the automorphism on T 1) equivariantly
diffeomorphic to the following action:

t · [z0 : z1] = [z0 : tnz1],

where t ∈ T 1 and [z0 : z1] ∈ CP 1. We denote this action as φn and the equivariant cohomology
H∗

T (CP 1) with respect to this action as H∗
φn

(CP 1). In [KKLS20, Remark 4.5], we show that

H∗
φ1
(CP 1) ' Z[τ1, τ2]/〈τ1τ2〉 6' H∗

φ2
(CP 1) ' Z[u, v]/〈u2 − v2〉.

In this Appendix A, we show the GKM description of H∗
φn

(CP 1) for all n ≥ 1.
The Mayer-Vietoris exact sequence of the equivariant cohomology satisfies that

· · · −→ Hj
φn

(CP 1) −→ Hj
φn

(U0)⊕Hj
φn

(U1) −→ Hj
φn

(U0 ∩ U1) −→ Hj+1
φn

(CP 1) −→ · · ·

where U0 ' {[z0 : 1] | z0 ∈ C} is the invariant open neighborhood of the fixed points [0 : 1],
U1 ' {[1 : z1] | z1 ∈ C} is that of the fixed points [1 : 0], and U0∩U1 ' {[z0 : z1] | z0z1 6= 0} ' C∗.
Since Ui is equivariantly contractible to the point and U0 ∩ U1 is equivariant deformation retract
to the great circle S1, this sequence is isomorphic to the following sequence:

0 −→ H2j−1
T (S1) −→ H2j

T (CP 1) −→ H2j(BT )⊕H2j(BT ) −→ H2j
T (S1) −→ 0

Note that H∗
T (S

1) is the equivariant cohomology of the n times rotated action of T 1 on S1.
Therefore, the T 1-action φn on S1 has the kernel Zn for n ≥ 2, {e} for n = 1. By the spectral
sequence argument, we have that for n ≥ 2

H∗
T (S

1) = H∗(ET ×T S1) ' H∗(ET/Zn) ' H∗(BZn) '

 Z ∗ = 0
Zn ∗ = 2j, j > 0
0 ∗ = 2j − 1

Because H∗(BT ) ' Z[x], we have the following short exact sequence

0 −→ H2j
φn

(CP 1) → Z⊕ Z −→ Zn −→ 0

for j > 0 and n ≥ 2. Hence, by the definition of the Mayer-Vietoris exact sequence, for all n ≥ 2

H∗
φn

(CP 1) ' {f ⊕ g ∈ Z[x]⊕ Z[x] | f0 = g0, fj − gj ≡ 0 mod n}
' {f ⊕ g ∈ Z[x]⊕ Z[x] | f − g ≡ 0 mod nx}.

Note that for n = 1 this is nothing but the GKM description in the usual sense, i.e.,

H∗
φ1
(CP 1) ' {f ⊕ g ∈ Z[x]⊕ Z[x] | f − g ≡ 0 mod x}.

Figure 17 shows the labeled graph which corresponds to φn. Note that φ0 represents the
trivial T -action on CP 1.
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nx

−nx

p

q

Figure 17. The GKM graph of φn, where p = [1 : 0] and q = [0 : 1]. The
element x ∈ t∗ ' R is a generator of t∗Z ' Z.

In summary, we have the following GKM description for φn and its ring structure.

Theorem A.1 (GKM description for non-effective torus action on CP 1). For every non-trivial
T 1-action on CP 1, there is the following ring isomorphism:

H∗
φn

(CP 1) ' {h : {p, q} → Z[x] | h(p)− h(q) ≡ 0 mod nx},

where {p, q} is the fixed points for n ≥ 1.
Furthermore, there is the following ring isomorphism:

H∗
φn

(CP 1) ' Z[τp, τq, x]/〈τpτq, nx− τp + τq〉
for n ≥ 0, where τp, τq are the equivariant Thom classes of fixed points.

p

q

nx

0

p

q

0

−nx

p

q

x

x

Figure 18. Figure of generators τp, τq, x (from left).
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山形大学名誉教授の内田伏一先生が 2021年 12月 9日にお亡くなりになりました。内田伏一先

生は私が山形大学に在籍時代の学部・修士時代（2000年～2002年）にかけての指導教官です。私は
先生が退官される直前の学生でした。先生の元で直接勉強した学生の中では私がアカデミックの世
界に残っている最後の一人になります。この場をお借りして日本の変換群論の発展に貢献されてき
た先生の業績や個人的な思い出を振り返りたいと思います。
内田先生は東北大を卒業後、大阪大学に赴任されました。川久保勝夫先生達とともに日本の変

換群論研究を牽引して来られた先生の一人です。研究者としての初期のころは、空間のはめ込みの
研究をされていたようです。大阪大学のときには、コボルディズム論やコンパクトリー群の作用に
関する研究をされていました。山形大学に赴任されてからは非コンパクトリー群の可微分な作用に
関する論文を執筆され、twisted linear actionと呼ばれる球面上への非コンパクトリー群の可微分な
作用を組織的に構成する方法を定義されていました。山形大学において退官されるまで、それに関
する論文を長年にわたり執筆されていました。退官後は魔方陣に関する研究を精力的にされていた
ようです。魔方陣に関する本も執筆されていました。著書も沢山あり、紀伊國屋数学叢書の『変換
群とコボルディズム論』の他、裳華房から出ている『集合と位相』は今でも多くの大学の学部の教
科書として定評があります。他にも多くの教科書を執筆されていました。このような業績から内田
先生は変換群論のみならず日本のトポロジーの発展や大学数学の教育にも多くの貢献したと言って
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も過言ではないと思います。私が学生の頃のトポロジーシンポジウムで当時九州大学にいた加藤十
吉先生が「少し上の年代の内田先生にあこがれてトポロジーの研究を始めた」と話しておられたの
を覚えています。また、先生がお亡くなりになったことをお聞きしてご自宅にお伺いしました。そ
の折に、奥様から、「学生の話をするのがとても好きな人だった」ともお聞きしました。実際、私が
内田先生を指導教官として選んだ理由の一つは講義がとても明快だったということです。
今回の研究の動機となった complex quadricsは内田先生のところにいたときに初めて勉強した

ものです。私が修士に上がる直前に渡された論文 [Uc77]は「初期の傑作のひとつ」と言って別刷り
を渡されました。実際、MathSciNetで調べるとこの論文が内田先生の論文の中で最も引用されてい
ることがわかります。Complex quadricsはこの論文の中で重要な役割を果たします。私が修士課程
の頃はこの論文を何度も読み返しました。当時の私の知らないいろんな数学が使われていて、論文一
つから様々なことを勉強できました。私の（大阪市大での）博士論文の一部は、complex quadricsに
関する結果になりました。今回の研究はそのころからいつかやってみたいと思っていた研究でした。
最後に、私が将来数学者になりたいと内田先生に言った後に、質問に行くたびに「こんなのも

わからないのか。困ったなー。」と頭を抱えられていたのですが、一度だけ「数学者になるために必
要なのは才能よりも運だ。運というのはこれから君がどんな人と出会っていくかということだ。」と
言われたのは一番印象に残っています。内田先生との出会いは、私にとっては本当に幸運な出会い
の一つでした。学部・修士の頃のゼミでは毎回厳しいながらも、数学以外にもいろんなことを教え
ていただくことができました。この場をお借りして心から感謝を申し上げたいと思います。
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