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1. Introduction

This article is the research announcement of the progress work on the leg bundles.
A GKM graph with legs has first appeared in [KU] to define the GKM theoretical counterpart

of the toric hyperKähler manifold. This involves the Tn × S1-action on T ∗CPn. Remark that
the standard Tn-action on T ∗CPn does not satisfy the GKM condition. However, we define its
GKM theoretical counterpart in [KU] and apply it to prove the graph equivariant cohomology
of some classes of GKM graphs with legs. Motivated by this, in [KS], we introduce the leg
bundles which are the combinatorial counterparts of the equivariant vector bundles over GKM
manifolds. In general, the equivariant vector bundle over a GKM manifold does not satisfy the
GKM condition; however, we can define the GKM graph like object for this and define the notion
of the projectivization of a complex vector bundle as the purely combinatorial way. In general, a
leg bundle may not be the GKM graph but its projectivization may be the GKM graph. So the
following problem is the natural problem:

Problem 1.1. Find the necessary and sufficient conditions when the projectivization of a leg
bundle is a GKM graph.

The purpose of this note is to give a partial answer to this question.

2. Leg bundle over a GKM graph and its projectivization

The aim of this section is the quick introduction of a leg bundle over the GKM graph, and
the projectivization of a leg bundle (see [KS] for details). Throughout of this paper we will use
the symbol |X| as the cardinality of the finite set X, and the symbol [r] as the set of {1, . . . , r}
for r ∈ N. In this paper, we often use the following identification:

Zn ' (tnZ)
∗ ' Hom(Tn, S1) ' H2(BTn) ⊂ H∗(BTn) ' Z[x1, . . . , xn],

where (tnZ)
∗ is the dual of the weight lattice of the Lie algebra of Tn and deg xi = 2.

2.1. Leg bundle over an abstract graph. Let V be a set of vertices, and E be a set of
(oriented and possibly multiple) edges in G. We denote G = (V, E). Throughout this paper, we
assume that every graph G is connected and finite. We use the following notations:

• i(e) ∈ V (resp. t(e) ∈ V) is the initial (resp. terminal) vertex for e ∈ E ;
• e ∈ E is the opposite directed graph of e ∈ E ;
• starG(p) := {e ∈ E | i(e) = p} is the set of out-going edges from p ∈ V .

The graph G = (V, E) is called a (regular) m-valent graph if | starG(p)| = m for every p ∈ V .

Definition 2.1. Let G = (V, E) be a graph. The following pair of sets is called a rank r leg
bundle over G:

[r]G := (V, E t V × [r]).
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An element (p, j) ∈ V × [r] is called a leg of [r]G over p ∈ V . The set of legs over p, i.e.,
[r]p := {(p, 1), . . . , (p, r)} is called the fiber of [r]G over p.

The rank r leg bundle [r]G over G may be regarded as the non-compact graph consisting of
the graph G with adding the r non-compact edges, called legs, over each vertex of G, see Figure 1.
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Figure 1. The rank 2 leg bundle over the triangle (left) and the rank 3 leg bundle
over the edge (right).

2.2. Leg bundle over a GKM graph. Let G = (V, E) be an m-valent graph. For n ≤ m,
a function α : E → (tnZ)

∗ satifying the following conditions (1)–(3) is called an axial function:

(1) α(e) = ±α(e) for every edge e ∈ E ;
(2) every two distinct elements in α(starG(p)) = {α(e) ∈ (tnZ)

∗ | e ∈ starG(p)} are linearly
independent, i.e., pairwise linearly independent (or 2-independent for short), for every
p ∈ V ;

(3) there is a bijection ∇e : starG(i(e)) → starG(t(e)) for every e ∈ E such that
(a) ∇e = ∇−1

e ;
(b) ∇e(e) = e;
(c) α(∇e(e

′))− α(e′) ≡ 0 mod α(e) for every e, e′ ∈ starG(p).

The condition (3)-(c) is called a congruence relation on e ∈ E . The collection ∇ = {∇e | e ∈ E} is
called a connection on (G,α), and the bijection ∇e is also called a connection on the edge e ∈ E .
The above triple (G,α,∇) is called a GKM graph, or an (m,n)-type GKM graph if we emphasize
the valency of G and the dimension of the target space of α (see e.g. [GZ01, MMP07, DKS22]).

Definition 2.2 (Leg bundle over a GKM graph). Let Γ = (G,α,∇) be an (m,n)-type GKM
graph. We call ξ a (rank r) leg bundle over Γ if the following data is given for [r]G:

(1) we assign the element ξjp ∈ (tnZ)
∗ to every leg (p, j), called a weight on (p, j);

(2) there is the permutation σξ
e : [r]i(e) → [r]t(e) for every edge e ∈ E that satisfies the

following congruence relation:

ξ
σe(j)
t(e) − ξji(e) ≡ 0 mod α(e).

We also call the collection σξ := {σξ
e | e ∈ E} a connection on ξ. A rank 1 leg bundle over Γ is

called a line bundle over Γ. For a line bundle ξ over Γ, the connection σξ is uniquely determined.
By forgetting legs and their weights, we can define the projection π : ξ → Γ, see Figure 2.
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Figure 2. The right graph Γ = (G,α,∇) is the GKM graph satisfying α(e) =
−α(e). The left labeled graph ξ is the rank 2 leg bundle over Γ. Note that the
connection σξ is uniquely determined.

2.3. Projectivization of a leg bundle. Let Γ = (G,α,∇) be an (m,n)-type GKM graph
and ξ be its rank (r + 1) leg bundle, where G = (V , E). We next introduce the projectivization
Π(ξ) = (P (ξ), αP (ξ),∇P (ξ)) of ξ.

The underlying graph P (ξ) := (VP (ξ), EP (ξ)) is defined as follows:

• The set of vertices is defined by VP (ξ) := [r + 1]G;
• The set of edges EP (ξ) consists of the following two types of edges:

vertical: a vertical edge (p, jk) connecting two vertices (p, j), (p, k) ∈ [r+1]p if j 6= k,
where p runs over V and j, k run over [r + 1]p with j 6= k;

horizontal: a horizontal edge (e, l) for e ∈ E and l ∈ [r+1]i(e) connecting (i(e), l) and

(t(e), σξ
e(l)).

Note that the reversed orientation edge of the vertical edge (p, jk) is (p, jk) = (p, kj) and that of

the horizontal edge (e, l) is (e, l) = (e, σξ
e(l)).

The label αP (ξ) : EP (ξ) → (tnZ)
∗ of the projectivization Π(ξ) is defined as follows:

• αP (ξ)(p, jk) := ξjp − ξkp , for any vertical edge (p, jk) ∈ EP (ξ);

• αP (ξ)(e, l) := α(e), for any horizontal edge (e, l) ∈ EP (ξ).
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Figure 3. The projectivization P (ξ) of the leg bundle ξ in Figure 2. Here,
(u, 12) is the vertical edge connecting (u, 1) and (u, 2) and (e2, 1) is the horizontal
edge connecting (u, 1) and (w, 1). For these edges, the labels are defined by
αP (ξ)(u, 12) = ξ1u − ξ2u = x1 − x2 and αP (ξ)(e2, 1) = α(e2) = x2.

The canonical connection ∇P (ξ) is defined by the set of the bijective maps

∇P (ξ)
ϵ : starP (ξ)(i(ϵ)) −→ starP (ξ)(t(ϵ)).

such that

• ∇P (ξ)
(u,jk)(u, jl) = (u, kl) for every distinct elements j, k, l ∈ [r + 1];

3



• ∇P (ξ)
(u,jk)(e, j) = (e, k), where i(e) = u ∈ V ;

• ∇P (ξ)
(e,l) (u, lk) = (v, σe(l)σe(k)), where i(e) = u, t(e) = v ∈ V for every distinct elements

l, k ∈ [r + 1];

• ∇P (ξ)
(e,l) (e

′, l) = (∇e(e
′), σe(l)), where i(e) = i(e′) ∈ V ,

where we omit ∇P (ξ)
ϵ (ϵ) = ϵ. The following theorem is straightforward by definition (see [KS,

Theorem 3.2]).

Theorem 2.3. The canonical collection ∇P (ξ) := {∇P (ξ)
ϵ | ϵ ∈ EP (ξ)} satisfies the congruence

relations, i.e., it satisfies the conditions to be the connection on (P (ξ), αP (ξ)).

3. Whitney sum and Tensor product

Let Γ = (G,α,∇) be an (m,n)-type GKM graph, where G = (V, E). Let ξ be a rank r and η
be a rank r′ leg bundles over Γ. In this section, we define the Whitney sum ξ ⊕ η and the tensor
product ξ ⊗ η.

In order to correspond to the geometrical objects, in this section, we also use the following
symbols:

• the symbols τCP 2 and τ∗CP 2 represent the tangent bundle and the cotangent bundle over
CP 2 with the standard lifting of the T 2-action on CP 2, respectively;

• the symbol ϵ(k,l) represents the trivial line bundle over CP 2 whose T 2-action on the fiber

is defined by (t1, t2) 7→ tk1t
l
2;

• the symbol γ⊗k is the k-times tensor product of the tautological line bundle over CP 2

with the standard lifting of the T 2-action on CP 2.

All of such equivariant bundles can be described by using the leg bundles. For example, the leg
bundle induced from the standard T 2-action on the tangent bundle τCP 2 is as follows:

1 2

3

x1

x2

−x1

x2 − x1

−x2 x1 − x2

Figure 4. Rank 2 leg bundle corresponding to τCP 2 , where x1, x2 ∈ (tZ)
∗ are

the standard basis defined by the coordinate projections. Note that we omit the
axial functions on edges.

3.1. Whitney sum.

Definition 3.1 (Whitney sum of leg bundles). The Whitney sum ξ ⊕ η is the following rank
r + r′ leg bundle over Γ:

(1) the underlying non-compact graph of ξ ⊕ η is [r + r′]G;
(2) the set of legs over the vertex u ∈ V is denoted by [r + r′]u := [r]u t [r′]u = {(u, j) | j ∈

[r]u} t {(u, j′) | j ∈ [r′]u};
(3) for every leg (u, j) ∈ [r]u (resp. (u, j′) ∈ [r′]u), the label ξ

j
u (resp. ηj

′

u ) in (tnZ)
∗ is assigned;

(4) for every edge e ∈ E , the connection σξ⊕η
e is defined by σξ⊕η

e (i(e), j) := (t(e), σξ
e(j)) for

(i(e), j) ∈ [r]i(e) and σξ⊕η
e (i(e), j′) := (t(e), ση

e (j
′)) for (i(e), j) ∈ [r′]i(e).

Example 3.2. See Figure 6 from right to left.
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3.2. Tensor product.

Definition 3.3 (Tensor product of leg bundles). We define the tensor product ξη(= ξ⊗ η) as
follows:

(1) the underlying non-compact graph of ξη is [rr′]G;
(2) the set of legs over the vertex u ∈ V is denoted by [rr′]u := {(u, j, k) | j ∈ [r]u, k ∈

[r′]u} ' [r]u × [r′]u;
(3) for every leg (u, j, k), the label ξju + ηku ∈ (tnZ)

∗ is assigned;
(4) for every edge e ∈ E , the connection σξη

e is defined by σξη
e (i(e), j, k) := (t(e), σξ

e(j), σ
η
e (k)),

where σξ
e and ση

e are connetions on the edge e of ξ and η respectively.

Note that if we regard [rr′]u = [r]u× [r′]u, (4) is nothing but σξη
e = σξ

e ×ση
e . Note that for two

line bundles ζ and ζ ′ over Π, the label of the tensor product ζζ ′ can be denoted by ζζ ′p := ζp + ζ ′p.
For example, the following figure shows the tensor product of two leg bundles.

−x1

−x2

x1

x1 − x2

x2 x2 − x1

⊗

x1 + x2 −2x1 + x2

x1 − 2x2

=

x2

x1

−x1 + x2

−x1

x1 − x2 −x2

Figure 5. Geometrically, this shows the relation τ∗CP 2 ⊗ (γ⊗3 ⊗ ϵ1,1) ' τCP 2 .

3.3. Splitting into the line bundle from GKM theoretical viewpoint. The following
notion is important to state our main result.

Definition 3.4 (Splitting). For a rank r leg bundle ξ over a GKM graph Γ = (G,α,∇), if
there is a connection σ̂ξ (might be different from the original connection σξ) on ξ such that ξ
with the connection σ̂ξ is the Whitney sum of line bundles γ1 ⊕ · · · ⊕ γr, then we call ξ a splitting
bundle.

For example, the decomposition

τCP 2 ⊕ ϵ(0,0) = γ ⊕ (γ ⊗ ϵ1,0)⊕ (γ ⊗ ϵ0,1).

can be computed by the following decomposition of the leg bundles:

x1

x2

0

−x1

x2 − x1

0

−x2 x1 − x2

0

=
0

−x1

−x2

⊕

x1

0

x1 − x2

⊕

x2 x2 − x1

0

Figure 6. Splitting of the rank 3 leg bundle into the ling bundles.

4. Main theorem

In this section, we state the main theorem of this paper.
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4.1. Main theorem. Let Γ = (G,α,∇) be a (2, 2)-type GKM graph for G = (V, E) and ξ
be a rank 2 leg bundle over Γ. Then, we may write

• V = {p1, . . . , pr} and E = {e1, . . . , er}, where ei is the edge connecting pi and pi+1 for
i = 1, . . . , r − 1 and er is the edge connecting pr and p1, i.e., G is the boundary of the
r-gon for some r ≥ 2;

• the fiber over p ∈ V is [2]p := {ℓp,1, ℓp,2},

where in the above notations ℓp,1 = (p, 1) and ℓp,2 = (p, 2).
Then the following lemma is straightforward:

Lemma 4.1. For any label on ξ, the connection on ξ is one of the following or both of them:

(1) σξ
er ◦ · · · ◦σ

ξ
e1(ℓp1,i) = ℓp1,i for i = 1, 2, i.e., ξ is the splitting bundle (in fact, it splits into

two line bundles);
(2) σξ

er ◦ · · · ◦ σ
ξ
e1(ℓp1,1) = ℓp1,2, i.e., ξ is not the splitting bundle.

By changing the order of legs, for the 1st case in Lemma 4.1, we may assume that σξ
ei for all

i = 1, . . . , r is identity. In this case, we say that ξ admits a splitting type connection. Similarly,
for the 2nd case in Lemma 4.1, we may assume that only one connection on an edge is twisting
and the others are identity; we say that ξ admits a non-splitting type connection.

The following figure shows that the rank 2 leg bundle ξ over the GKM graph induced from
CP 2 which admit both of the splitting type and the non-splitting type connections.

p1 p2

p3

0

x1

ℓp1,1

x1

0
ℓp2,1

x1 − x2 x2

ℓp3,2

Figure 7. Rank 2 leg bundle with two connections.

Now we may state the main theorem:

Theorem 4.2. Let ξ be a rank 2 vector bundle over a (2, 2)-type GKM graph Γ. Then the
following two conditions are equivalent:

(1) ξ admits both of the splitting type and the non-splitting type connections;
(2) The projectivization Π(ξ) is not a GKM graph.

The following figure shows that the projectivization (for the non-splitting connection) of the
leg bundle in Figure 7. This does not satify the 2-independency aroung the vertex ℓp1,1; therefore,
this is not the GKM graph.
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ℓp1,2

ℓp1,1 ℓp2,1

ℓp3,2

x1

x2
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Figure 8. The projectivization Π(ξ) of the leg bundle ξ with the non-splitting
connection in Figure 7.
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