目次

第1章	不定積	分と諸定理	1
1.1	不定積	分の基本公式	1
	1.1.1	原始関数と不定積分	1
	1.1.2	不定積分の公式	3
	1.1.3	演習問題	4
	1.1.4	演習問題 略解	6
1.2	不定積	分の線型性と諸定理	7
	1.2.1	不定積分の線型性	7
	1.2.2	不定積分の諸定理	8
	1.2.3	演習問題	10
	1.2.4	演習問題 略解	11
1.3	置換積	∄分法Ⅰ	15
	1.3.1	C^1 級関数 \ldots	15
	1.3.2	置換積分法の定理	17
	1.3.3	置換積分法の例	18
	1.3.4	演習問題	20
	1.3.5	演習問題 略解	21
1.4	置換積	i分法 II	26
	1.4.1	置換積分法の考え方	26
	1.4.2	特殊な置換積分法	27
	1.4.3	置換積分のまとめ	30
	1.4.4	演習問題	31
	1.4.5	演習問題 略解	32
1.5	部分積	汾法	42

	1.5.1	部分積分法の定理 4:	2
	1.5.2	演習問題	5
	1.5.3	演習問題 略解	6
1.6	演習 I		4
	1.6.1	演習問題	4
	1.6.2	演習問題略解	6
1.7	有理関	数の不定積分	9
	1.7.1	有理関数と部分分数分解	9
	1.7.2	有理関数の不定積分 7	1
	1.7.3	演習問題	2
	1.7.4	演習問題 略解	3
1.8	ヘビサ	イドの展開定理	3
	1.8.1	ヘビサイドの展開定理を使うために	3
	1.8.2	ヘビサイドの展開定理 I	3
	1.8.3	ヘビサイドの展開定理 II	4
	1.8.4	ヘビサイドの展開定理 I+II	5
	1.8.5	ヘビサイドの展開定理を利用するために 8	6
	1.8.6	演習問題	7
	1.8.7	演習問題 略解	8
第2章	定積分	・と基本定理 9	7
2.1	面積と	積分法	7
	2.1.1	面積9	7
	2.1.2	リーマン和	8
	2.1.3	練習問題	0
	2.1.4	練習問題 略解	1
2.2	区分求	. 積法	2
	2.2.1	リーマン和から区分求積法105	2
	2.2.2	区分求積法とは 103	3
	2.2.3	演習問題	5
	2.2.4	演習問題 略解	6

2.3	定積分	の性質)9
	2.3.1	定積分の性質)9
	2.3.2	演習問題	1
	2.3.3	演習問題 略解	2
2.4	積分の	平均値の定理	4
	2.4.1	積分の平均値の定理	4
	2.4.2	演習問題	6
	2.4.3	演習問題 略解	17
2.5	微分積	分の基本定理、基本公式12	20
	2.5.1	微分積分の基本定理	20
	2.5.2	演習問題	22
	2.5.3	演習問題 略解	23
2.6	演習 II		26
	2.6.1	演習問題	26
	2.6.2	演習問題 略解	27
2.7	まとめ		33
	2.7.1	まとめのテスト MA	3
	2.7.2	まとめのテスト MB	34
	2.7.3	まとめのテスト MA 略解	35
	2.7.4	まとめのテスト MB 略解	37
	2.7.5	まとめのテスト 再	39
	2.7.6	まとめのテスト 再 略解	10

第1章

不定積分と諸定理

1.1 不定積分の基本公式

1.1.1 原始関数と不定積分

関数 f(x) に対し、

$$F'(x) = f(x)$$

をみたす F(x) を f(x) の**原始関数**という。 ※ ここで、' は "プライム"、F は "キャピタル (エフ)" と読む。

例 1.1.1. 例えば

$$(x^3)' = 3x^2, (x^3 + 1)' = 3x^2$$

より、 x^3 や、 $x^3 + 1$ は $3x^2$ の原始関数である。

♠ 注意! 原始関数は1つではない。

また、

$$F(x) = x^3$$
, $G(x) = x^3 + 1$

とおくとき、G(x) = F(x) + 1 となっている。

実は、次の定理が成り立つ。

定理 1.1.1.

F(x), G(x) が f(x) の原始関数であるとき、

$$G(x) = F(x) + C$$

となる定数 C が存在する。

証明 1.1.1. 定理を示すには、

$$\{G(x) - F(x)\}' = 0$$

を示せばよい*1。

ここで、F(x), G(x) は f(x) の原始関数より (F(x), G(x) は微分可能)、

$$\{G(x) - F(x)\}' = G'(x) - F'(x) = f(x) - f(x) = 0$$

となる。したがって、

$$G(x) - F(x) = C$$
: 定数

である。

証明終了の意味↑

この定理より、F(x) を f(x) の ある 原始関数とするとき、f(x) の すべて の原始関数は

$$F(x) + C$$

で表される。これを、f(x) の不定積分といい、

$$\int f(x)dx = F(x) + C$$

と表す。このとき、C を**積分定数**とよぶ。

▲ 注意! 教科書は"積分定数を省略する"となっている。

例 1.1.2.

(1)
$$\int 3x^2 dx = F(x) + C = x^3 + C$$
 (C:積分定数)

(2)
$$\int 3x^2 dx = G(x) + C_1 = x^3 + 1 + C_1 (C_1 : 積分定数)$$

 7 1 は定数なので、 $C = C_1 + 1$ と置けば、(1), (2) は同じ式となる。

不定積分を求めることを**積分する**という。

例題 1.1.1. 以下の積分をせよ (不定積分を求めよ)。

$$(1)\int 4x^3 dx \tag{2} \int 6x^2 dx$$

$$(3) \int x^2 dx \tag{4} \int 1 dx$$

^{*1} 微分して 0 になるのは、定数のみである

1.1.2 不定積分の公式

微分の公式から、以下の不定積分の公式が得られる。

公式 1.1.1. 以下の公式が成り立つ。 (ただし、各公式の C は積分定数とする)

$$(1) \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \in \mathbb{R} - \{-1\})$$

(2)
$$\int x^{-1} dx = \int \frac{1}{x} dx = \log|x| + C$$

$$(3) \int e^x dx = e^x + C$$

$$(4) \int a^x dx = \frac{a^x}{\log a} + C \qquad (a > 0, a \neq 1)$$

% ここで、a=e とすると、(3) が求まる。

$$(5) \int \sin x dx = -\cos x + C$$

(6)
$$\int \cos x dx = \sin x + C$$

$$(7) \int \frac{1}{\cos^2 x} dx = \tan x + C$$

(8)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C \qquad (a > 0)$$

(9)
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C \qquad (a \neq 0)$$

$$(10) \int \frac{f'(x)}{f(x)} dx = \log|f(x)| + C$$
 (ただし、 $f(x)$ は微分可能な関数)

証明 1.1.2. 証明は演習問題とする。

公式 1.1.2. 以下の公式も成り立つ。(ただし、各公式の C は積分定数とする)

(11)
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \qquad (a \neq 0)$$

(12)
$$\int \frac{1}{\sqrt{x^2 + A}} dx = \log|x + \sqrt{x^2 + A}| + C$$
 $(A \neq 0)$

(13)
$$\int \frac{1}{\sin^2 x} dx = -\frac{1}{\tan x} + C$$

$$(14) \int \tan x dx = -\log|\cos x| + C$$

$$(15) \int \log x dx = x \log x - x + C$$

証明 1.1.3. 証明は利用する定理, 公理を紹介したとき、随時行う。

1.1.3 演習問題

問題 1.1	L.1. 上記	公式の (2) から ([10] を示すために、	以下の下線部に適切な数や式を当て
はめよ。	ただし、	積分定数 C およ	$\forall \alpha \neq -1, a > 0$	などの条件は省略する。

(立) (五) (五) を積分すると (ウ) (3) 教科書の (オ) ページの式 (カ) を用いる。 (キ) を微分すると (ク) とない。 (ク) を積分すると (キ) にない。 (4) 教科書の (ケ) ページの式 (コ) を用いる。	:るので、 :る。 :るので、
(2) 教科書の (ア) ページの式 (イ) を開いる。 (ウ) を微分すると (エ) とない。 (エ) を積分すると (ウ) を用いる。 (キ) を微分すると (ク) とない。 (ク) を積分すると (キ) にない。 (4) 教科書の (ケ) ページの式 (コ) を用いる。 (サ) を微分すると (シ) とない。	<る。 <るので、
(ウ) を微分すると (エ) となってきると (ウ) (エ) を積分すると (ウ) になってきる。 (3) 教科書の (オ) ページの式 (カ) を用いる。 (キ) を積分すると (キ) になってきる。 (4) 教科書の (ケ) ページの式 (コ) を用いる。 (サ) を微分すると (シ) となってきる。	<る。 <るので、
(エ) を積分すると (ウ) になる (3) 教科書の (オ) ページの式 (カ) を用いる。 (キ) を微分すると (ク) となる (ク) を積分すると (キ) になる (4) 教科書の (ケ) ページの式 (コ) を用いる。 (サ) を微分すると (シ) となる	<る。 <るので、
(3) 教科書の (オ) ページの式 (カ) を用いる。 を微分すると (ク) とない。 (ク) を積分すると (キ) (4) 教科書の (ケ) ページの式 (コ) を用いる。 (サ) を微分すると (シ)	さるので、
(キ) を微分すると (ク) とない (ク) を積分すると (キ) にない (4) 教科書の (ケ) ページの式 (コ) を用いる。 (サ) を微分すると (シ) とない	
(ク) を積分すると (キ) になる (4) 教科書の (ケ) ページの式 (コ) を開いる。 (サ) を微分すると (シ) となる	
(4) 教科書の _(ケ) ページの式 _(コ) を用いる。 **Email: ** **Email: ** **Email: ** **Email: ** ** **Email: ** ** **Email: ** ** ** **Email: ** ** ** ** ** ** ** ** ** ** ** ** **	. 7
を微分すると _(シ) とな	、 る。
ここで、両方に定数 $\frac{1}{\log a}$ をかけて考えてみると、	さる 。
(ス) を微分すると とな	こるので、
(さ) を積分すると (ス) にな	さる 。
(5) 教科書の _(ソ) ページの式 _(タ) を用いる。	
(チ) を微分すると (ツ) とな	:るので、
(ツ) を積分すると (チ) にな	

(6) 教科書の _(テ) ペー	-ジの式 _(ト)	を用いる。	
<u>(</u> +)	を微分すると 		となるので、
(=)	を積分すると 		になる。 -
(7) 教科書の (ヌ) ペー	-ジの式 _(ネ)	を用いる。 -	
(/)	を微分すると 		となるので、
<u>(^)</u>	を積分すると 		になる。 -
(8) 教科書の _(ヒ) ペー	-ジの式 _(フ)	を用いる。 $\left(\frac{x}{a}\right)'=\frac{1}{a}$ J	; b ,
(^)	を微分すると 		となるので、
<u>(</u> \$\pi\$)	を積分すると 		になる。 -
(9) 教科書の (マ) ペー	-ジの式 _(ミ)	を用いる。 -	
(A)	を微分すると 		となる。
ここで、両方に定数 $rac{1}{a}$ をか	けて考えてみると、		
(モ)	を微分すると 		となるので、
<u>(</u> *)	を積分すると 		になる。 -
(10) 教科書の _(ユ) ペ	ージの式 _(ヨ)	を用いる。 	
(7)	を微分すると 		となるので、
(ヲ)	を積分すると (ワ)		になる。

1.1.4 演習問題 略解

- **略解 1.1.1.** (2) 教科書の <u>45</u> ページの式 <u>(6.8)</u> を用いる。 $\log |x|$ を微分すると $\frac{1}{x}$ となるので、 $\frac{1}{x}$ を積分すると $\frac{\log |x|}{x}$ になる。
- (3) 教科書の $\underline{47}$ ページの式 $\underline{(6.14)}$ を用いる。 $\underline{e^x}$ を微分すると $\underline{e^x}$ となるので、 $\underline{e^x}$ を積分すると $\underline{e^x}$ になる。
- (4) 教科書の $\underline{46}$ ページの式 $\underline{(6.12)}$ を用いる。 $\underline{a^x}$ を微分すると $\underline{a^x \log a}$ となる。 よって、両方に定数 $\frac{1}{\log a}$ をかけて考えると、 $\underline{\frac{1}{\log a} \cdot a^x}$ を微分すると $\underline{a^x}$ となるので、 $\underline{\underline{a^x}}$ を積分すると $\underline{\frac{1}{\log a} \cdot a^x}$ になる。
- (5) 教科書の $\underline{27}$ ページの式 $\underline{(4.9)}$ を用いる。 $\underline{\cos x}$ を微分すると $\underline{-\sin x}$ となるので、 $\underline{\sin x}$ を積分すると $-\cos x$ になる。
- (6) 教科書の $\underline{27}$ ページの式 $\underline{(4.8)}$ を用いる。 $\underline{\sin x}$ を微分すると $\underline{\cos x}$ となるので、 $\underline{\cos x}$ を積分すると $\underline{\sin x}$ になる。
- (7) 教科書の 27 ページの式 (4.10) を用いる。 $\tan x$ を微分すると $\frac{1}{\cos^2 x}$ となるので、 $\frac{1}{\cos^2 x}$ を積分すると $\tan x$ になる。
- (8) 教科書の 38 ページの式 (5.11) を用いる。 $\left(\frac{x}{a}\right)' = \frac{1}{a}$ より、 $\sin^{-1}\frac{x}{a}$ を微分すると $\frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^2}} \cdot \frac{1}{a}$ となるので、 $\frac{1}{\sqrt{a^2-x^2}}$ を積分すると $\sin^{-1}\frac{x}{a}$ になる。
- (10) 教科書の $\underline{45}$ ページの式 $\underline{(6.9)}$ を用いる。 $\underline{\log|f(x)|}$ を微分すると $\underline{\frac{1}{f(x)}\cdot f'(x)}$ となるので、 $\underline{\frac{f'(x)}{f(x)}}$ を積分すると $\underline{\log|f(x)|}$ になる。

1.2 不定積分の線型性と諸定理

1.2.1 不定積分の線型性

と同様に、次が成り立つ。

- 不定積分の線型性

(1)
$$\int \{f(x) \pm g(x)\} dx = \int f(x) dx \pm \int g(x) dx$$
(2)
$$\int kf(x) dx = k \int f(x) dx$$
 ($k \in \mathbb{R}$)

例 1.2.1. 以下の不定積分を考える。

(1)
$$\int (2x^2+3)dx = \int 2x^2dx + \int 3dx$$
$$= 2\int x^2dx + 3\int 1dx$$
$$= \frac{2}{3}x^3 + 3x + C \qquad (C: 積分定数)$$

(2)
$$\int \frac{x^2 + 1}{x} dx = \int \left(x + \frac{1}{x}\right) dx$$
$$= \int x dx + \int \frac{1}{x} dx$$
$$= \frac{1}{2} x^2 + \log|x| + C \qquad (C: 積分定数)$$

(3)
$$\int e^{x+2} dx = \int e^2 \cdot e^x dx$$
$$= e^2 \int e^x dx$$
$$= e^2 \cdot (e^x + C')$$
$$= e^{x+2} + C \qquad (C: 積分定数)$$

♡ 確認 教科書の例も確認すること。

1.2.2 不定積分の諸定理

定理 1.2.1. 不定積分に対して、以下が成り立つ。

(1)
$$\int \{f(x)\}^{\alpha} \cdot f'(x) dx = \frac{1}{\alpha + 1} \{f(x)\}^{\alpha + 1} + C$$
 $(\alpha \neq -1, C : 積分定数)$

(2)
$$\int \{f(x)\}^{-1} \cdot f'(x) dx = \int \frac{f'(x)}{f(x)} dx = \log|f(x)| + C$$
 (C:積分定数)

(3) F(x) を f(x) の原始関数とし、 $a \neq 0$ のとき、

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$
 (C:積分定数) である。

証明 1.2.1. 合成関数の微分より以下は示すことができる。

(1) $\alpha \neq -1$ すなわち、 $\alpha + 1 \neq 0$ のとき、

$$\left[\frac{1}{\alpha+1} \{ f(x) \}^{\alpha+1} + C \right]' = \frac{\alpha+1}{\alpha+1} \{ f(x) \}^{\alpha} \cdot f'(x)$$
$$= \{ f(x) \}^{\alpha} \cdot f'(x).$$

(2) 44 ページの式 (6.7) より、

$$\{\log |f(x)| + C\}' = \frac{f'(x)}{f(x)}$$
$$= \{f(x)\}^{-1} \cdot f'(x).$$

(3) 14ページの(2.12) より、

$$\left\{\frac{1}{a}F(ax+b) + C\right\}' = \frac{1}{a}f(ax+b) \cdot (ax+b)'$$
$$= f(ax+b).$$

- (3) は 132 ページの式 (14.14) である。よって、(14.1)' から (14.9)' も示すことができる。
 - **▲ 注意!** 公式 (定理) を使うとき、"何が f(x)か"に注意する!
 - (1) $f^{\circ} \cdot f' \circ \beta \wedge f'$ (2) $f^{-1} \cdot f' \circ \beta \wedge f'$ (3) $f(ax+b) \circ \beta \wedge f'$

例題 1.2.1.

$$\sin^2 x \cos x = \{\sin x\}^2 (\sin x)' = \{f(x)\}^2 f'(x)$$

である。よって、

$$\int \underbrace{\sin^2 x}_{\uparrow} \frac{\cos x}_{\downarrow} dx = \int \left\{ f(x) \right\}^2 f'(x) dx = \frac{1}{3} \left\{ f(x) \right\}^3 + C = \frac{1}{3} \sin^3 x + C$$

$$(C: 積分定数)$$

$$\left\{ f(x) \right\}^2 f'(x)$$

$$\uparrow 今後は省略可。$$

となる。

$$\frac{x}{x^2+1} = \frac{1}{2} \cdot \frac{2x}{x^2+1} = \frac{1}{2} \cdot \frac{f'(x)}{f(x)}$$

である。よって、

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} dx \left(= \frac{1}{2} \int \frac{f'(x)}{f(x)} dx \right) = \frac{1}{2} \log|x^2 + 1| + C$$
$$= \frac{1}{2} \log(x^2 + 1) + C \tag{C: 積分定数}$$

となる。

$$F(X) = \int f(X)dX = e^X + C$$

である。すなわち、 $F(2x+1)=e^{2x+1}$ である。よって、

$$\int e^{2x+1} dx = \underbrace{\int f(2x+1) dx = \frac{1}{2} F(2x+1) + C}_{\uparrow \,$$
 (C:積分定数)
 ↑ 今後は省略可。

となる。

1.2.3 演習問題

問題 1.2.1. 以下の関数の不定積分を求めよ。

$$(1) 5x^4$$

(2)
$$x^2 + 2x$$

$$(3) \quad \frac{4}{\sqrt{x}}$$

$$(4) \quad 3e^x + 4^x$$

(4)
$$3e^x + 4^x$$
 (5) $2\sin x + \frac{1}{3}\cos x$

(6)
$$(2x+1)^5$$

(7)
$$\frac{1}{\sqrt{9-x^2}}$$
 (8) $\frac{1}{5x-3}$

(8)
$$\frac{1}{5x-3}$$

(9)
$$(2x+3)(x-4)$$

(10)
$$\frac{2x^2 - 5x - 12}{x - 4}$$
 (11) $\frac{x - 4}{2x^2 - 5x - 12}$

$$(11) \quad \frac{x-4}{2x^2 - 5x - 12}$$

(12)
$$\frac{1}{x^2-1}$$

(13)
$$e^{-2x}$$

(14)
$$\sqrt{e^x}$$

$$(15) 5^x$$

$$(16) \quad \sqrt{\frac{1}{3}x}$$

(16)
$$\sqrt{\frac{1}{3}x}$$
 (17) $\frac{1}{\sqrt{x-6}}$

$$(18) \quad \sin 2x$$

(19)
$$\sin\left(x - \frac{\pi}{2}\right)$$
 (20) $\frac{2}{x^2} + \frac{1}{x}$

(20)
$$\frac{2}{x^2} + \frac{1}{x}$$

$$(21) \quad \frac{x}{2\sqrt{x}}$$

(22)
$$\frac{1}{\sqrt{4-8x}}$$

(22)
$$\frac{1}{\sqrt{4-8x}}$$
 (23) $\frac{1}{x^2+6x+9}$

$$(24) \quad \frac{1}{(2x+1)^2 + 9}$$

(25)
$$\frac{3}{\sqrt{x+1} - \sqrt{x-1}}$$

$$(22) \quad \frac{1}{\sqrt{4-8x}} \qquad (23) \quad \frac{1}{x^2+6x+9} \qquad (24) \quad \frac{1}{(2x+1)^2+9} \qquad (25) \quad \frac{3}{\sqrt{x+1}-\sqrt{x-1}} \qquad (26) \quad (3x^2-5x+2)^2(6x-5) \qquad (27) \quad \frac{6x-5}{3x^2-5x+2} \qquad (28) \quad (29) \quad \frac{3}{3x^2-5x+2} \qquad (29) (29) \quad \frac{3$$

(27)
$$\frac{6x-5}{2x^2-5+2}$$

$$(28) \quad \sin\left(2x + \frac{\pi}{2}\right)$$

(28)
$$\sin\left(2x + \frac{\pi}{2}\right)$$
 (29) $\cos\left(2x + \frac{\pi}{2}\right)$

(30)
$$\sin x \cos x$$

問題 1.2.2. 積和の公式を用いて、以下の関数の不定積分を求めよ。

- (1) $\sin 3x \cos 5x$
- (2) $\sin 3x \sin 5x$
- (3) $\cos 3x \cos 5x$

問題 1.2.3. 不定積分

$$\int \sin^3 x \, dx$$

を以下の方法で求めよ。

- (1) 関係式 $\sin^2 x = 1 \cos^2 x$ と 定理 1.2.1. (1) を用いる。
- (2) 半角の公式と積和の公式を用いる。
- (3) 3 倍角の公式を用いる。

1.2.4 演習問題 略解

略解 1.2.1. 不定積分の線型性 と 公式 1.1.1. および 定理 1.2.1. を用いる。また、以下の C はすべて積分定数とする。

(1)
$$\int 5x^4 dx = 5 \int x^4 dx = 5 \cdot \frac{x^{4+1}}{4+1} + C = x^5 + C$$

(2)
$$\int (x^2 + 2x) dx = \int x^2 dx + 2 \int x dx = \frac{x^{2+1}}{2+1} + 2 \cdot \frac{x^{1+1}}{1+1} + C = \frac{1}{3}x^3 + x^2 + C$$

(3)
$$\int \frac{4}{\sqrt{x}} dx = 4 \int \frac{1}{\sqrt{x}} dx = 4 \int \sqrt{x}^{-1} dx = 4 \int x^{-\frac{1}{2}} dx$$
$$= 4 \cdot \frac{1}{-\frac{1}{2} + 1} x^{-\frac{1}{2} + 1} + C = 4 \cdot \frac{1}{\frac{1}{2}} x^{\frac{1}{2}} + C = 8\sqrt{x} + C$$

$$(4) \int (3e^x + 4^x) dx = 3 \int e^x dx + \int 4^x dx = 3e^x + \frac{4^x}{\log 4} + C$$

(5)
$$\int \left(2\sin x + \frac{1}{3}\cos x\right) dx = 2\int \sin x \, dx + \frac{1}{3}\int \cos x \, dx = -2\cos x + \frac{1}{3}\sin x + C$$

(6)
$$\int (2x+1)^5 dx = \frac{1}{2} \cdot \frac{(2x+1)^{5+1}}{5+1} + C = \frac{1}{12}(2x+1)^6 + C$$

(7)
$$\int \frac{1}{\sqrt{9-x^2}} \, dx = \sin^{-1} \frac{x}{3} + C$$

(8)
$$\int \frac{1}{5x-3} dx = \int \frac{1}{5} \cdot \frac{5}{5x-3} dx = \frac{1}{5} \cdot \int \frac{(5x-3)'}{5x-3} dx = \frac{1}{5} \log|5x-3| + C$$

(9)
$$\int (2x+3)(x-4) dx = \int (2x^2 - 5x - 12) dx = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 12x + C$$

(10)
$$\int \frac{2x^2 - 5x - 12}{x - 4} dx = \int \frac{(2x + 3)(x - 4)}{x - 4} dx = \int (2x + 3) dx = x^2 + 3x + C$$

(11)
$$\int \frac{x-4}{2x^2 - 5x - 12} \, dx = \int \frac{1}{2x+3} \, dx = \frac{1}{2} \log|2x+3| + C$$

$$(12) \int \frac{1}{x^2 - 1} dx = \int \frac{1}{(x - 1)(x + 1)} dx = \int \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx$$
$$= \frac{1}{2} \int \frac{1}{x - 1} dx - \frac{1}{2} \int \frac{1}{x + 1} dx = \frac{1}{2} \log|x - 1| + \frac{1}{2} \log|x + 1| + C$$
$$= \frac{1}{2} \log\left| \frac{x - 1}{x + 1} \right| + C$$

(13)
$$\int e^{-2x} dx = -\frac{1}{2}e^{-2x} + C$$
 (定理 1.2.1.(3))

(14)
$$\int \sqrt{e^x} \, dx = \int e^{\frac{1}{2}x} \, dx = 2e^{\frac{1}{2}x} + C = 2\sqrt{e^x} + C$$

(15)
$$\int 5^x dx = \frac{5^x}{\log 5} + C \quad (公式 1.1.1.(4))$$

$$(16) \int \sqrt{\frac{1}{3}x} \, dx = \frac{1}{\sqrt{3}} \int x^{\frac{1}{2}} \, dx = \frac{\sqrt{3}}{3} \cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{2\sqrt{3}}{9} x\sqrt{x} + C$$

$$(17) \int \frac{1}{\sqrt{x-6}} dx = 2\sqrt{x-6} + C \qquad \left(f(X) = \frac{1}{\sqrt{X}} = X^{-\frac{1}{2}}, \Rightarrow F(X) = 2X^{\frac{1}{2}} \right)$$

(18)
$$\int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C \quad (f(X) = \sin X, \Rightarrow F(X) = -\cos X)$$

(19)
$$\int \sin\left(x - \frac{\pi}{2}\right) dx = -\sin x + C \qquad \left(\sin\left(x - \frac{\pi}{2}\right) = -\cos x\right)$$

(20)
$$\int \frac{2}{r^2} + \frac{1}{r} dx = -\frac{2}{r} + \log|x| + C$$

(21)
$$\int \frac{x}{2\sqrt{x}} dx = \int \frac{1}{2} \sqrt{x} dx = \frac{1}{2} \int x^{\frac{1}{2}} dx = \frac{1}{3} x \sqrt{x} + C$$

(22)
$$\int \frac{1}{\sqrt{4-8x}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-2x}} dx = -\frac{1}{2} \sqrt{1-2x} + C \quad (a = -2$$
 に注意)

(23)
$$\int \frac{1}{x^2 + 6x + 9} dx = \int \frac{1}{(x+3)^2} dx = -\frac{1}{x+3} + C$$

$$(24) \int \frac{1}{(2x+1)^2 + 9} dx = \frac{1}{2} \cdot \frac{1}{3} \tan^{-1} \frac{X}{3} + C = \frac{1}{6} \tan^{-1} \frac{2x+1}{3} + C$$

$$\left(f(X) = \frac{1}{X^2 + \alpha^2}, \Rightarrow F(X) = \frac{1}{\alpha} \tan^{-1} \frac{X}{\alpha}, \ \sharp \not \sim X = 2x + 1 \not \sim 0 \ \circlearrowleft \ a = 2 \right)$$

$$(25) \int \frac{3}{\sqrt{x+1} - \sqrt{x-1}} = \int \frac{3(\sqrt{x+1} + \sqrt{x-1})}{(x+1) - (x-1)} dx = \frac{3}{2} \int (\sqrt{x+1} + \sqrt{x-1}) dx$$
$$= (x+1)\sqrt{x+1} + (x-1)\sqrt{x-1} + C$$

$$(27) \int \frac{6x-5}{3x^2-5x+2} dx = \log|(3x-2)(x-1)| + C = \log|3x-2| + \log|x-1| + C$$
$$\left(f(x) = 3x^2 - 5x + 2 \ge 2 \ge 5 \ge \frac{f'(x)}{f(x)}$$
 の形をしている。

(28)
$$\int \sin\left(2x + \frac{\pi}{2}\right) dx = -\frac{1}{2}\cos\left(2x + \frac{\pi}{2}\right) + C$$

(29)
$$\int \cos\left(2x + \frac{\pi}{2}\right) dx = \frac{1}{2}\sin\left(2x + \frac{\pi}{2}\right) + C$$

(30)
$$\int \sin x \cos x \, dx = \int \sin x (\sin x)' \, dx = \frac{1}{2} \sin^2 x + C$$
$$= \int \cos x (-\cos x)' \, dx = -\frac{1}{2} \cos^2 x + C \quad (\leftarrow \uparrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$$

略解 1.2.2. 積和の公式

$$\sin \alpha \cos \beta = \frac{1}{2} \{ \sin(\alpha + \beta) + \sin(\alpha - \beta) \}$$
$$\sin \alpha \sin \beta = -\frac{1}{2} \{ \cos(\alpha + \beta) - \cos(\alpha - \beta) \}$$
$$\cos \alpha \cos \beta = \frac{1}{2} \{ \cos(\alpha + \beta) + \cos(\alpha - \beta) \}$$

を用いる。

(1)
$$\int \sin 3x \cos 5x \, dx = \int \frac{1}{2} \{\sin 8x + \sin(-2x)\} \, dx$$
$$= \frac{1}{2} \int \sin 8x \, dx - \frac{1}{2} \int \sin 2x \, dx$$
$$= -\frac{1}{16} \cos 8x + \frac{1}{4} \cos 2x + C \qquad (C: 積分定数)$$

(2)
$$\int \sin 3x \sin 5x \, dx = \int \frac{1}{2} \{\cos 8x - \cos(-2x)\} \, dx$$
$$= \frac{1}{2} \int \cos 8x \, dx - \frac{1}{2} \int \cos 2x \, dx$$
$$= -\frac{1}{16} \sin 8x + \frac{1}{4} \sin 2x + C \qquad (C: 積分定数)$$

(3)
$$\int \cos 3x \cos 5x \, dx = \int \frac{1}{2} \{\cos 8x + \cos(-2x)\} \, dx$$
$$= \frac{1}{2} \int \cos 8x \, dx + \frac{1}{2} \int \cos 2x \, dx$$
$$= \frac{1}{16} \sin 8x + \frac{1}{4} \sin 2x + C \qquad (C: 積分定数)$$

♠ 注意! 三角関数の性質を忘れないように。

$$\sin(-x) = -\sin x$$
, $\cos(-x) = \cos x$

♠ 注意! 三角関数の微分、積分も忘れないように。

$$(\sin x)' = \cos x, \quad (\cos x)' = -\sin x$$

 $\sin x = \int \cos x \, dx, \quad \cos x = -\int \sin x \, dx$

(+C 省略)

略解 1.2.3. 半角の公式は

$$\sin^2\frac{\alpha}{2} = \frac{1 - \cos\alpha}{2}, \cos^2\frac{\alpha}{2} = \frac{1 + \cos\alpha}{2}$$

であり、3倍角の公式は

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$
, $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$

である。また、3倍角の公式から

$$\sin^3 \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$$

が得られる。

(1)
$$\int \sin^3 x \, dx = \int \sin^2 x \cdot \sin x \, dx = \int (1 - \cos^2 x) \sin x \, dx$$
$$= \int \sin x \, dx - \int \cos^2 x \cdot \sin x \, dx$$
$$= -\cos x + \frac{1}{3} \cos^3 x + C \qquad (C: 積分定数)$$

(2)
$$\int \sin^3 x \, dx = \int \sin^2 x \cdot \sin x \, dx = \int \frac{1}{2} (1 - \cos 2x) \sin x \, dx$$
$$= \frac{1}{2} \int \sin x \, dx - \frac{1}{2} \int \sin x \cdot \cos 2x \, dx$$
$$= \frac{1}{2} \int \sin x \, dx - \frac{1}{2} \int \frac{1}{2} \{\sin 3x + \sin(-x)\} \, dx$$
$$= -\frac{1}{2} \cos x - \frac{1}{4} \cdot \frac{1}{3} \cdot (-\cos 3x) + \frac{1}{4} \cdot (-\cos x) + C$$
$$= -\frac{3}{4} \cos x + \frac{1}{12} \cos 3x + C \qquad (C: 積分定数)$$

(3)
$$\int \sin^3 x \, dx = \int \frac{3 \sin \alpha - \sin 3\alpha}{4} \, dx$$
$$= -\frac{3}{4} \cos x + \frac{1}{12} \cos 3x + C \qquad (C: 積分定数)$$

 \clubsuit 補足 $\cos 3x = 4\cos^3 x - 3\cos x$ なので、(2), (3) の答えと (1) の答えは一致する。

$$-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x + C = -\frac{3}{4}\cos x + \frac{1}{12}(4\cos^3 x - 3\cos x) + C$$
$$= -\frac{3}{4}\cos x + \frac{1}{3}\cos^3 x - \frac{1}{4}\cos x + C$$
$$= -\cos x + \frac{1}{3}\cos^3 x + C$$

1.3 置換積分法 I 15

1.3 置換積分法 |

1.3.1 C^1 級関数

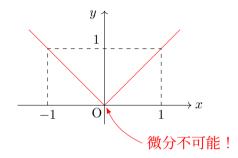
定義 1.3.1. 関数 f(x) について、次を定める。

f(x) が C^1 級 (連続微分可能) $\stackrel{\text{def}}{\Longleftrightarrow} f(x)$ が微分可能かつ f'(x) が連続

♠ 注意!

$$f(x)$$
 : 微分可能 $\Longrightarrow f(x)$: 連続

例 1.3.1. f(x) = |x| は x = 0 で連続であるが、微分不可能.



この関数は x < 0, x > 0 において、連続であることは明らかである。また、x = 0 において、左からの極限と右からの極限

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} |x| = 0, \quad \lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} x = 0$$

が f(0) と一致するので、連続である。

次に、微分の定義に従って、この関数の x=0 における左極限と右極限は

$$\begin{split} \lim_{h \to 0-0} \frac{f(0+h) - f(0)}{h} &= \lim_{h \to 0-0} \frac{|0+h| - |0|}{h} \\ h &< 0 \text{ is } |h| = -h \to = \lim_{h \to 0-0} \left(\frac{-h}{h}\right) \\ &= -1 \\ \lim_{h \to 0+0} \frac{f(0+h) - f(0)}{h} &= \lim_{h \to 0+0} \frac{|0+h| - |0|}{h} \\ &= \lim_{h \to 0+0} \left(\frac{h}{h}\right) \\ &= 1 \end{split}$$

となり、一致していない。よって、この関数は微分可能ではない。

例題 1.3.1. 以下の関数は C^1 級であるか、確認せよ。

$$f(x) = \begin{cases} -\frac{1}{2}x^2 & (x < 0) \\ \frac{1}{2}x^2 & (x \ge 0) \end{cases}$$

微分の定義に従って考える。

まず、f(x) は x < 0 において、

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{-\frac{1}{2}(x+h)^2 - \left(-\frac{1}{2}x^2\right)}{h}$$

$$= \lim_{h \to 0} \left(-x - \frac{h}{2}\right)$$

$$= -x$$

であり、x > 0 においては、

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2}(x+h)^2 - \frac{1}{2}x^2}{h}$$

$$= \lim_{h \to 0} \left(x + \frac{h}{2}\right)$$

$$= x$$

である。また、x=0 においても、

$$\lim_{h \to 0-0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0-0} \frac{-\frac{1}{2}(0+h)^2 - \left(-\frac{1}{2} \cdot 0^2\right)}{h}$$

$$= \lim_{h \to 0-0} \left(-\frac{h}{2}\right)$$

$$= 0$$

$$\lim_{h \to 0+0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0+0} \frac{\frac{1}{2}(0+h)^2 - \frac{1}{2} \cdot 0^2}{h}$$

$$= \lim_{h \to 0+0} \left(\frac{h}{2}\right)$$

$$= 0$$

となり、左極限の値と右極限の値が一致する。以上より、この関数 f(x) は微分可能である。

また、f'(x) を求めると例 1.3.1. の関数であり、 \underline{a} 続であった。

以上より、この関数は微分可能であり、その導関数は実数全体で連続であることが解った。よって、 C^1 級である。

1.3 置換積分法 I 17

1.3.2 置換積分法の定理

そのままでは積分が困難なとき、変数変換 (x og)数を別の変数に変換)を行うことによって積分が容易になることがある。

定理 1.3.1. (置換積分法)

単調な C^1 級関数 g(x) により変数変換 t=g(x) を行うと、

$$\int f(g(x))g'(x)dx = \int f(t)dt$$

$$x \text{ O式} \longrightarrow t \text{ O式}$$

が成り立つ。

証明 1.3.1. F(t) を f(t) の原始関数とする。合成関数の微分法より、

$$\frac{d}{dx}F(\underline{g(x)}) = \frac{dF(t)}{dt} \cdot \frac{dt}{dx} = f(t) \cdot \frac{dt}{dx} = f(g(x)) \cdot \frac{dg(x)}{dx}$$

$$\uparrow \qquad \qquad \uparrow$$

$$t = \frac{dF}{dt} \cdot \frac{dt}{dx} \qquad \qquad t = g(x)$$

となる。

よって、

$$f(g(x)) \cdot \frac{dg(x)}{dx} = \frac{d}{dx} F(g(x))$$

の両辺に $\int e^{-2\pi} dx$ をつけると、

$$\int f(g(x)) \cdot \frac{dg(x)}{dx} dx = \int \frac{d}{dx} F(g(x)) dx$$
$$= F(g(x)) + C$$
$$= F(t) + C$$
$$= \int f(t) dt$$

となる。 □

♡ **point** 変数変換の方法は1通りとは限らないことも多々ある。まずは、例を見て感覚を身に着けよう。

置換積分法の例 1.3.3

例 1.3.2.

$$\int \sin^2 x \cos x dx$$

まず $t = \sin x$ とおくと、 $\frac{dt}{dx} = \cos x$ である $^{\circ}$ 。よって、

$$\int \sin^2 x \cos x = \int t^2 \boxed{\cos x dx}^{\heartsuit} = \int t^2 \boxed{dt}$$

$$= \frac{t^3}{3} + C$$

$$= \frac{\sin^3 x}{3} + C \qquad (C: 積分定数)$$

$$= \frac{x \times \sqrt{x}}{2} = \frac{$$

← x に戻すのを忘れない!

 \heartsuit **point** $dt = \cos x dx$ と形式的に考える。

例 1.3.3.

$$\int \tan x \, dx$$

まず、

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

なので、 $t=\cos x$ とおく。このとき、 $\frac{dt}{dx}=-\sin x$ となるので、 $dx=-\frac{1}{\sin x}dt$ とする ことによって、

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

$$= \int \frac{\sin x}{t} \left(-\frac{1}{\sin x} \right) \, dt$$

$$= -\int \frac{1}{t} \, dt$$

$$= -\log|t| + C$$

$$= -\log|\cos x| + C$$

を得る。

1.3 置換積分法 I 19

例 1.3.4.

$$\int x\sqrt{x+1}dx$$

まず、 $t=\sqrt{x+1}$ とおき、両辺を 2 乗すると、 $t^2=x+1$ より、 $x=t^2-1$ である。 両辺を t で微分すると、 $\frac{dx}{dt}=2t$ となるので、dx=2tdt とすることによって、

$$\int x\sqrt{x+1} dx = \int \underbrace{x} t 2t dt$$

$$\leftarrow x が残らないように.$$

$$= \int (t^2 - 1) \cdot 2t^2 dt$$

$$= 2\int (t^4 - t^2) dt$$

$$= 2\left(\frac{t^5}{5} - \frac{t^3}{3}\right) + C$$

$$= \frac{2}{5}\sqrt{(x+1)^5} - \frac{2}{3}\sqrt{(x+1)^3} + C \qquad (C: 積分定数)$$

を得る。

例 1.3.5.

$$\int \frac{2x^3}{x^2+1} \, dx$$

まず、 $t=x^2+1$ とおくと、 $\frac{dt}{dx}=2x$ となるので、 $dx=\frac{1}{2x}dt$ である。 よって、

$$\int \frac{2x^3}{x^2 + 1} dx = \int \frac{2x^3}{t} \cdot \frac{1}{2x} dt$$

$$= \int \frac{x^2}{t} dt$$

$$= \int \frac{t - 1}{t} dt$$

$$= \int 1 dt - \int \frac{1}{t} dt$$

$$= t - \log|t| + C$$

$$= x^2 + 1 - \log(x^2 + 1) + C'$$

$$= x^2 - \log(x^2 + 1) + C$$
(C: 積分定数)

を得る。

1.3.4 演習問題

問題 1.3.1. (復習) 以下の関数 $(1)\sim(6)$ において、 C^1 級関数をすべて選べ。

(1) $f(x) = e^x$

(2) f(x) = x|x|

(3) $f(x) = \sin x$

 $(4) f(x) = |\sin x|$

(5)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (6) $f(x) = \begin{cases} \frac{\sin x}{x} & (x \neq 0) \\ 1 & (x = 0) \end{cases}$

問題 1.3.2. 以下の関数の不定積分を求めよ。

 $(1) (1+x)^3$

 $(2) (2-x)^4$

 $(3) (2x-1)^4$

 $(4) \quad \left(\frac{x+1}{3}\right)^5$

 $(5) \quad \left(\frac{2-2x}{3}\right)^5$

(6) $\frac{1}{(2x+1)^2}$

(7) $\cos(2x+1)$

(8) $\sin(3x+1)$

(9) $\tan(4x+1)$

(10) $\sin(5x+1)\cos(5x+1)$

問題 1.3.3. 以下の関数の不定積分を求めよ。ただし、 $a \neq 0$ とする。

(1)
$$\frac{x^5}{1+2x^6}$$

(2) $\frac{4x}{\sqrt{3+5x^2}}$

$$(3) \quad \frac{x+1}{\sqrt{x+2}}$$

 $(4) \quad \frac{x}{\sqrt{1-r^2}}$

$$(5) \quad \frac{x^3}{\sqrt{1-x^2}}$$

(6) $\frac{x^5}{\sqrt{1-x^2}}$

$$(7) \quad \sqrt{\frac{1+x}{1-x}}$$

(8) $\frac{1}{\sqrt{ax+b}}$

問題 1.3.4. 定理 1.2.1. を置換積分の方法で証明せよ。

1.3 置換積分法 I **21**

1.3.5 演習問題 略解

略解 1.3.1. 微分の定義 10 ページの式 (2.3) に従うと、(4) 以外は微分可能であるが、(5) は導関数が連続で無いので、 C^1 級は (1), (2), (3), (6) である。

(4)
$$\lim_{h \to +0} \frac{|\sin(0+h)| - |\sin(0)|}{h} = \lim_{h \to +0} \frac{|\sin h|}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1,$$
$$\lim_{h \to -0} \frac{|\sin(0+h)| - |\sin(0)|}{h} = \lim_{h \to -0} \frac{|\sin h|}{h} = \lim_{h \to 0} \frac{\sin h}{-h} = -1$$

- (5) [ア] 微分可能であることの確認
- i) まず、x=0 で微分係数を考える。

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0 = f'(0)$$

- ※ 最後は、 $-1 \le \sin \frac{1}{h} \le 1$ なので、はさみうちの原理より。
 - ii) $x \neq 0$ においては、

$$f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$$

である。

[イ] 導関数が連続でないことの確認

上記 i) より、
$$f'(0) = 0$$
 である。

また、ii) より

$$\lim_{h \to 0} f'(h) = \lim_{h \to 0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right)$$

である。このとき、

$$\lim_{h \to 0} \cos \frac{1}{x}$$

は振動するため、連続ではない。

略解 1.3.2. 以下の C はすべて積分定数とする。

$$(1) t = 1 + x$$
 とおくと、 $\frac{dt}{dx} = 1 \implies dx = dt$ となる。 よって、

$$\int (1+x)^3 dx = \int t^3 dt = \frac{1}{4}t^4 + C = \frac{1}{4}(1+x)^4 + C$$

(2)
$$t = 2 - x$$
 とおくと、 $\frac{dt}{dx} = -1 \implies dx = -1dt$ となる。 よって、
$$\int (2 - x)^4 dx = \int t^4 \cdot (-1) dx = -\frac{1}{5}t^5 + C = -\frac{1}{5}(2 - x)^5 + C$$

である。

である。

である。

である。

である。

(7)
$$t = 2x + 1$$
 とおくと、 $\frac{dt}{dx} = 2$ \Rightarrow $dx = \frac{1}{2}dt$ となる。 よって、
$$\int \cos(2x+1) dx = \int (\cos t) \cdot \frac{1}{2} dt = \frac{1}{2} \sin t + C = \frac{1}{2} \sin(2x+1) + C$$

1.3 置換積分法 I 23

(9)
$$t = 4x + 1$$
 とおくと、 $\frac{dt}{dx} = 4$ \Rightarrow $dx = \frac{1}{4}dt$ となる。よって、
$$\int \tan(4x + 1) dx = \int (\tan t) \cdot \frac{1}{4} dt = \frac{1}{4} \left(-\log|\cos t| \right) + C$$
$$= -\frac{1}{4} \log|\cos(4x + 1)| + C$$

である。

(10) 2 倍角の公式 $\sin(2\theta) = 2\sin\theta\cos\theta$ を使う。

$$\sin(5x+1)\cos(5x+1) = \frac{1}{2} \cdot 2\sin(5x+1)\cos(5x+1) = \frac{1}{2}\sin(2(5x+1))$$
ここで $t = 10x + 2$ とおくと、 $\frac{dt}{dx} = 10 \implies dx = \frac{1}{10} dt$ となる。 よって、
$$\int \sin(5x+1)\cos(5x+1) dx = \int \frac{1}{20}\sin t \, dt = \frac{1}{20}(-\cos t) + C$$

$$= -\frac{1}{20}\cos(10x+2) + C$$

である。

略解 1.3.3. 以下の C はすべて積分定数とする。

である。

(3)
$$t = x + 2$$
 とおくと、 $\frac{dt}{dx} = 1 \implies dx = dt$ となる。また、 $x + 1 = t - 1$ より、
$$\int \frac{x+1}{\sqrt{x+2}} \, dx = \int \frac{t-1}{\sqrt{t}} \, dt = \int \sqrt{t} \, dt - \int \frac{1}{\sqrt{t}} \, dt = \frac{2}{3} t^{\frac{3}{2}} - 2 t^{\frac{1}{2}} + C$$

$$= \frac{2}{3} (x+2) \sqrt{x+2} - 2 \sqrt{x+2} + C = \frac{2}{3} (x-1) \sqrt{x+2} + C$$

(4)
$$t = 1 - x^2$$
 とおくと、 $\frac{dt}{dx} = -2x \implies dx = -\frac{1}{2x} dt$ となる。 よって、
$$\int \frac{x}{\sqrt{1 - x^2}} dx = \int \frac{x}{\sqrt{t}} \cdot \left(-\frac{1}{2x}\right) dt = -\frac{1}{2} \int \frac{1}{\sqrt{t}} dt = -\frac{1}{2} \int t^{-\frac{1}{2}} dt$$
$$= \frac{1}{2} \cdot \left(-2t^{\frac{1}{2}}\right) + C = -\sqrt{t} + C$$
$$= -\sqrt{1 - x^2} + C$$

である。

(5)
$$t = 1 - x^2$$
 とおくと、 $\frac{dt}{dx} = -2x \implies dx = -\frac{1}{2x} dt$ となる。 よって、
$$\int \frac{x^3}{\sqrt{1 - x^2}} dx = \int \frac{x^3}{\sqrt{t}} \cdot \left(-\frac{1}{2x}\right) dt = -\frac{1}{2} \int \frac{x^2}{\sqrt{t}} dt = -\frac{1}{2} \int \frac{1 - t}{\sqrt{t}} dt$$
$$= \frac{1}{2} \int \frac{t - 1}{\sqrt{t}} dt \stackrel{(3)}{=} \frac{1}{2} \cdot \left(\frac{2}{3}t^{\frac{3}{2}} - 2t^{\frac{1}{2}}\right) + C = \frac{1}{3}\sqrt{t}(t - 3) + C$$
$$= -\frac{1}{3}(x^2 + 2)\sqrt{1 - x^2} + C$$

である。

(6)
$$t = 1 - x^2$$
 とおくと、 $\frac{dt}{dx} = -2x \implies dx = -\frac{1}{2x} dt$ となる。よって、
$$\int \frac{x^5}{\sqrt{1 - x^2}} dx = \int \frac{x^5}{\sqrt{t}} \cdot \left(-\frac{1}{2x}\right) dt = -\frac{1}{2} \int \frac{x^4}{\sqrt{t}} dt = -\frac{1}{2} \int \frac{(1 - t)^2}{\sqrt{t}} dt$$
$$= -\frac{1}{2} \int \frac{t^2 - 2t + 1}{\sqrt{t}} dt = -\frac{1}{2} \int t^{\frac{3}{2}} dt + \int t^{\frac{1}{2}} dt - \frac{1}{2} \int t^{-\frac{1}{2}} dt$$
$$= -\frac{1}{5} t^{\frac{5}{2}} + \frac{2}{3} t^{\frac{3}{2}} - t^{\frac{1}{2}} + C = \sqrt{t} \left\{ -\frac{1}{5} t^2 + \frac{2}{3} t - 1 \right\} + C$$
$$= -\frac{1}{15} \sqrt{1 - x^2} \left\{ 3(1 - x^2)^2 - 10(1 - x^2) + 15 \right\} + C$$

である。

$$\int \sqrt{\frac{1+x}{1-x}} \, dx = \int \left(\frac{1}{\sqrt{1-x^2}} + \frac{x}{\sqrt{1-x^2}}\right) dx = \int \frac{1}{\sqrt{1-x^2}} dx - \frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt$$

となり、前者は公式より求まる。よって、

(与式) =
$$\sin^{-1} x - \sqrt{t} + C = \sin^{-1} x - \sqrt{1 - x^2} + C$$

1.3 置換積分法 I **25**

(8)
$$t = ax + b$$
 とおくと、 $\frac{dt}{dx} = a \implies dx = \frac{1}{a}dt$ となる。 よって、
$$\int \frac{1}{\sqrt{ax+b}} dx = \int \frac{1}{\sqrt{t}} \cdot \frac{1}{a} dt = \frac{2}{a} \sqrt{t} + C = \frac{2}{a} \sqrt{ax+b} + C$$

である。

略解 1.3.4. 以下の C はすべて積分定数とする。

(1)
$$t = f(x)$$
 とおくと、 $\frac{dt}{dx} = f'(x) \Rightarrow dx = \frac{1}{f'(x)} dt$ となる。 よって、
$$\int \{f(x)\}^{\alpha} \cdot f'(x) dx = \int t^{\alpha} \cdot f'(x) \cdot \frac{1}{f'(x)} dt$$

$$= \int t^{\alpha} dt$$

$$= \frac{1}{\alpha + 1} \{f(x)\}^{\alpha + 1} + C$$

である。

(2)
$$t = f(x)$$
 とおくと、 $\frac{dt}{dx} = f'(x) \Rightarrow dx = \frac{1}{f'(x)} dt$ となる。 よって、
$$\int \{f(x)\}^{-1} \cdot f'(x) dx = \int t^{-1} \cdot f'(x) \cdot \frac{1}{f'(x)} dt$$
$$= \int t^{-1} dt$$
$$= \log |f(x)| + C$$

である。

(3)
$$t = ax + b$$
 とおくと、 $\frac{dt}{dx} = a \implies dx = \frac{1}{a} dt$ となる。 よって、
$$\int f(ax+b) dx = \int f(t) \cdot \frac{1}{a} dt$$
$$= \frac{1}{a} \int f(t) dt$$
$$= \frac{1}{a} F(t) + C$$
$$= \frac{1}{a} F(ax+b) + C$$

1.4 置換積分法 ||

1.4.1 置換積分法の考え方

▲ 重要 『置換積分法の変数変換は一通りではない』ので、覚えるだけでないく、試してみることも大事。

例 1.4.1. 次の積分を 2 通りの置換積分で考える。

$$\int \frac{x}{\sqrt{5-x}} \, dx$$

(i) まず、t=5-x とおくと、 $\frac{dt}{dx}=-1$ であり、 $dx=(-1)dt,\,x=5-t$ より、

与式 =
$$\int \frac{5-t}{\sqrt{t}} \cdot (-1) dt$$

= $\int \left(\sqrt{t} - \frac{5}{\sqrt{t}}\right) dt$
= $\int \left(t^{\frac{1}{2}} - 5t^{-\frac{1}{2}}\right) dt$
= $\frac{2}{3}t^{\frac{3}{2}} - 5 \cdot 2t^{\frac{1}{2}} + C$
= $\frac{2}{3}(5-x)\sqrt{5-x} - 10\sqrt{5-x} + C$. (C:積分定数)

である。

(ii) 今度は、 $t = \sqrt{5-x}$ とおくと、 $x = 5 - t^2$ であり、

$$\frac{dt}{dx} = -\frac{1}{2} \cdot \frac{1}{\sqrt{5-x}} = -\frac{1}{2t}$$

となり、dx = -2t dt である。よって、

与式 =
$$\int \frac{5-t^2}{t} \cdot (-2t) dt$$

= $\int (2t^2 - 10) dt$
= $\frac{2}{3}t^3 - 10t + C$
= $\frac{2}{3}(5-x)\sqrt{5-x} - 10\sqrt{5-x} + C$. ($C:$ 積分定数)

である。

※ いずれの場合も、 $-\frac{2}{3}(x+10)\sqrt{5-x}+C$ と、まとめてもよい。

1.4 置換積分法 II **27**

1.4.2 特殊な置換積分法

例 1.4.2.

$$\int \sqrt{a^2 - x^2} dx \qquad (a > 0)$$

まず $x=a\sin t$ $\left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$ とする。このとき $\frac{dx}{dt}=a\cos t$ $(dx=a\cos tdt)$ より

$$\int \sqrt{a^2 - x^2} \left[dx \right] = \int \sqrt{a^2 - a^2 \sin^2 t} \left[a \cos t dt \right]$$

である。ここで $\sqrt{x^2} = |x|$ に注意して計算すると、

$$\sqrt{a^2 - a^2 \sin^2 t} = \sqrt{a^2 (1 - \sin^2 t)}$$

$$= |a| \sqrt{1 - \sin^2 t}$$

$$= a \sqrt{\cos^2 t}$$

$$= a|\cos t|$$

$$(*) = a \cos t$$

となる。

(*) t の範囲は $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ なので、 $\cos t \ge 0$ より。よって、

与式 =
$$a^2 \int \cos^2 t dt$$

半角の公式 \rightarrow = $a^2 \int \frac{1 + \cos 2t}{2} dt$

= $\frac{a^2}{2} \left(t + \frac{1}{2} \sin 2t \right) + C$

倍角の公式 \rightarrow = $\frac{a^2}{2} \left(t + \frac{1}{2} \cdot 2 \underbrace{\sin t} \underbrace{\cos t} \right) + C$
 $\sin t = \frac{x}{a} \rightarrow = \frac{a^2}{2} \left(t + \frac{x}{a} \underbrace{\sqrt{1 - \sin^2 t}} \right) + C$

$$(**) = \frac{a^2}{2} \left(\sin^{-1} \frac{x}{a} + \frac{x}{a} \sqrt{1 - \left(\frac{x}{a}\right)^2} \right) + C$$

= $\frac{1}{2} \left(a^2 \sin^{-1} \frac{x}{a} + x \sqrt{a^2 - x^2} \right) + C$ ($C: 積分定数$)

$$(**)$$
 t の範囲は $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ なので、 $t = \sin^{-1} \frac{x}{a}$ である。

例 1.4.3.

$$\int \frac{1}{x^2 + a^2} dx$$

まず $x=a\tan t$ $\left(-\frac{\pi}{2} < t < \frac{\pi}{2}\right)$ とする。このとき $\frac{dx}{dt} = \frac{a}{\cos^2 t}$ より、 $dx = \frac{a}{\cos^2 t}dt$ である。

よって、

$$\int \frac{1}{x^2 + a^2} dx = \int \frac{1}{a^2} \frac{1}{\tan^2 t + 1} dx$$

$$= \int \frac{1}{a^2} \cos^2 t dx$$

$$= \int \frac{1}{a^2} \cos^2 t \frac{a}{\cos^2 t} dt$$

$$= \int \frac{1}{a} dt$$

$$= \frac{t}{a} + C$$

$$= \frac{1}{a} \tan^{-1} \frac{x}{a} + C \qquad (C: 積分定数)$$

である。

例 1.4.4.

$$\int \frac{1}{\sqrt{x^2 + a}} \, dx \qquad (a \neq 0)$$

まず、 $t = x + \sqrt{x^2 + a}$ とおく (なぜこうおくか、各自で)。このとき、

$$\frac{dt}{dx} = 1 + \frac{1}{2}(x^2 + a)^{-\frac{1}{2}} \cdot 2x = \frac{\sqrt{x^2 + a} + x}{\sqrt{x^2 + a}}$$
$$= \frac{t}{\sqrt{x^2 + a}}$$

であり、 $dx = \frac{\sqrt{x^2 + a}}{t} dt$ である。よって、

与式 =
$$\int \frac{1}{\sqrt{x^2 + a}} \frac{\sqrt{x^2 + a}}{t} dt = \int \frac{1}{t} dt$$
$$= \log|t| + C$$
$$= \log|x + \sqrt{x^2 + a}| + C \qquad (C: 積分定数)$$

1.4 置換積分法 II **29**

例 1.4.5.

$$\int \frac{1}{\cos x} \, dx$$

ここでは、 $t=\tan\frac{x}{2}$ とおく。また、2 倍角の公式を用いて、 $\cos x$ を計算すると、

$$\cos x = \cos 2 \cdot \frac{x}{2} = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$

と表すことが出来る。さらに、

$$\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2} = \cos^{2} \frac{x}{2} \left(1 - \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}} \right)$$

$$= \frac{\cos^{2} \frac{x}{2}}{\sin^{2} \frac{x}{2} + \cos^{2} \frac{x}{2}} \left(1 - \frac{\sin^{2} \frac{x}{2}}{\cos^{2} \frac{x}{2}} \right)$$

$$= \frac{1}{\tan^{2} \frac{x}{2} + 1} \left(1 - \tan^{2} \frac{x}{2} \right)$$

$$\tan \frac{x}{2} = t \rightarrow = \frac{1 - t^{2}}{1 + t^{2}}$$

となる。また、

$$\frac{dt}{dx} = \left(\tan\frac{x}{2}\right)' = \left(\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)' = \frac{1}{\cos^2\frac{x}{2}} \cdot \left(\frac{x}{2}\right)' = \frac{1}{2} \cdot \frac{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}}{\cos^2\frac{x}{2}}$$
$$= \frac{1}{2}\left(1 + \tan^2\frac{x}{2}\right) = \frac{1}{2}\left(1 + t^2\right)$$

となることより、 $dt=\frac{1+t^2}{2}dx$ \Rightarrow $dx=\frac{2}{1+t^2}dt$ である。以上より、

$$\int \frac{1}{\cos x} dx = \int \frac{1+t^2}{1-t^2} \cdot \frac{2}{1+t^2} dt$$

$$= \int \frac{2}{1-t^2} dt$$

$$= \int \left(\frac{1}{1+t} + \frac{1}{1-t}\right) dt$$

$$u = 1 - t とおいて考える \rightarrow = \log|1+t| + (-1)\log|1-t| + C$$

$$= \log\left|\frac{1+t}{1-t}\right| + C$$

$$= \log\left|\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}\right| + C \qquad (C: 積分定数)$$

となる。

1.4.3 置換積分のまとめ

三角関数、無理関数を含むを含む関数の積分を行うと、き、置換法をまとめて表にする。 表の f([X,Y]) は、2 変数関数ではなく、X と Y を含む関数を意味している。

	被積分関数	置換法
	$(1) f(\sin x) \cos x$	$t = \sin x$
	$(2) \ f(\cos x) \sin x$	$t = \cos x$
三角関数	(3) $f\left(\left[\sin^2 x, \cos^2 x\right]\right)$	$t = \tan x, \sin^2 x = \frac{t^2}{1 + t^2}$ $\cos^2 x = \frac{1}{1 + t^2}, \frac{dx}{dt} = \frac{1}{1 + t^2}$
	$(4) f([\sin x, \cos x])$	$t = \tan \frac{x}{2}, \cos x = \frac{1 - t^2}{1 + t^2}$ $\sin x = \frac{2t}{1 + t^2}, \frac{dx}{dt} = \frac{2}{1 + t^2}$
	$(5) f([x, \sqrt[n]{ax+b}]) (a \neq 0)$	$t = \sqrt[n]{ax + b}$
無理関数	(6) $f\left(\left[x, \sqrt[n]{\frac{ax+b}{cx+d}}\right]\right)$ $(ad-bc \neq 0)$	$t = \sqrt[n]{\frac{ax+b}{cx+d}}$
派廷因奴	(7) $f\left(\left[x, \sqrt{ax^2 + bx + c}\right]\right)$ $\left(a \neq 0, D = b^2 - 4ac \neq 0\right)$	(i) $a > 0$ のとき $t = \sqrt{ax^2 + bx + c} + \sqrt{ax}$
		(ii) $a < 0, D > 0$ のとき $ax^2 + bx + c = a(x - \alpha)(x - \beta)$ $t = \sqrt{\frac{x - \alpha}{\beta - x}}, (\alpha < \beta)$
	(8) $f([x, \sqrt{a^2 - x^2}])$ $(a > 0)$	$x = a\sin\theta, \ \left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$
	(9) $f([x, \sqrt{x^2 + a^2}])$ $(a > 0)$	$x = a \tan \theta, \ \left(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\right)$
	(10) $f([x, \sqrt{x^2 - a^2}])$ $(a > 0)$	$x = a \sec \theta, \ \left(0 \le \theta \le \pi, \theta \ne \frac{\pi}{2}\right)$
指数関数	$(11) f(e^x)e^x$	$t = e^x$
対数関数	$(12) f(a\log x + b) \frac{1}{x}$	$t = a \log x + b$

1.4 置換積分法 II 31

1.4.4 演習問題

問題 1.4.1. 以下の関数の不定積分を求めよ。

(1)
$$(2-3x)^n$$
 $(n \in \mathbb{Z} - \{-1\})$ (2) $\frac{1}{x^2 - 2x + 5}$

(3)
$$\frac{1}{\sqrt{5x-x^2}}$$
 (4) $\frac{1}{\sqrt{7x-3}}$

(5)
$$xe^{-x^2}$$
 (6) $\frac{e^{2x}}{\sqrt{1+e^{2x}}}$

(7)
$$x(x^2-3)^5$$
 (8) $(3x^2+2)(x^3+2x+1)^4$

(9)
$$\frac{x^2}{\sqrt{1-x^2}}$$
 (10) $\frac{3x}{\sqrt{1-x^4}}$ ($\forall z \land t = x^2$)

問題 1.4.2. 以下の関数の不定積分を求めよ。

$$(1) \quad \frac{1}{1+\cos x} \tag{2} \quad \frac{1}{2+\cos x}$$

(3)
$$\frac{\cos x}{1 + \sin^2 x}$$
 (4) $\frac{1}{\cos^2 x + 4\sin^2 x}$

(3)
$$\frac{\cos x}{1 + \sin^2 x}$$
 (4) $\frac{1}{\cos^2 x + 4\sin^2 x}$ (5) $\frac{1}{1 + \sqrt[3]{x + 1}}$ (6) $\frac{1}{\sqrt{(x-1)(2-x)}}$

(7)
$$\frac{1}{(x-1)\sqrt{x^2-4x-2}}$$
 (8) $\frac{e^x-e^{-x}}{e^x+e^{-x}}$

(9)
$$\frac{\sqrt{1 + \log x}}{x}$$
 (10) $\frac{1}{\sqrt{e^{3x} + 4}}$

問題 1.4.3. 以下の関数の不定積分を求めよ。

(1)
$$\frac{2x+5}{x^2-2x+4}$$
 (2) $\frac{3x+5}{\sqrt{1-x-2x^2}}$

(3)
$$\frac{x}{\sqrt{x^2 - 2x + 3}}$$
 (4) $\frac{1}{x\sqrt{1 - x^2}}$

問題 1.4.4. 例 1.4.5 の値は、以下と同じであることを確認せよ。

$$\log\left|\frac{\cos\frac{x}{2}+\sin\frac{x}{2}}{\cos\frac{x}{2}-\sin\frac{x}{2}}\right|+C,\ \log\frac{1+\sin x}{|\cos x|}+C\ ^{\diamondsuit}\ \frac{1}{2}\log\left(\frac{1+\sin x}{1-\sin x}\right)+C$$

ちなみに、最後の式は、 $\cos x \neq 0$ より、 $-1 < \sin x < 1$ であり、絶対値が外れる。

1.4.5 演習問題 略解

略解 1.4.1. 以下の C はすべて積分定数とする。

となる。

$$(2) \int \frac{1}{x^2-2x+5} \, dx = \int \frac{1}{(x-1)^2+2^2} \, dx \ \$$
となる。ここで、 $t=x-1$ とおくと、
$$\frac{dt}{dx} = 1 \ \Rightarrow \ dx = dt \ \$$
となる。よって、公式を用いると、

$$\int \frac{1}{x^2 - 2x + 5} dx = \int \frac{1}{t^2 + 2^2} dt = \frac{1}{2} \tan^{-1} \frac{t}{2} + C = \frac{1}{2} \tan^{-1} \frac{x - 1}{2} + C$$

となる。

(3)
$$\int \frac{1}{\sqrt{5x - x^2}} dx = \int \frac{1}{\sqrt{\left(\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + 5x - x^2}} dx = \int \frac{1}{\sqrt{\left(\frac{5}{2}\right)^2 - \left(x - \frac{5}{2}\right)^2}} dx$$
となる。 $t = x - \frac{5}{2}$ とおくと、 $\frac{dt}{dx} = 1 \implies dx = dt$ となる。 よって、公式を用いると、

$$\int \frac{1}{\sqrt{5x - x^2}} dx = \int \frac{1}{\sqrt{\left(\frac{5}{2}\right)^2 - t^2}} dt = \sin^{-1} \frac{t}{\frac{5}{2}} + C = \sin^{-1} \frac{2}{5}t + C$$
$$= \sin^{-1} \left(\frac{2}{5}x - 1\right) + C$$

となる。

$$\clubsuit$$
 補足 $\sin^{-1}(-\theta)=-\sin^{-1}\theta$ なので、 $t=\frac{5}{2}-x$ とおいても同じ結果になる。

$$(4) \ t = 7x - 3$$
 とおくと、 $\frac{dt}{dx} = 7 \ \Rightarrow \ dx = \frac{1}{7} dt$ となる。 よって、

$$\int \frac{1}{\sqrt{7x-3}} \, dx = \int \frac{1}{\sqrt{t}} \cdot \frac{1}{7} \, dt = \frac{1}{7} \cdot 2\sqrt{t} + C = \frac{2}{7}\sqrt{7x-3} + C$$

となる。

1.4 置換積分法 II

(5)
$$t = -x^2$$
 とおくと、 $\frac{dt}{dx} = -2x \implies dx = \frac{1}{-2x} dt$ となる。 よって、
$$\int xe^{-x^2} dx = \int xe^t \cdot \frac{1}{-2x} dt = -\frac{1}{2} \int e^t dt = -\frac{1}{2} e^t + C$$

$$= -\frac{1}{2} e^{-x^2} + C$$

となる。

(6)
$$t = e^x$$
 とおくと、 $\frac{dt}{dx} = e^x \Rightarrow dx = \frac{1}{e^x} dt = \frac{1}{t} dt$ となる。よって、
$$\int \frac{e^{2x}}{\sqrt{1 + e^{2x}}} dx = \int \frac{t^2}{\sqrt{1 + t^2}} \cdot \frac{1}{t} dt = \int \frac{t}{\sqrt{1 + t^2}} dt \tag{*}$$

33

となる。ここで再び、 $u=1+t^2$ とおくと、 $\frac{du}{dt}=2t \ \Rightarrow \ dt=\frac{1}{2t}\,du$ となる。従って、

$$(*) = \int \frac{t}{\sqrt{u}} \cdot \frac{1}{2t} du = \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \sqrt{u} + C = \sqrt{1 + t^2} + C$$
$$= \sqrt{1 + e^{2x}} + C$$

となる。

♣ 補足 ちなみに、 $t=1+e^{2x}$ とおいても同じ結果になる。2 段階の例としての紹介。

(7)
$$t = x^2 - 3$$
 とおくと、 $\frac{dt}{dx} = 2x \implies dx = \frac{1}{2x} dt$ となる。 よって、
$$\int x(x^2 - 3)^5 dx = \int x t^5 \cdot \frac{1}{2x} dt = \frac{1}{2} \int t^5 dt = \frac{1}{2} \cdot \frac{1}{6} t^6 + C$$
$$= \frac{1}{12} (x^2 - 3)^6 + C$$

となる。

(8)
$$t = x^3 + 2x + 1$$
 とおくと、 $\frac{dt}{dx} = 3x^2 + 2 \Rightarrow dx = \frac{1}{3x^2 + 2} dt$ となる。 よって、
$$\int (3x^2 + 2)(x^3 + 2x + 1)^4 dx = \int t^4 dt = \frac{1}{5}t^5 + C$$

$$= \frac{1}{5}(x^3 + 2x + 1)^5 + C$$

となる。

(10)
$$t = x^2$$
 とおくと、 $\frac{dt}{dx} = 2x \implies dx = \frac{1}{2x} dt$ となる。 よって、
$$\int \frac{3x}{\sqrt{1 - x^4}} dx = \int \frac{3x}{\sqrt{1 - t^2}} \cdot \frac{1}{2x} dt$$
$$= \frac{3}{2} \int \frac{1}{\sqrt{1 - t^2}} dt$$
$$= \frac{3}{2} \sin^{-1} t + C$$
$$= \frac{3}{2} \sin^{-1} x^2 + C$$

となる。

(11)
$$t = x^3$$
 とおくと、 $\frac{dt}{dx} = 3x^2 \implies dx = \frac{1}{3x^2} dt$ となる。よって、
$$\int \frac{x^2}{x^6 - 1} dx = \int \frac{x^2}{t^2 - 1} \cdot \frac{1}{3x^2} dt$$
$$= \frac{1}{3} \int \frac{1}{t^2 - 1} dt$$
$$= \frac{1}{3} \cdot \frac{1}{2} \log \left| \frac{x^3 - 1}{x^3 + 1} \right| + C$$
$$= \frac{1}{6} \log \left| \frac{x^3 - 1}{x^3 + 1} \right| + C$$

1.4 置換積分法 II 35

$$(12) \ x = \tan t \ \left(-\frac{\pi}{2} < t < \frac{\pi}{2}\right) \ \texttt{と } \ \texttt{おく } \ \texttt{と} \ , \ \frac{dx}{dt} = \frac{1}{\cos^2 t} \ \Rightarrow \ dx = \frac{1}{\cos^2 t} \ dt \ \texttt{となる} \ ,$$
 よって、

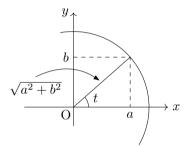
$$\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx = \int \left(1 + \frac{\sin^2 t}{\cos^2 t}\right)^{-\frac{3}{2}} dx = \int \left(\frac{1}{\cos^2 t}\right)^{-\frac{3}{2}} \cdot \left(\cos^2 t + \sin^2 t\right)^{-\frac{3}{2}} dx$$

$$= \int (\cos^2 t)^{\frac{3}{2}} \cdot \frac{1}{\cos^2 t} dt = \int \sqrt{\cos^2 t} dt = \int \cos t dt$$

$$-\frac{\pi}{2} < t < \frac{\pi}{2} \ \text{t b } \cos t > 0.$$

$$= \sin t + C \qquad \cdots (*)$$

である。 $x = \tan t$ とおいたので、下図より



$$\tan t = \frac{b}{a} = x \Rightarrow b = ax$$
 と表すことが出来る。ただし、 $a>0$ である。
よって、 $\sin t = \frac{b}{\sqrt{a^2+b^2}} = \frac{ax}{\sqrt{a^2+a^2x^2}} = \frac{x}{\sqrt{1+x^2}}$ であり、
$$(*) = \frac{x}{\sqrt{1+x^2}} + C$$

となる。(b < 0 の場合も同様)

略解 1.4.2. 以下の C はすべて積分定数とする。

(1) 三角関数 (4) を使う。 $t=\tan\frac{x}{2}$ とおくと、 $\cos x=\frac{1-t^2}{1+t^2},\ dx=\frac{2}{1+t^2}dt$ である。よって、

$$\int \frac{1}{1+\cos x} dx = \int \frac{1}{1+\frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

$$= \int 1 dt$$

$$= t + C$$

$$= \tan \frac{x}{2} + C$$

(2)(1)と同様に考えると、

$$\int \frac{1}{2 + \cos x} \, dx = \int \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} \, dt$$

$$= \frac{2}{2(1 + t^2) + 1 - t^2} \, dt$$

$$= \int \frac{2}{3 + t^2} \, dt$$

$$= \frac{2}{\sqrt{3}} \tan^{-1} \frac{t}{\sqrt{3}} + C$$

$$= \frac{2}{\sqrt{3}} \tan^{-1} \frac{\tan \frac{x}{2}}{\sqrt{3}} + C$$

となる。

(3) 三角関数 (1) を使う。 $t=\sin x$ とおくと、 $\frac{dt}{dx}=\cos x \ \Rightarrow \ dx=\frac{1}{\cos x}\,dt$ となる。 よって、

$$\int \frac{\cos x}{1 + \sin^2 x} dx = \int \frac{\cos x}{1 + t^2} \cdot \frac{1}{\cos x} dt$$
$$= \int \frac{1}{1 + t^2} dt$$
$$= \tan^{-1} t + C$$
$$= \tan^{-1} \sin x + C$$

となる。

(4) 三角関数 (3) を使う。 $t = \tan x$ とおくと、 $\sin^2 x = \frac{t^2}{1+t^2}$, $\cos^2 x = \frac{1}{1+t^2}$, $\frac{dx}{dt} = \frac{1}{1+t^2}$ となる。よって、

$$\int \frac{1}{\cos^2 x + 4\sin^2 x} dx = \int \frac{1}{\frac{1}{1+t^2} + \frac{4t^2}{1+t^2}} \cdot \frac{1}{1+t^2} dt$$
$$= \int \frac{1}{1+4t^2} dt$$
$$= \frac{1}{2} \tan^{-1} 2t + C$$

1.4 置換積分法 II 37

(5) 無理関数 (5) を使う。 $t=\sqrt[3]{x+1}$ とおくと、 $\frac{dt}{dx}=\frac{1}{3}\cdot\frac{1}{\sqrt[3]{(x+1)^2}}$ となる。 よって、

$$\int \frac{1}{1+\sqrt[3]{x+1}} \, dx = \int \frac{1}{1+t} \cdot 3t^2 \, dt = 3 \int \left\{ t - 1 + \frac{1}{1+t} \right\} \, dt$$
$$= 3 \left(\frac{1}{2} t^2 - t + \log|1+t| \right) + C$$
$$= \frac{3}{2} \sqrt[3]{(x+1)^2} - 3\sqrt[3]{x+1} + 3\log|1+\sqrt[3]{x+1}| + C$$

となる。

(6) (x-1)(2-x)=-(x-1)(x-2) であり、無理関数 (7) (ii) に当てはめると、 $a=-1,\ \alpha=1,\ \beta=2$ となる。よって、 $t=\sqrt{\frac{x-1}{2-x}}$ とおくと、

$$t^2 = \frac{x-1}{2-x} \implies x = \frac{2t^2+1}{t^2+1} \implies \frac{dx}{dt} = \frac{2t}{(t^2+1)^2}$$

である。また、x を消去するために、2-x を t で表すと、 $2-x=\frac{1}{t^2+1}$ となるので、それぞれ代入して計算すると

$$\int \frac{1}{\sqrt{(x-1)(2-x)}} dx = \int \frac{1}{(2-x)\sqrt{\frac{x-1}{2-x}}} dx$$

$$= \int \frac{1}{\frac{1}{t^2+1}} \cdot \frac{2t}{(t^2+1)^2} dt$$

$$= 2\int \frac{1}{t^2+1} dt$$

$$= 2\tan^{-1} t + C$$

$$= 2\tan^{-1} \sqrt{\frac{x-1}{2-x}} + C$$

となる。

(7) 無理関数 (7) (i) に当てはめる。まず、 $t=\sqrt{x^2-4x-2}+\sqrt{1}\,x$ とおき、 $t-x=\sqrt{x^2-4x-2}$ の両辺を 2 乗して考えると、

$$t^2 - 2tx + x^2 = x^2 - 4x - 2 \implies x = \frac{t^2 + 2}{2t - 4}, \quad \frac{dx}{dt} = \frac{1}{2} \cdot \frac{t^2 - 4t - 2}{(t - 2)^2}$$

また、x を消去するために、 $\sqrt{x^2-4x-2}$ と x-1 を計算すると

$$\sqrt{x^2 - 4x - 2} = t - x = t - \frac{t^2 + 2}{2t - 4}$$
$$= \frac{t^2 - 4t - 2}{2(t - 2)},$$
$$x - 1 = \frac{t^2 - 2t + 6}{2(t - 2)}$$

をえる。したがって、

$$\int \frac{1}{(x-1)\sqrt{x^2 - 4x - 2}} dx = \int \frac{2(t-2)}{t^2 - 2t + 6} \cdot \frac{2(t-2)}{t^2 - 4t - 2} \cdot \frac{t^2 - 4t - 2}{2(t-2)^2} dt$$

$$= \int \frac{2}{t^2 - 2t + 6} dt$$

$$= \int \frac{2}{(t-1)^2 + 5} dt$$

$$= \frac{2}{\sqrt{5}} \tan^{-1} \frac{t - 1}{\sqrt{5}} + C$$

$$= \frac{2}{\sqrt{5}} \tan^{-1} \frac{\sqrt{x^2 - 4x - 2} + x - 1}{\sqrt{5}} + C$$

となる。

 $(8)\ t=e^x\ \texttt{とおく}_\circ\ \texttt{より},\ t=e^x+e^{-x}\ \texttt{とおくと},\ \frac{dt}{dx}=e^x-e^{-1}\ \Rightarrow\ dx=\frac{1}{e^x-e^{-x}}\ dt$ となる。よって、

$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx = \int \frac{e^x - e^{-x}}{t} \cdot \frac{1}{e^x - e^{-x}} dt$$
$$= \int \frac{1}{t} dt$$
$$= \log|t| + C$$
$$= \log(e^x + e^{-x}) + C$$

となる。

1.4 置換積分法 II 39

 $(10) \ t = \sqrt{e^{3x} + 4} \ \texttt{とおくと}, \ \frac{dt}{dx} = \frac{3}{2} \cdot \frac{e^{3x}}{\sqrt{e^{3x} + 4}} \ \Rightarrow \ dx = \frac{2}{3} \cdot \frac{\sqrt{e^{3x} + 4}}{e^{3x}} \ dt \ \texttt{となる}.$ よって、

$$\int \frac{1}{\sqrt{e^{3x} + 4}} dx = \int \frac{2}{3} \cdot \frac{1}{e^{3x}} dt$$

$$= \frac{2}{3} \int \frac{1}{t^2 - 4} dt$$

$$= \frac{2}{3} \cdot \frac{1}{4} \log \left| \frac{t - 2}{t + 2} \right| + C$$

$$= \frac{1}{6} \log \frac{\sqrt{e^{3x} + 4} - 2}{\sqrt{e^{3x} + 4} + 2} + C$$

となる。

略解 1.4.3. 以下の C はすべて積分定数とする。

(1) まず、
$$t=x^2-2x+4$$
 とおくと、 $\frac{dt}{dx}=2x-2$ となる。そこで、

$$\int \frac{2x+5}{x^2-2x+4} \, dx = \underbrace{\int \frac{2x-2}{x^2-2x+4} \, dx}_{(7)} + \underbrace{\int \frac{7}{x^2-2x+4} \, dx}_{(4)}$$

と分ける。

このとき、

$$(\mathcal{T}) = \int \frac{2x - 2}{x^2 - 2x + 4} \, dx = \int \frac{2x - 2}{t} \cdot \frac{1}{2x - 2} \, dt = \int \frac{1}{t} \, dt$$
$$= \log|t| + C_1$$

である。また、

$$(\mathcal{A}) = \int \frac{7}{x^2 - 2x + 4} dx = 7 \int \frac{1}{(x - 1)^2 + 3} dx$$
$$= \frac{7}{\sqrt{3}} \tan^{-1} \frac{x - 1}{\sqrt{3}} + C_2$$

となるので、合わせると、

$$\int \frac{2x+5}{x^2-2x+4} \, dx = \log|x^2-2x+4| + \frac{7}{\sqrt{3}} \tan^{-1} \frac{x-1}{\sqrt{3}} + C$$

である。

(2) まず、
$$t=1-x-2x^2$$
 とおくと、 $\frac{dt}{dx}=-1-4x$ となる。そこで、

$$\int \frac{3x+5}{\sqrt{1-x-2x^2}} \, dx = -\frac{3}{4} \int \frac{-1-4x}{\sqrt{1-x-2x^2}} \, dx + \frac{17}{4} \int \frac{1}{\sqrt{1-x-2x^2}} \, dx$$

と分けると、前者は

$$-\frac{3}{4} \int \frac{-1 - 4x}{\sqrt{1 - x - 2x^2}} dx = -\frac{3}{4} \int \frac{-1 - 4x}{\sqrt{t}} \cdot \frac{1}{-1 - 4x} dt = -\frac{3}{4} \int \frac{1}{\sqrt{t}} dt$$
$$= -\frac{3}{2} \sqrt{t} + C_1$$

であり、後者は

$$\frac{17}{4} \int \frac{1}{\sqrt{1-x-2x^2}} dx = \frac{17}{4} \int \frac{1}{\sqrt{2} \cdot \sqrt{\frac{9}{16} - \left(\frac{1}{4} + x\right)^2}} dx$$
$$= \frac{17}{4\sqrt{2}} \sin^{-1}\left(\frac{1+4x}{3}\right) + C_2$$

である。以上より、

$$\int \frac{3x+5}{\sqrt{1-x-2x^2}} dx = -\frac{3}{2}\sqrt{1-x-2x^2} + \frac{17}{4\sqrt{2}}\sin^{-1}\left(\frac{1+4x}{3}\right) + C$$

となる。

(3) まず、
$$t=x^2-2x+3$$
 とおくと、 $\frac{dt}{dx}=2x-2$ となる。そこで、

$$\int \frac{x}{\sqrt{x^2 - 2x + 3}} \, dx = \frac{1}{2} \int \frac{2x - 2}{\sqrt{x^2 - 2x + 3}} \, dx + \int \frac{1}{\sqrt{x^2 - 2x + 3}} \, dx$$

と分けると、前者は

$$\frac{1}{2} \int \frac{2x-2}{\sqrt{x^2-2x+3}} \, dx = \frac{1}{2} \int \frac{2x-2}{\sqrt{t}} \cdot \frac{1}{2x-2} \, dt = \frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt = \sqrt{t} + C_1$$

であり、後者は

$$\int \frac{1}{\sqrt{x^2 - 2x + 3}} \, dx = \int \frac{1}{\sqrt{(x - 1)^2 + 2}} \, dx = \log \left| x - 1 + \sqrt{x^2 - 2x + 3} \right| + C_2$$

である。以上より、

$$\int \frac{x}{\sqrt{x^2 - 2x + 3}} \, dx = \sqrt{x^2 - 2x + 3} + \log\left|x - 1 + \sqrt{x^2 - 2x + 3}\right| + C$$

である。

1.4 置換積分法 II 41

(4)
$$t=1-x^2$$
 とおいても良いが、一気に $t=\sqrt{1-x^2}$ とおくと、 $\frac{dt}{dx}=-\frac{x}{\sqrt{1-x^2}}$ で あり、 $dx=-\frac{\sqrt{1-x^2}}{x}$ dt となる。よって、
$$\int \frac{1}{x\sqrt{1-x^2}}\,dx = \int \frac{1}{x\sqrt{1-x^2}} \cdot \frac{-\sqrt{1-x^2}}{x}\,dt$$

$$=-\int \frac{1}{x^2}\,dt$$

$$=-\int \frac{1}{1-t^2}\,dt$$

$$=\frac{1}{2}\log\left|\frac{t-1}{t+1}\right|+C$$

$$=\frac{1}{2}\log\left|\frac{\sqrt{1-x^2}-1}{\sqrt{1-x^2}+1}\right|+C$$

となる。

略解 1.4.4. 積分定数は省略して計算をする。

$$\log \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| = \log \left| \frac{1 + \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}}{1 - \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}} \right| = \log \left| \frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right|$$

$$= \log \left| \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right) \cdot \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \right|$$

$$= \log \left| \frac{\cos^{2} \frac{x}{2} + \sin^{2} \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2}}{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}} \right|$$
(*)

ここで、 $\sin^2\frac{x}{2}+\cos^2\frac{x}{2}=1$ 、 $\sin x=2\sin\frac{x}{2}\cos\frac{x}{2}$ 、 $\cos x=\cos^2\frac{x}{2}-\sin^2\frac{x}{2}$ を用いると、

$$(*) = \log \left| \frac{1 + \sin x}{\cos x} \right| = \log \frac{1 + \sin x}{|\cos x|} \tag{**}$$

また、 $|\cos x| = \sqrt{1 - \sin^2 x} = \sqrt{(1 - \sin x)(1 + \sin x)}$ より、

$$(**) = \log \frac{1 + \sin x}{\sqrt{1 - \sin x} \cdot \sqrt{1 + \sin x}}$$
$$= \log \sqrt{\frac{1 + \sin x}{1 - \sin x}}$$
$$= \frac{1}{2} \log \left(\frac{1 + \sin x}{1 - \sin x}\right)$$

1.5 部分積分法

1.5.1 部分積分法の定理

定理 1.5.1. (部分積分法)

f(x) を連続関数、g(x) を C^1 級関数とし、F(x) を f(x) の原始関数とする。このとき、

$$\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx + C \qquad (C: 積分定数)$$

が成り立つ。

証明 1.5.1. 積の微分の公式より

$${F(x)g(x)}' = F'(x)g(x) + F(x)g'(x)$$

= $f(x)g(x) + F(x)g'(x)$

である。よって、

$$\int \{f(x)g(x) + F(x)g'(x)\} dx = F(x)g(x) + C$$

である。この左辺は

左辺 =
$$\int f(x)g(x)dx + \int F(x)g'(x)dx$$

より、

$$\int f(x)g(x)dx + \int F(x)g'(x)dx = F(x)g(x) + C$$

なので、

$$\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx + C$$

である。

♡ point < 覚え方 > ユー積ブイ、マイン、ユー積ブイ、ピー!

$$\int uvdx = (u \ \cdot{f})v - \int (u \ \cdot{f})v'dx$$

♣ 補足 書籍によっては部分積分を

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

と表している場合もある。混乱する場合は、どちらか一方のみ覚える。

1.5 部分積分法 43

例 1.5.1. 以下を計算せよ。

(1)
$$\int x \cos x \, dx$$

(2)
$$\int \log x \, dx$$

(3)
$$\int x \log x \, dx$$

(1) 微分して 1 となる方を v とおくとよい!

$$\int \underbrace{(\cos x) \cdot \underline{x}}_{||} dx = \underbrace{(\sin x) \cdot \underline{x}}_{||} - \int \underbrace{(\sin x) \cdot \underline{1}}_{||} dx$$

$$u \quad v \quad (u \stackrel{\text{fl}}{\uparrow}) \quad v \quad (u \stackrel{\text{fl}}{\uparrow}) \quad v'$$

となる (計算途中の積分定数は省略)。よって、

$$\int \cos x \cdot x dx = x \sin x - \int \sin x dx$$
$$= x \sin x + \cos x + C \qquad (C: 積分定数)$$

となる。

(2) $u=1, v=\log x$ とおいて、部分積分法を用いると

$$\int \underbrace{1}_{\parallel} \cdot \underbrace{\log x}_{\parallel} \, dx = \underbrace{x}_{\parallel} \cdot \underbrace{\log x}_{\parallel} - \int \underbrace{x}_{\parallel} \cdot \underbrace{\frac{1}{x}}_{\parallel} \, dx$$

$$\underbrace{u}_{\parallel} \quad \underbrace{u}_{\parallel} \quad \underbrace{u}$$

となる。よって、

$$\int \log x \, dx = x \log x - \int 1 \, dx$$
$$= x \log x - x + C \tag{C: 積分定数}$$

となる。

(3) u = x, $v = \log x$ とおいて、部分積分法を用いると

となる。よって、

$$\int x \log x \, dx = \frac{1}{2} x^2 \log x - \int \frac{1}{2} x \, dx$$

$$= \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + C \qquad (C: 積分定数)$$

例 1.5.2. 以下を計算せよ。

$$(1) \int x^2 \sin x \, dx \qquad (2) \int e^x \sin x \, dx$$

(1) $u = \sin x$, $v = x^2$ とおいて、部分積分法を用いると

$$\int \underbrace{(\sin x)}_{\parallel} \cdot \underbrace{x^{2}}_{\parallel} dx = \underbrace{(-\cos x)}_{\parallel} \cdot \underbrace{x^{2}}_{\parallel} - \int \underbrace{(-\cos x)}_{\parallel} \cdot \underbrace{(2x)}_{\parallel} dx$$

$$u \quad v \quad (u \stackrel{\text{}}{\text{}}{\text{}}) \quad v \quad (u \stackrel{\text{}}{\text{}}{\text{}}) \quad v'$$

となる。ここで、右辺の第2項は、例1.5.1(1)より

$$2\int x\cos x \, dx = 2x\sin x + 2\cos x + C$$

なので、

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + C \qquad (C: \, \text{積分定数})$$

である。

(2) まず、与式をIとおく。

$$I = \int \underbrace{e^x}_{||} \cdot \frac{\sin x}{||} dx = \underbrace{e^x}_{||} \cdot \frac{\sin x}{||} - \int \underbrace{e^x}_{||} \cdot \frac{\cos x}{||} dx + C_1$$

$$u \quad v \quad (u \stackrel{?}{q}) \quad v \quad (u \stackrel{?}{q}) \quad v'$$

$$= e^x \sin x - \int \underbrace{e^x}_{||} \cdot \frac{\cos x}{||} dx + C_1$$

$$u \quad v \quad (新たに u, v)$$

$$= e^x \sin x - \left\{ \underbrace{e^x}_{||} \cdot \frac{\cos x}{||} - \int \underbrace{e^x}_{||} \cdot \frac{(-\sin x)}{||} dx + C_2 \right\} + C_1$$

$$(u \stackrel{?}{q}) \quad v \quad (u \stackrel{?}{q}) \quad v'$$

$$= e^x (\sin x - \cos x) - \underbrace{\int e^x \sin x}_{||} dx + C_1 - C_2$$

よって、 $2I = e^x(\sin x - \cos x) + C_1 - C_2$ が得られる。これより、I は

$$I = \frac{1}{2}e^{x}(\sin x - \cos x) + \frac{C_1 - C_2}{2}$$
$$= \frac{1}{2}e^{x}(\sin x - \cos x) + C \qquad (C: 積分定数)$$

1.5 部分積分法 45

1.5.2 演習問題

問題 1.5.1. 以下の関数の不定積分を求めよ。

 $(1) \quad x \sin x \qquad (2) \quad (1-x) \sin x$

 $(3) \quad (2x+1)\cos x \qquad \qquad (4) \quad x\cos 2x$

 $(5) xe^{2x} (6) x^2 \cos x$

 $(7) \quad x^3 \sin x \tag{8} \quad x^2 \cos 2x$

 $(9) \quad x\sin^2 x \tag{10} \quad x^2\cos^2 x$

問題 1.5.2. 以下の関数の不定積分を求めよ。ただし、 $a \neq 0$ とする。

(1) $x^2 e^{ax}$ (2) $x^3 e^{-ax}$ (3) $x^4 e^{2x}$

(4) $x^{a-1}\log x$ (5) $x\log^2 x$ (6) $x\log^3 x$

問題 1.5.3. 以下の関数の不定積分を求めよ。ただし、 $a \neq 0$ とする。

(1) $\frac{xe^x}{(1+x)^2}$ (2) $\frac{\log x}{(1+x)^2}$ (3) $x^3\sqrt{1-x^2}$

(4) $\tan^{-1} x$ (5) $\sin^{-1} x$ (6) $\cos^{-1} x$

(7) $x \tan^{-1} x$ (8) $x \sin^{-1} x$ (9) $x^2 \tan^{-1} x$

問題 1.5.4. I_{mn} を以下とするとき、 $(i)\sim(iv)$ の漸化式が成り立つことを示せ。

$$I_{m,n} = \int \sin^m x \cos^n x \, dx \quad (m, n \in \mathbb{Z})$$

(i)
$$I_{m,n} = \frac{1}{m+n} \sin^{m+1} x \cos^{n-1} x + \frac{n-1}{m+n} I_{m,n-2}$$
 $(m+n \neq 0)$

(ii)
$$I_{m,n} = -\frac{1}{m+n} \sin^{m-1} x \cos^{n+1} x + \frac{m-1}{m+n} I_{m-2,n}$$
 $(m+n \neq 0)$

(iii)
$$I_{m,n} = -\frac{1}{n+1} \sin^{m+1} x \cos^{n+1} x + \frac{m+n+2}{n+1} I_{m,n+2}$$
 $(n+1 \neq 0)$

(iv)
$$I_{m,n} = \frac{1}{m+1} \sin^{m+1} x \cos^{n+1} x + \frac{m+n+2}{m+1} I_{m+2,n}$$
 $(m+1 \neq 0)$

問題 1.5.5. 前問を利用して、つぎの関数の不定積分を求めよ。

(1) $\sin^4 x \cos^2 x$ (2) $\sin^4 x \cos^4 x$ (3) $\frac{1}{\sin x \cos^2 x}$ (4) $\frac{1}{\sin^4 x \cos^2 x}$

1.5.3 演習問題 略解

略解 1.5.1. 途中計算では積分定数 C を省略して計算する。

(1) $u = \sin x, v = x$ とおき、部分積分を行うと、

$$\int x \sin x \, dx = (-\cos x) \cdot x - \int (-\cos x) \cdot x' \, dx = -x \cos x + \sin x + C$$

 $(2)\; u = \sin x, v = 1 - x$ とおき、部分積分を行うと、((1) を利用するのもよい。)

$$\int (1-x)\sin x \, dx = (-\cos x) \cdot (1-x) - \int (-\cos x) \cdot (1-x)' \, dx$$
$$= (x-1)\cos x + \int \cos x \cdot (-1) \, dx$$
$$= (x-1)\cos x - \sin x + C$$

(3) $u = \cos x, v = 2x + 1$ とおき、部分積分を行うと、

$$\int (2x+1)\cos x \, dx = (\sin x) \cdot (2x+1) - \int (\sin x) \cdot 2 \, dx$$
$$= (2x+1)\sin x + 2\cos x + C$$

(4) $u = \cos 2x, v = x$ とおき、部分積分を行うと、

$$\int x \cos 2x \, dx = \left(\frac{1}{2}\sin 2x\right) \cdot x - \int \left(\frac{1}{2}\sin 2x\right) \cdot 1 \, dx$$
$$= \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x + C$$

(5) $u=e^{2x}, v=x$ とおき、部分積分を行うと、

$$\int xe^{2x} dx = \left(\frac{1}{2}e^{2x}\right) \cdot x - \int \left(\frac{1}{2}e^{2x}\right) \cdot 1 dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$

(6) $u = \cos x, v = x^2$ とおき、部分積分を行うと、

$$\int x^2 \cos x \, dx = (\sin x) \cdot x^2 - \int (\sin x) \cdot 2x \, dx = x^2 \sin x - 2 \int x \sin x \, dx$$
$$= x^2 \sin x - 2 \left\{ (-\cos x) \cdot x - \int (-\cos x) \cdot 1 \, dx \right\}$$
$$= x^2 \sin x + 2x \cos x - 2 \sin x + C$$

1.5 部分積分法 47

(7) $u = \sin x, v = x^3$ とおき、部分積分を行うと、

$$\int x^3 \sin x \, dx = (-\cos x) \cdot x^3 - \int (-\cos x) \cdot 3x^2 \, dx$$
$$= -x^3 \cos x + 3 \int x^2 \cos x \, dx$$
下線部は (6) より $\rightarrow = -x^3 \cos x + 3 \left\{ x^2 \sin x + 2x \cos x - 2 \sin x \right\} + C$

(8) $u = \cos 2x, v = x^2$ とおき、部分積分を行うと、

$$\int x^{2} \cos 2x \, dx = \left(\frac{1}{2} \sin 2x\right) \cdot x^{2} - \int \left(\frac{1}{2} \sin 2x\right) \cdot 2x \, dx$$

$$= \frac{1}{2} x^{2} \sin 2x - \int x \sin 2x \, dx$$

$$= \frac{1}{2} x^{2} \sin 2x - \left\{\left(-\frac{1}{2} \cos 2x\right) \cdot x - \int \left(-\frac{1}{2} \cos 2x\right) \cdot 1 \, dx\right\}$$

$$= \frac{1}{2} x^{2} \sin 2x + \frac{1}{2} x \cos 2x - \frac{1}{4} \sin 2x + C$$

(9) 高次の三角関数の積分の場合、三角関数の次数を 1 次にする。(参照: 略解 1.2.3)

$$\int x \sin^2 x \, dx = \int x \cdot \frac{1 - \cos 2x}{2} \, dx$$
$$= \frac{1}{2} \int x \, dx - \frac{1}{2} \underbrace{\int x \cos 2x \, dx}$$
下線部は (4) より $\rightarrow = \frac{1}{4} x^2 - \frac{1}{4} x \sin 2x - \frac{1}{8} \cos 2x + C$

※ 別の方法で計算した結果の

$$\frac{1}{2}x^2\sin^2 x + \frac{1}{4}x^2\cos 2x - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C$$

の下線部は $\frac{1}{4}x^2$ となる。

(10) (9) と同様に、

$$\int x^2 \cos^2 x \, dx = \int x^2 \cdot \frac{1 + \cos 2x}{2} \, dx$$
$$= \frac{1}{2} \int x^2 \, dx + \frac{1}{2} \underbrace{\int x^2 \cos 2x \, dx}$$
下線部は (8) より \rightarrow = $\frac{1}{6} x^3 + \frac{1}{4} x^2 \sin 2x + \frac{1}{4} x \cos 2x - \frac{1}{8} \sin 2x + C$

略解 1.5.2. 途中計算では積分定数 C を省略して計算する。

(1) まず、 $u = e^{ax}, v = x^2$ とおき、部分積分を行うと、

$$\int x^2 e^{ax} \, dx = \frac{1}{a} e^{ax} \cdot x^2 - \int \frac{1}{a} e^{ax} \cdot 2x \, dx$$
$$= \frac{1}{a} x^2 e^{ax} - \frac{2}{a} \int x e^{ax} \, dx \tag{*}$$

となる。ここで、新たに $u = e^{ax}, v = x$ とおき、波線部の部分積分を行うと、

$$\int xe^{ax} dx = \frac{1}{a}e^{ax} \cdot x - \int \frac{1}{a}e^{ax} \cdot 1 dx$$
$$= \frac{1}{a}xe^{ax} - \frac{1}{a}\int e^{ax} dx$$
$$= \frac{1}{a}xe^{ax} - \frac{1}{a}\cdot \frac{1}{a}e^{ax}$$

となるので、

$$(*) = \frac{1}{a}x^2e^{ax} - \frac{2}{a}\left\{\frac{1}{a}xe^{ax} - \frac{1}{a^2}e^{ax}\right\} = \left(\frac{1}{a}x^2 - \frac{2}{a^2}x + \frac{2}{a^3}\right)e^{ax} + C$$

である。

(2) まず、 $u = e^{-ax}, v = x^3$ とおき、部分積分を行うと、

$$\int x^3 e^{-ax} dx = \frac{1}{-a} e^{-ax} \cdot x^3 - \int \frac{1}{-a} e^{-ax} \cdot 3x^2 dx$$
$$= -\frac{1}{a} x^3 e^{-ax} + \frac{3}{a} \int x^2 e^{-ax} dx \tag{*}$$

となる。さらに、 $u=e^{-ax}, v=x^2$ とおきなおし、波線部の部分積分を行うと、

$$(*) = -\frac{1}{a}x^3e^{-ax} + \frac{3}{a}\left\{\frac{1}{-a}x^2e^{-ax} + \frac{2}{a}\int xe^{-ax}\,dx\right\} \tag{**}$$

となる。再度、 $u=e^{-ax}, v=x$ として、下線部の部分積分を行うと、

$$(**) = -\frac{1}{a}x^{3}e^{-ax} - \frac{3}{a^{2}}x^{2}e^{-ax} + \frac{6}{a^{2}}\left\{\frac{1}{-a}xe^{-ax} + \frac{1}{-a^{2}}e^{-ax}\right\}$$
$$= -\frac{1}{a}x^{3}e^{-ax} - \frac{3}{a^{2}}x^{2}e^{-ax} - \frac{6}{a^{3}}xe^{-ax} - \frac{6}{a^{4}}e^{-ax}$$
$$= -\left(\frac{1}{a}x^{3} + \frac{3}{a^{2}}x^{2} + \frac{6}{a^{3}}x + \frac{6}{a^{4}}\right)e^{-ax} + C$$

である。

1.5 部分積分法 49

(3) まず、 $u=e^{2x}, v=x^4$ とおき、部分積分を行い、次は $u=e^{2x}, v=x^3$ とおき、部分積分を行う。

$$\int x^4 e^{2x} dx = \frac{1}{2} e^{2x} \cdot x^4 - \int \frac{1}{2} e^{2x} \cdot 4x^3 dx$$

$$= \frac{1}{2} x^4 e^{2x} - 2 \left\{ \frac{1}{2} e^{2x} x^3 - \int \frac{1}{2} e^{2x} \cdot 3x^2 dx \right\}$$

$$= \frac{1}{2} x^4 e^{2x} - e^{2x} x^3 + 3 \int x^2 e^{2x} dx$$

問 (1) の
$$a = 2$$
 のとき $\rightarrow = \frac{1}{2}x^4e^{2x} - x^3e^{2x} + 3\left(\frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4}\right)e^{2x}$
$$= \frac{1}{4}\left(2x^4 - 4x^3 + 6x^2 - 6x + 3\right)e^{2x} + C$$

(4) $u = x^{a-1}, v = \log x$ とおき、部分積分を行う。

$$\int x^{a-1} \log x \, dx = \frac{1}{a} x^a \log x - \int \frac{1}{a} x^a \cdot \frac{1}{x} \, dx$$
$$= \frac{1}{a} x^a \log x - \frac{1}{a} \int x^{a-1} \, dx$$
$$= \frac{1}{a} x^a \log x - \frac{1}{a^2} x^a + C$$

(5) $u = x, v = \log^2 x$ とおき、部分積分を行う。

$$\int x \log^2 x \, dx = \frac{1}{2} x^2 \log^2 x - \int \frac{1}{2} x^2 \cdot \frac{2}{x} \log x \, dx$$
$$= \frac{1}{2} x^2 \log^2 x - \int x \log x \, dx$$

問 (4) の
$$a = 2$$
 のとき $\rightarrow = \frac{1}{2}x^2 \log^2 x - \frac{1}{2}x^2 \log x + \frac{1}{4}x^2 + C$

(6) $u = x, v = \log^3 x$ とおき、部分積分を行う。

$$\int x \log^3 x \, dx = \frac{1}{2} x^2 \log^3 x - \int \frac{1}{2} x^2 \cdot \left(\frac{3}{x} \log^2 x\right) \, dx$$

$$= \frac{1}{2} x^2 \log^3 x - \frac{3}{2} \int x \log^2 x \, dx$$

$$\boxplus (5) \to = \frac{1}{2} x^2 \log^3 x - \frac{3}{2} \left\{\frac{1}{2} x^2 \log^2 x - \frac{1}{2} x^2 \log x + \frac{1}{4} x^2\right\}$$

$$= \frac{1}{2} x^2 \log^3 x - \frac{3}{4} x^2 \log^2 x + \frac{3}{4} x^2 \log x - \frac{3}{2} x^2 + C$$

略解 1.5.3. 途中計算では積分定数 C を省略して計算する。

(1) まず、以下のように式変形を行う。

$$\frac{xe^x}{(1+x)^2} = \frac{(1+x-1)e^x}{(1+x)^2} = \frac{(1+x)e^x}{(1+x)^2} - \frac{e^x}{(1+x)^2} = \frac{e^x}{1+x} - \frac{e^x}{(1+x)^2}$$

ここで、 $u=e^x$, $v=\frac{1}{1+x}$ とおくと、

$$\int \frac{e^x}{1+x} dx = e^x \cdot \frac{1}{1+x} - \int e^x \cdot \left(-\frac{1}{(1+x)^2}\right) dx = \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} dx$$

となるので、

$$\int \frac{xe^x}{(1+x)^2} dx = \int \frac{e^x}{1+x} dx - \int \frac{e^x}{(1+x)^2} dx$$
$$= \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} dx - \int \frac{e^x}{(1+x)^2} dx$$
$$= \frac{e^x}{1+x} + C$$

である。※ 最初から部分積分法を用いる場合は、 $u=\frac{1}{(1+x)^2}, v=xe^x$ としてもよい。

$$\int \frac{xe^x}{(1+x)^2} dx = -\frac{1}{1+x} \cdot xe^x - \int \left(-\frac{1}{1+x}\right) \cdot (xe^x)' dx$$

$$= -\frac{xe^x}{1+x} + \int \frac{xe^x + e^x}{1+x} dx = -\frac{xe^x}{1+x} + \int e^x dx$$

$$= -\frac{xe^x}{1+x} + e^x + C$$

(2)
$$u = \frac{1}{(1+x)^2}, v = \log x$$
 とおき、部分積分を行うと、

$$\int \frac{\log x}{(1+x)^2} \, dx = -\frac{\log x}{1+x} + \int \frac{1}{x(1+x)} \, dx$$

$$= -\frac{\log x}{1+x} + \int \left(\frac{1}{x} - \frac{1}{1+x}\right) \, dx$$

$$= -\frac{\log x}{1+x} + \log|x| - \log|1+x| + C$$

$$= -\frac{\log x}{1+x} + \log\left|\frac{x}{1+x}\right| + C$$

となる。

※ 有理関数の部分分数分解については、後述する(予習)。

1.5 部分積分法 51

(3) まず、 $x^3\sqrt{1-x^2}=x^2\cdot\left(x\sqrt{1-x^2}\right)$ と考えて、 $u=x^2,v=x\sqrt{1-x^2}$ とおき、部分積分を行うと、

$$\int x^3 \sqrt{1 - x^2} \, dx = \frac{1}{3} x^3 \cdot x \sqrt{1 - x^2} - \int \frac{1}{3} x^3 \cdot \left(\sqrt{1 - x^2} + x \cdot \frac{-2x}{2\sqrt{1 - x^2}} \right) \, dx$$
$$= \frac{1}{3} x^4 \sqrt{1 - x^2} - \frac{1}{3} \int x^3 \sqrt{1 - x^2} \, dx + \frac{1}{3} \int \frac{x^5}{\sqrt{1 - x^2}} \, dx$$

となり、

$$4\int x^3\sqrt{1-x^2}\,dx = x^4\sqrt{1-x^2} + \int \frac{x^5}{\sqrt{1-x^2}}\,dx$$

をえる。ここで、右辺の不定積分は、問題 1.3.3. (6) より

$$\int \frac{x^5}{\sqrt{1-x^2}} dx = -\frac{1}{15} \sqrt{1-x^2} \left\{ 3(1-x^2)^2 - 10(1-x^2) + 15 \right\} + C$$

なので

$$4 \int x^3 \sqrt{1 - x^2} \, dx = x^4 \sqrt{1 - x^2} - \frac{1}{15} \sqrt{1 - x^2} \left\{ 3(1 - x^2)^2 - 10(1 - x^2) + 15 \right\} + C$$
$$= -\frac{1}{15} \sqrt{1 - x^2} \left\{ -15x^4 + 3(1 - x^2)^2 - 10(1 - x^2) + 15 \right\} + C$$

となり、計算すると

$$\int x^3 \sqrt{1-x^2} \, dx = \frac{1}{15} \sqrt{1-x^2} \left\{ 3x^4 - x^2 - 2 \right\} + C$$

である。

※ 実は、置換積分の方が楽。

(4) $u = 1, v = \tan^{-1} x$ とおき、部分積分を行うと、

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int x \cdot \frac{1}{1 + x^2} \, dx$$

であり、右辺の不定積分は、例題 1.2.1.(2) より

$$\int \frac{x}{1+x^2} \, dx = \frac{1}{2} \log(x^2+1) + C$$

である。よって、

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \log(x^2 + 1) + C$$

である。

(5) $u = 1, v = \sin^{-1} x$ とおき、部分積分を行うと、

$$\int \sin^{-1} x \, dx = x \sin^{-1} x - \int x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx$$

である。

ここで、右辺の不定積分は、問題 1.3.3. の (4) より

$$\int \frac{x}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + C$$

であった。よって、

$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2} + C$$

である。

(6) $u=1, v=\cos^{-1}x$ とおき、(5) を参考に部分積分を行うと、

$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \int x \cdot \left(-\frac{1}{\sqrt{1 - x^2}} \right) \, dx$$
$$= x \cos^{-1} x + \int x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

である。

 $(7) u = x, v = \tan^{-1} x$ とおき、部分積分を行うと、

$$\int x \tan^{-1} x \, dx = \frac{1}{2} x^2 \tan^{-1} x - \int \frac{1}{2} x^2 \cdot \frac{1}{1+x^2} \, dx$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \int \frac{1+x^2-1}{1+x^2} \, dx$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \left\{ \int 1 \, dx - \int \frac{1}{1+x^2} \, dx \right\}$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x + C$$

$$= \frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x + C$$

である。

1.5 部分積分法 53

(8) $u = x, v = \sin^{-1} x$ とおき、部分積分を行うと、

$$\int x \sin^{-1} x \, dx = \frac{1}{2} x^2 \sin^{-1} x - \int \frac{1}{2} x^2 \cdot \frac{1}{\sqrt{1 - x^2}} \, dx$$

である。ここで、右辺の不定積分は、問題 1.4.1. の (9) より

$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx = \frac{1}{2} \sin^{-1} x - \frac{1}{2} x \sqrt{1-x^2} + C$$

であった。よって、

$$\int x \sin^{-1} x \, dx = \frac{1}{2} x^2 \sin^{-1} x - \frac{1}{4} \sin^{-1} x + \frac{1}{4} x \sqrt{1 - x^2} + C$$

である。

(9) $u = x,^2 v = \tan^{-1} x$ とおき、部分積分を行うと、

$$\int x^2 \tan^{-1} x \, dx = \frac{1}{3} x^3 \tan^{-1} x - \int \frac{1}{3} x^3 \cdot \frac{1}{1+x^2} \, dx \tag{*}$$

である。ここで、 $t=1+x^2$ とおくと、 $\frac{dt}{dx}=2x$ となるので

$$\int \frac{x^3}{1+x^2} dx = \frac{1}{2} \int \frac{t-1}{t} dt = \frac{1}{2} \left(\int 1 dt - \int \frac{1}{t} dt \right)$$
$$= \frac{1}{2} \left(t - \log|t| \right) + C = \frac{1}{2} \left(1 + x^2 - \log(1+x^2) \right) + C$$

である。よって、

$$(*) = \frac{1}{3}x^3 \tan^{-1} x - \frac{1}{6}x^2 + \frac{1}{6}\log(1+x^2) + C$$

である。 ※定数項は積分定数にまとめている。

略解 1.5.4. (略)

略解 1.5.5. (中略)

(1)
$$\frac{1}{6}\sin^5 x \cos x - \frac{1}{24}\sin^3 x \cos x - \frac{1}{16}\sin x \cos x + \frac{1}{16}x + C$$

$$(2) \frac{1}{8} \sin^5 x \cos^3 x + \frac{1}{16} \sin^5 x \cos x - \frac{1}{64} \sin^3 x \cos x - \frac{3}{128} \sin x \cos x + \frac{3}{128} x + C$$

$$(3) \frac{1}{\cos x} + \log \left| \tan \frac{x}{2} \right| + C$$

$$(4) \frac{1}{\sin^3 x \cos x} - \frac{4\cos x}{3\sin^3 x} - \frac{8}{3\tan x} + C$$

演習 | 1.6

1.6.1 演習問題

問題 1.6.1. 以下の関数の不定積分を求めよ。

$$(1)$$
 1

$$(2)$$
 (2)

$$(4) -2x$$

(5)
$$x-5$$

(6)
$$6x^2$$

$$(7) 12x^3$$

$$(8) \quad \frac{3}{x}$$

(9)
$$x^2 + \frac{1}{x^2}$$

$$(10) \quad 2\sqrt{x}$$

$$(11) \quad \frac{1}{\sqrt{x}}$$

$$(12) \quad x^{\frac{3}{2}} - x^{-\frac{3}{2}}$$

(13)
$$\frac{x^2-1}{x^4}$$

(14)
$$\frac{1}{x^3} - \frac{3}{x}$$

$$(15) \quad \left(\frac{x-1}{x}\right)^2$$

$$(16) \quad \frac{x-1}{\sqrt{x}}$$

$$(17) \quad \frac{2x+3}{\sqrt{x}}$$

$$(18) \quad \sqrt{x} \left(x^2 - \frac{2}{x^2} \right)$$

(19)
$$2\cos x$$

$$(20)$$
 $\sin 3x$

$$(21)$$
 $3\cos 2x$

(22)
$$\cos(1-2x)$$

$$(23) \quad \frac{1}{\cos^2 2x}$$

(24)
$$\frac{1}{\cos^2(1-x)}$$

(25)
$$e^{2x}$$

(26)
$$e^{-3x}$$

$$(27) \quad 3^{-x}$$

(28)
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$
 (29) $\left(\sqrt{x} + 1\right)^3$

$$(29) \quad \left(\sqrt{x}+1\right)^3$$

$$(30) \quad \frac{(\sqrt{x}+1)^3}{x}$$

問題 1.6.2. 以下の条件をみたす関数 f(x) を求めよ。

(1)
$$f'(x) = 3x^2 - x + 1$$
, $f(0) = 2$

(2)
$$f(x) = \int (x^2 - 3x + 5) dx$$
, $f(1) = 1$

(3)
$$f'(x) = \sin x - 2$$
, $f\left(\frac{\pi}{2}\right) = 0$

(4)
$$f(x) = \int \frac{1}{2} \cos x \, dx$$
, $f(0) = 1$

(5)
$$f'(x) = 3\cos 2x + 4\sin 2x$$
, $f(0) = 0$

(6)
$$f''(x) = 3x$$
, $f(0) = 1$, $f(1) = 0$

(7)
$$f''(x) = -\frac{1}{x^2}$$
, $f(1) = 3$, $f(e) = 2e + 1$

問題 1.6.3. 置換積分法を用いて、以下の関数の不定積分を求めよ。

$$(1) (1+x)^3$$

$$(2) (2-x)^3$$

$$(3) (1-2x)^3$$

$$(4) \quad \frac{2}{\sqrt{1-4x^2}}$$

(5)
$$\frac{1}{x^2-4}$$

$$(6) \quad \sqrt{5-x^2}$$

(7)
$$(\sqrt{2} + x)^3$$

$$(8) (ex+1)^3$$

$$(9) \quad \left(1 - \sqrt{2}ex\right)^3$$

(10)
$$\frac{1}{\sqrt{1-3x^2}}$$

(11)
$$\frac{4}{4-r^2}$$

(12)
$$\sqrt{3-2x^2}$$

$$(13)$$
 $\cos(3x-2)$

$$(14)$$
 $\sin(5-4x)$

(15)
$$\tan(2-7x)$$

(16)
$$3x^2e^{-x^3}$$

$$(17) \quad \frac{e^x}{e^x + 1}$$

(18)
$$\frac{e^{2x}}{\sqrt{1+e^{2x}}}$$

(19)
$$\sin^3 x$$

(20)
$$\cos^3 x \sin x$$

$$(21) \quad \sin^4 x \cos^3 x$$

$$(22) \quad \frac{\sin^3 x}{\cos x}$$

(23)
$$\tan^3 x$$

(24)
$$\cos^4 x$$

$$(25) \quad \sqrt{\sin x} \cos^3 x$$

$$(26) \quad \frac{\sin x}{1 + 2\cos x}$$

$$(27) \quad \frac{1}{\tan^2 x}$$

(28)
$$e^{1-5x}$$

(29)
$$8e^{4x+3}$$

$$(30) \quad 2^{-3x+2}$$

問題 1.6.4. 部分積分法を用いて、以下の関数の不定積分を求めよ。ただし、 $a \neq 0$ とする。

$$(1)$$
 $x\cos x$

$$(2) (1-x)\sin x$$

(3)
$$(2x+1)\cos x$$

$$(4)$$
 $x \cos 2x$

$$(5)$$
 $x \sin 3x$

(6)
$$x^2 \cos x$$

$$(7) \quad x^3 \sin x$$

(8)
$$x^3 \cos x$$

$$(9) \quad x\sin^2 x$$

$$(10) \quad x^2 \sin^2 x$$

$$(11) \quad x \sin^{-1} x$$

$$(12) \quad e^x \sin x$$

(13)
$$x^3e^{-ax}$$

$$(14) xe^{2x}$$

(15)
$$x^2 e^{ax}$$

(16)
$$\log x$$

$$(17) \quad x \log x$$

$$(18) \quad (\log x)^2$$

$$(19) \quad x^2 \log x$$

(20)
$$x \tan^{-1} x$$

$$(21) \quad \frac{\log x}{r^2}$$

(22)
$$\sin(\log x)$$

(23)
$$\cos(\log x)$$

$$(24) \quad \frac{x \sin x}{\cos^2 x}$$

※ 部分積分法は、解答を求める際には、f(x) と g(x) の選択が重要になる。

1.6.2 演習問題略解

略解 1.6.1. 以下の C はすべて積分定数とする。

(1)
$$\int 1 dx = x + C$$
 (2)
$$\int 0 dx = C$$

(3)
$$\int x \, dx = \frac{1}{2}x^2 + C$$
 (4)
$$\int (-2x) \, dx = -x^2 + C$$

(5)
$$\int (x-5) dx = \frac{1}{2}x^2 - 5x + C$$
 (6)
$$\int 6x^2 dx = 2x^3 + C$$

(7)
$$\int 12x^3 dx = 3x^4 + C$$
 (8)
$$\int \frac{3}{x} dx = 3\log|x| + C$$

(9)
$$\int \left(x^2 + \frac{1}{x^2}\right) dx = \frac{1}{3}x^3 - \frac{1}{x} + C \qquad (10) \int 2\sqrt{x} \, dx = \frac{4}{3}x\sqrt{x} + C$$

(11)
$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$
 (12)
$$\int \left(x^{\frac{3}{2}} - x^{-\frac{3}{2}}\right) dx = \frac{2}{5}x^{\frac{5}{2}} + 2x^{-\frac{1}{2}} + C$$

(13)
$$\int \frac{x^2 - 1}{x^4} dx = \int \left(\frac{1}{x^2} - \frac{1}{x^4}\right) dx = -\frac{1}{x} + \frac{1}{3x^3} + C$$

(14)
$$\int \left(\frac{1}{x^3} - \frac{3}{x}\right) dx = -\frac{1}{2x^2} - 3\log|x| + C$$

$$(15) \int \left(\frac{x-1}{x}\right)^2 dx = \int \left(1 - \frac{2}{x} + \frac{1}{x^2}\right) dx = x - 2\log|x| - \frac{1}{x} + C$$

$$(16) \int \frac{x-1}{\sqrt{x}} dx = \int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = \frac{2}{3}x\sqrt{x} - 2\sqrt{x} + C$$

(17)
$$\int \frac{2x+3}{\sqrt{x}} \, dx = \int \left(2\sqrt{x} + \frac{3}{\sqrt{x}}\right) \, dx = \frac{4}{3}x\sqrt{x} + 6\sqrt{x} + C$$

(18)
$$\int \sqrt{x} \left(x^2 - \frac{2}{x^2} \right) dx = \int \left(x^2 \sqrt{x} - \frac{2}{x \sqrt{x}} \right) dx = \frac{2}{7} x^3 \sqrt{x} + \frac{4}{\sqrt{x}} + C$$

(19)
$$\int 2\cos x \, dx = 2\sin x + C \qquad (20) \int \sin 3x \, dx = -\frac{1}{3}\cos 3x + C$$

(21)
$$\int 3\cos 2x \, dx = \frac{3}{2}\sin 2x + C \qquad (22) \int \cos(1-2x) \, dx = -\frac{1}{2}\sin(1-2x) + C$$

(23)
$$\int \frac{1}{\cos^2 2x} dx = \frac{1}{2} \tan 2x + C \qquad (24) \int \frac{1}{\cos^2 (1-x)} dx = -\tan(1-x) + C$$

(25)
$$\int e^{2x} dx = \frac{1}{2}e^{2x} + C$$
 (26) $\int e^{-3x} dx = -\frac{1}{3}e^{-3x} + C$

1.6 演習 I 57

(27)
$$\int 3^{-x} dx = -\frac{1}{\log 3} \cdot 3^{-x} + C$$

(28)
$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx = \int \left(x - 2 + \frac{1}{x}\right) dx$$
$$= \frac{1}{2}x^2 - 2x + \log|x| + C$$

(29)
$$\int (\sqrt{x}+1)^3 dx = \int \left(x^{\frac{3}{2}} + 3x + 3x^{\frac{1}{2}} + 1\right) dx$$
$$= \frac{2}{5}x^2\sqrt{x} + \frac{3}{2}x^2 + 2x\sqrt{x} + x + C$$

(30)
$$\int \frac{(\sqrt{x}+1)^3}{x} dx = \int \left(x^{\frac{1}{2}} + 3 + 3x^{-\frac{1}{2}} + x^{-1}\right) dx$$
$$= \frac{2}{3}x\sqrt{x} + 3x + 6\sqrt{x} + \log|x| + C$$

略解 1.6.2. (1) $f'(x) = 3x^2 - x + 1$ より、f(x) は

$$f(x) = \int (3x^2 - x + 1) dx = x^3 - \frac{1}{2}x^2 + x + C$$

を満たす。ここで、 $f\left(0\right)=2$ より C=2 をえる。よって、

$$f(x) = x^3 - \frac{1}{2}x^2 + x + 2$$

である。

(2) 与式を計算すると、

$$f(x) = \int (x^2 - 3x + 5) dx = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 5x + C$$

であり、
$$f(1)=1$$
 より $C=-\frac{17}{6}$ となる。
よって、

$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 5x - \frac{17}{6}$$

である。

(3) 題意より

$$f(x) = \int (\sin x - 2) dx = -\cos x - 2x + C$$

であり、 $f\left(\frac{\pi}{2}\right) = 0$ より $C = \pi$ なので、

$$f(x) = -\cos x - 2x + \pi$$

である。

(4) 与式を計算すると、

$$f(x) = \int \frac{1}{2} \cos x \, dx = \frac{1}{2} \sin x + C$$

であり、f(0) = 1 より、C = 1 となる。よって、

$$f(x) = \frac{1}{2}\sin x + 1$$

である。

(5) これまでと同様に計算すると、

$$f(x) = \int (3\cos 2x + 4\sin 2x) \, dx$$
$$= \frac{3}{2}\sin 2x - 2\cos 2x + C$$

であり、f(0) = 0 より C = 2 となる。よって、

$$f(x) = \frac{3}{2}\sin 2x - 2\cos 2x + 2$$

である。

(6) f(x) の 2 階微分が 3x なので、1 階微分は

$$f'(x) = \int f''(x) dx = \frac{3}{2}x^2 + C_1$$

である。よって、

$$f(x) = \int \left(\frac{3}{2}x^2 + C_1\right) dx = \frac{1}{2}x^3 + C_1x + C_2$$

となる。

ここで、 $f(0)=1,\ f(1)=0$ を用いると、 $C_1=-1,\ C_2=1$ を得る。以上より、

$$f(x) = \frac{1}{2}x^3 - x + 1$$

1.6 演習 I 59

(7)(6)と同様に、1階微分を求めると、

$$f'(x) = \int -\frac{1}{x^2} dx = \frac{1}{x} + C_1$$

である。よって、

$$f(x) = \int \left(\frac{1}{x} + C_1\right) dx = \log|x| + C_1 x + C_2$$

となる。ここで、 $f(1)=3,\; f(e)=2e+1$ より $C_1=rac{2e-3}{e-1},\; C_2=rac{e}{e-1}$ を得るので、

$$f(x) = \int \left(\frac{1}{x} + C_1\right) dx = \log|x| + \frac{2e - 3}{e - 1}x + \frac{e}{e - 1}$$

となる。

略解 1.6.3. 以下の C はすべて積分定数とする。

(1) t = 1 + x とおくと、dt = dx より、

$$\int (1+x)^3 dx = \int t^3 dt = \frac{1}{4}(1+x)^4 + C$$

(2) t=2-x とおくと、dt=-dx より、

$$\int (2-x)^3 dx = \int t^3 \cdot (-1) dt = -\frac{1}{4} (2-x)^4 + C$$

(3) t=1-2x とおくと、dt=-2dx より、

$$\int (1-2x)^3 dx = \int t^3 \cdot \frac{1}{-2} dt = -\frac{1}{8} (1-2x)^4 + C$$

(4) 分母, 分子を 2 で割って、公式 (14.8) を使う。

$$\int \frac{2}{\sqrt{1-4x^2}} \, dx = \int \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - x^2}} \, dx = \sin^{-1} 2x + C$$

(5)
$$\int \frac{1}{x^2 - 4} dx = \frac{1}{4} \int \left(\frac{1}{x - 2} - \frac{1}{x + 2} \right) dx$$
$$= \frac{1}{4} \log \left| \frac{x - 2}{x + 2} \right| + C$$

(6) 例 1.4.2. より

$$\int \sqrt{5-x^2} \, dx = \frac{5}{2} \sin^{-1} \frac{x}{\sqrt{5}} + \frac{1}{2} x \sqrt{5-x^2} + C$$

※ 置換積分の方法によっては $\frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}}+\frac{5}{4}\sin\left(2\sin^{-1}\frac{x}{\sqrt{5}}\right)+C$ になるが、もう少し整理する。

$$t = \sin^{-1} \frac{x}{\sqrt{5}}$$
 とすると、

$$\sin 2t = 2\sin t \cos t = 2\sin t \sqrt{1 - \sin^2 t}$$

$$= 2\sin \left(\sin^{-1}\frac{x}{\sqrt{5}}\right) \sqrt{1 - \left(\sin \left(\sin^{-1}\frac{x}{\sqrt{5}}\right)\right)^2}$$

$$= 2 \cdot \frac{x}{\sqrt{5}} \sqrt{1 - \frac{x^2}{5}} = \frac{2}{5}x\sqrt{5 - x^2}$$

より、

$$\frac{5}{4}\sin\left(2\sin^{-1}\frac{x}{\sqrt{5}}\right) = \frac{5}{4}\cdot\frac{2}{5}x\sqrt{5-x^2} = \frac{1}{2}x\sqrt{5-x^2}.$$

(7) $t = \sqrt{2} + x$ とおくと、dt = dx より、

$$\int (\sqrt{2} + x)^3 dx = \int t^3 dt = \frac{1}{4}t^4 + C = \frac{1}{4}(\sqrt{2} + x)^4 + C$$

(8) t=ex+1 とおくと、 $dt=e\,dx$ より

$$\int (ex+1)^3 dx = \int t^3 \cdot \frac{1}{e} dt = \frac{1}{e} \cdot \frac{1}{4}t^4 + C = \frac{1}{4e}(ex+1)^4 + C$$

(9) $t=1-\sqrt{2}ex$ とおくと、 $dt=-\sqrt{2}e\,dx$ より

$$\int \left(1 - \sqrt{2}ex\right)^3 dx = \int t^3 \cdot \left(\frac{1}{-\sqrt{2}e}\right) dt = -\frac{1}{4\sqrt{2}e} \left(1 - \sqrt{2}ex\right)^4 + C$$

(10) 公式 (14.6)' より

$$\int \frac{1}{\sqrt{1-3x^2}} \, dx = \frac{\sqrt{3}}{3} \sin^{-1} \sqrt{3}x + C$$

1.6 演習 I 61

(11) (5)の -1倍

$$\int \frac{4}{4-x^2} dx = -\int \left(\frac{1}{x-2} - \frac{1}{x+2}\right) dx$$
$$= -\log \left|\frac{x-2}{x+2}\right| + C$$

$$(12)$$
 $\sqrt{3-2x^2}=\sqrt{2}\cdot\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2-x^2}$ と変形が出来るので、例 1.4.2. より、

$$\int \sqrt{3 - 2x^2} \, dx = \sqrt{2} \cdot \frac{1}{2} \left(\frac{3}{2} \sin^{-1} \frac{x}{\sqrt{\frac{3}{2}}} + x\sqrt{\frac{3}{2} - x^2} \right) + C$$
$$= \frac{1}{2} x\sqrt{3 - 2x^2} + \frac{3\sqrt{2}}{4} \sin^{-1} \frac{\sqrt{6}}{3} x + C$$

(13)t = 3x - 2 とおくと、dt = 3 dx より、

$$\int \cos(3x - 2) \, dx = \int \cos t \cdot \frac{1}{3} \, dx = \frac{1}{3} \sin(3x - 2) + C$$

(14) t=5-4x とおくと、 $dt=-4\,dx$ より、

$$\int \sin(5 - 4x) \, dx = \int \sin t \cdot \left(-\frac{1}{4}\right) dx = \frac{1}{4} \cos(5 - 4x) + C$$

(15) t=2-7x とおくと、 $dt=-7\,dx,$ 例 1.3.3. より、

$$\int \tan(2-7x) \, dx = \int \tan t \cdot \left(-\frac{1}{7}\right) dt = -\frac{1}{7} \left(-\log|t|\right) + C$$
$$= \frac{1}{7} \log|\cos(2-7x)| + C$$

(16) $t = -x^3$ とおくと、 $dt = -3x^2 dx$ より、

$$\int 3x^2 e^{-x^3} dx = \int (-e^t) dt = -e^{-x^3} + C$$

(17)
$$f(x)=e^x+1$$
 と置くと、 $\frac{e^x}{e^x+1}=\frac{f'(x)}{f(x)}$ なので、公式 (14.10) より
$$\int \frac{e^x}{e^x+1}\,dx=\log(e^x+1)+C$$

(18) $t = 1 + e^{2x}$ とおくと、 $dt = 2e^{2x} dx$ より、

$$\int \frac{e^{2x}}{\sqrt{1+e^{2x}}} dx = \int \frac{1}{2} \cdot \frac{1}{\sqrt{t}} dx = \sqrt{t} + C = \sqrt{1+e^{2x}} + C$$

(19) $t = \cos x$ とおくと、 $dt = -\sin x \, dx$ より、

$$\int \sin^3 x \, dx = \int \sin x \left(1 - \cos^2 x\right) \, dx = \int \sin x \, dx - \int \sin x \cos^2 x \, dx$$
$$= -\cos x - \int t^2 \sin x \cdot \frac{1}{-\sin x} \, dt = -\cos x + \int t^2 \, dt$$
$$= \frac{1}{3} \cos^3 x - \cos x + C$$

(20) 問題 1.5.4. の漸化式を使うと、問題は $I_{1,3}$ である。

$$\int \cos^3 x \sin x \, dx = -\frac{1}{4} \sin^0 \cos^4 x + 0 = -\frac{1}{4} \cos^4 x + C$$

※ 解き方によっては $\frac{1}{2}\sin^2 x - \frac{1}{4}\sin^4 x + C$ となる。が。

$$\frac{1}{2}\sin^2 x - \frac{1}{4}\sin^4 x = \frac{1}{4}\sin^2 x \left(2 - \sin^2 x\right)$$
$$= \frac{1}{4}(1 - \cos^2 x)(1 + 1 - \sin^2 x)$$
$$= \frac{1}{4}(1 - \cos^2 x)(1 + \cos^2 x)$$
$$= \frac{1}{4}(1 - \cos^4 x)$$

となり、積分定数を少し変えると、同じものになる。

$$\frac{1}{2}\sin^2 x - \frac{1}{4}\sin^4 x + C = -\frac{1}{4}\cos^4 x + C'.$$

(21) 問題 1.5.4. の漸化式を使うと、問題は $I_{4,3}$ である。

$$\int \sin^4 x \cos^3 x \, dx = \frac{1}{7} \sin^5 x \cos^2 x + \frac{2}{7} I_{4,1}$$

$$= \frac{1}{7} \sin^5 x \cos^2 x + \frac{2}{7} \left\{ \frac{1}{5} \sin^5 x \cos^0 x + 0 \right\}$$

$$= \frac{1}{7} \sin^5 x (1 - \sin^2 x) + \frac{2}{35} \sin^5 x$$

$$= \frac{1}{5} \sin^5 x - \frac{1}{7} \sin^7 x + C$$

1.6 演習Ⅰ 63

(22)
$$\int \frac{\sin^3 x}{\cos x} dx = \int \left(\frac{\sin x}{\cos x} - \sin x \cos x\right) dx$$

ここで、 $t = \cos x$ とおくと、 $\frac{dt}{dx} = -\sin x$ より、

$$\int \frac{\sin^3 x}{\cos x} dx = \int \left(-\frac{1}{t} + t\right) dt = -\log|\cos(x)| + \frac{1}{2}\cos^2 x + C$$

(23)
$$\int \tan^3 x \, dx = \int \left(\frac{\tan x}{\cos^2 x} - \tan x\right) dx$$
$$= \int \frac{\tan x}{\cos^2 x} \, dx - \int \tan x \, dx$$

ここで、前半の不定積分について $t = \tan x$ とおき、 $dt = \frac{1}{\cos^2 x} dx$ を用いると、

$$\int \frac{\tan x}{\cos^2 x} \, dx = \int t \, dt = \frac{1}{2} t^2 + C = \frac{1}{2} \tan^2 x + C$$

である。また、後半は 例 1.3.3. より

$$\int \tan^3 x \, dx = \frac{1}{2} \tan^2 x + \log|\cos x| + C$$

(24)
$$\int \cos^4 x \, dx = \int \left(\frac{1 + \cos 2x}{2}\right)^2 \, dx = \frac{1}{4} \int (1 + 2\cos 2x + \cos^2 2x) \, dx$$
$$= \frac{1}{4} \int \left(1 + 2\cos 2x + \frac{1 + \cos 4x}{2}\right) \, dx$$
$$= \frac{1}{8} \int (3 + 4\cos 2x + \cos 4x) \, dx$$
$$= \frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$$

(25)
$$t = \sin x$$
 とおくと、 $\frac{dt}{dx} = \cos x$ より、

$$\int \sqrt{\sin x} \cos^3 x \, dx = \int \sqrt{t} \cos^3 x \cdot \frac{1}{\cos x} \, dt$$
$$= \int \sqrt{t} (1 - t^2) \, dt = \int (t^{\frac{1}{2}} - t^{\frac{5}{2}}) \, dt$$
$$= \frac{2}{3} \sin x \sqrt{\sin x} - \frac{2}{7} \sin^3 x \sqrt{\sin x} + C$$

(26)
$$t = 1 + 2\cos x$$
 とおくと、 $\frac{dt}{dx} = -2\sin x$ より

$$\int \frac{\sin x}{1 + 2\cos x} \, dx = \int \frac{\sin x}{t} \cdot \frac{1}{-2\sin x} \, dt = -\frac{1}{2} \int \frac{1}{t} \, dt$$
$$= -\frac{1}{2} \log|1 + 2\cos x| + C$$

(27) まず、公式 (14.13) を証明しておく。 $t=\tan x$ とおくと、 $\frac{dt}{dx}=\frac{1}{\cos^2 x}=(1+t^2)$ である。また、 $1+t^2=\frac{1}{\cos^2 x}$ より、

$$\sin^2 x = 1 - \cos^2 x = 1 - \frac{1}{1 + t^2} = \frac{t^2}{1 + t^2}$$

となる。以上より、

$$\int \frac{1}{\sin^2 x} dx = \int \frac{1+t^2}{t^2} \cdot \frac{1}{1+t^2} dt = \int t^{-2} dt = -\frac{1}{t} + C$$

このことより、

$$\int \frac{1}{\tan^2 x} dx = \int \left(\frac{1}{\sin^2 x} - 1\right) dx = -\frac{1}{\tan x} - x + C$$

(28) t = 1 - 5x とおくと、dt = -5dx, 公式 (14.3) より

$$\int e^{1-5x} dx = \int e^t \cdot \left(-\frac{1}{5}\right) dt = -\frac{1}{5}e^t + C = -\frac{1}{5}e^{1-5x} + C$$

 $(29)\;t=4x+3$ とおくと、dt=4dx, 公式 (14.3) より

$$\int 8e^{4x+3} dx = \int 8e^t \cdot \frac{1}{4} dt = 2e^t + C = 2e^{4x+3} + C$$

 $(30)\;t=-3x+2$ とおくと、dt=-3dx, 公式 (14.4) より

$$\int 2^{-3x+2} dx = \int 2^t \cdot \left(-\frac{1}{3}\right) dt$$
$$= -\frac{1}{3} \cdot \frac{2^t}{\log 2} + C = -\frac{2^{-3x+2}}{3\log 2} + C$$

1.6 演習 I 65

略解 1.6.4. 以下の C はすべて積分定数とする。

(1) 例 1.5.1. (1) と同じ

$$\int x \cos x \, dx = x \sin x + \cos x + C$$

(2) 問題 1.5.1. (2) と同じ

$$\int (1-x)\sin x \, dx = x\cos x - \sin x - \cos x + C$$

(3) 問題 1.5.1. (3) と同じ

$$\int (2x+1)\cos x \, dx = 2x\sin x + \sin x + 2\cos x + C$$

(4) 問題 1.5.1. (4) と同じ

$$\int x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C$$

(5)
$$\int x \sin 3x \, dx = \left(-\frac{1}{3}\cos 3x\right) \cdot x - \int \left(-\frac{1}{3}\cos 3x\right) \cdot 1 \, dx$$
$$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + C$$

(6) 問題 1.5.1. (6) と同じ

$$\int x^2 \cos x \, dx = x^2 \sin x + 2x \cos x - 2 \sin x + C$$

(7) 問題 1.5.1. (7) と同じ

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6\sin x + C$$

(9) 問題 1.5.1.(9) と同じ
$$\int x \sin^2 x \, dx = \frac{1}{4} x^2 - \frac{1}{4} x \sin 2x - \frac{1}{8} \cos 2x + C$$

(10)
$$\int x^2 \sin^2 x \, dx = \int x^2 \cdot \frac{1 - \cos 2x}{2} \, dx = \int \frac{x^2}{2} \, dx - \frac{1}{2} \int x^2 \cos 2x \, dx$$

$$\qquad \text{IIE 1.5.1.(8)} \to = \frac{1}{6} x^3 - \frac{1}{2} \left(\frac{1}{2} x^2 \sin 2x + \frac{1}{2} x \cos 2x - \frac{1}{4} \sin 2x \right) + C$$

$$\qquad \qquad = \frac{1}{6} x^3 - \frac{1}{4} x^2 \sin 2x - \frac{1}{4} x \cos 2x + \frac{1}{8} \sin 2x + C$$

(12)
$$\int e^x \sin x \, dx = (-\cos x) \cdot e^x - \int (-\cos x) \cdot e^x \, dx$$
$$= -e^x \cos x + \int \cos x \cdot e^x \, dx$$
$$= -e^x \cos x + \left\{ \sin x \cdot e^x - \int \sin x \cdot e^x \, dx \right\}$$
$$= e^x (\sin x - \cos x) - \int e^x \sin x \, dx$$
$$\therefore \int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

$$\int x^3 e^{-ax} \, dx = -\frac{1}{a} e^{-ax} \cdot x^3 - \int \left(-\frac{1}{a} e^{-ax} \cdot 3x^2 \right) dx$$

$$= -\frac{1}{a} x^3 e^{-ax} + \frac{3}{a} \int \left(e^{-ax} \cdot x^2 \right) dx$$

$$= -\frac{1}{a} x^3 e^{-ax} + \frac{3}{a} \left\{ -\frac{1}{a} e^{-ax} \cdot x^2 - \int \left(-\frac{1}{a} e^{-ax} \cdot 2x \right) dx \right\}$$

$$= -\frac{1}{a} x^3 e^{-ax} - \frac{3}{a^2} x^2 e^{-ax} + \frac{6}{a^2} \int e^{-ax} \cdot x \, dx$$

$$= -\frac{1}{a} x^3 e^{-ax} - \frac{3}{a^2} x^2 e^{-ax} + \frac{6}{a^2} \left\{ -\frac{1}{a} x e^{-ax} - \int \left(-\frac{1}{a} e^{-ax} \right) dx \right\}$$

$$= -\frac{1}{a} x^3 e^{-ax} - \frac{3}{a^2} x^2 e^{-ax} - \frac{6}{a^3} x e^{-ax} - \frac{6}{a^4} e^{-ax} + C$$

1.6 演習 I 67

(14)
$$\int xe^{2x} dx = \frac{1}{2}e^{2x} \cdot x - \int \frac{1}{2}e^{2x} \cdot 1 dx$$
$$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$

(15)
$$\int x^2 e^{ax} dx = \frac{1}{a} e^{ax} \cdot x^2 - \int \frac{1}{a} e^{ax} \cdot 2x dx$$
$$= \frac{1}{a} x^2 e^{ax} - \frac{2}{a} \int e^{ax} \cdot x dx$$
$$= \frac{1}{a} x^2 e^{ax} - \frac{2}{a} \left\{ \frac{1}{a} e^{ax} \cdot x - \int \frac{1}{a} e^{ax} \cdot 1 dx \right\}$$
$$= \frac{1}{a} x^2 e^{ax} - \frac{2}{a^2} x e^{ax} + \frac{2}{a^3} e^{ax} + C$$

(16)
$$\int \log x \, dx = x \cdot \log x - \int x \cdot \frac{1}{x} \, dx$$
$$= x \log x - x + C$$

(17)
$$\int x \log x \, dx = \frac{1}{2} x^2 \cdot \log x - \int \frac{1}{2} x^2 \cdot \frac{1}{x} \, dx$$
$$= \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + C$$

(18)
$$\int (\log x)^2 dx = x(\log x)^2 - \int x \left((\log x)^2 \right)' dx$$
$$= x(\log x)^2 - \int x \left(2\log x \right) \cdot \frac{1}{x} dx$$
$$= x(\log x)^2 - 2 \int \log x dx$$
$$= x(\log x)^2 - 2x \log x + 2x + C$$

(19)
$$\int x^2 \log x \, dx = \frac{1}{3} x^3 \cdot \log x - \int \frac{1}{3} x^3 \cdot \frac{1}{x} \, dx$$
$$= \frac{1}{3} x^3 \log x - \frac{1}{3} \int x^2 \, dx$$
$$= \frac{1}{3} x^3 \log x - \frac{1}{9} x^3 + C$$

(20) 問題 1.5.3. (7) と同じ

$$\int x \tan^{-1} x \, dx = \frac{1}{2} \left\{ (x^2 + 1) \tan^{-1} x - x \right\} + C$$

(21)
$$\int \frac{\log x}{x^2} dx = \left(-\frac{1}{x}\right) \cdot \log x - \int \left(-\frac{1}{x}\right) \cdot \frac{1}{x} dx$$
$$= -\frac{\log x}{x} + \int \frac{1}{x^2} dx$$
$$= -\frac{\log x + 1}{x} + C$$

$$(22)$$

$$\int \sin(\log x) \, dx = x \sin(\log x) - \int x \cdot \cos(\log x) \cdot \frac{1}{x} \, dx$$

$$= x \sin(\log x) - \int \cos(\log x) \, dx$$

$$= x \sin(\log x) - \left\{ x \cos(\log x) - \int x \left(-\sin(\log x) \cdot \frac{1}{x} \right) dx \right\}$$

$$\therefore \int \sin(\log x) \, dx = \frac{1}{2} x \left\{ \sin(\log x) - \cos(\log x) \right\} + C$$

(23)
$$\int \cos(\log x) \, dx = x \cos(\log x) - \int x \left(-\sin(\log x) \cdot \frac{1}{x} \right) \, dx$$
$$= x \cos(\log x) + \int \sin(\log x) \, dx$$
$$= x \cos(\log x) + \frac{1}{2} x \left\{ \sin(\log x) - \cos(\log x) \right\} + C$$
$$= \frac{1}{2} x \left\{ \cos(\log x) + \sin(\log x) \right\} + C$$

(24)
$$\int \frac{x \sin x}{\cos^2 x} dx = x \cdot \frac{1}{\cos x} - \int x' \cdot \frac{1}{\cos x} dx$$
$$= \frac{x}{\cos x} - \log \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| + C$$

1.7 有理関数の不定積分

1.7.1 有理関数と部分分数分解

P(x),Q(x) を x の多項式とする $(Q(x)\neq 0)$ 。 このとき $\dfrac{P(x)}{Q(x)}$ を**有理関数**とよぶ。

有理関数において、分母が因子の積の形であらわされるとき、分数の和(差)に分解する操作を、**部分分数分解**(部分分数展開)と呼ぶ。(因数分解は出来るところまで行う)

例 1.7.1. 部分分数分解の例

(1)
$$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$

(2)
$$\frac{2}{(x-1)(x+3)} = \frac{\frac{1}{2}}{x-1} - \frac{\frac{1}{2}}{x+3} = \frac{1}{2} \cdot \frac{1}{x-1} - \frac{1}{2} \cdot \frac{1}{x+3}$$

(3)
$$\frac{2x+3}{(x+1)(x^2+x+1)} = \frac{1}{x+1} - \frac{x-2}{x^2+x+1}$$

(4)
$$\frac{x^2 + 3x + 3}{(x+1)(x^2 + x + 1)} = \frac{1}{x+1} + \frac{2}{x^2 + x + 1}$$

(5)
$$\frac{x^4 + x^2 + 2x + 2}{(x+1)(x^2+1)} = x - 1 + \frac{1}{x+1} + \frac{2}{x^2+1}$$

(6)
$$\frac{2x^2+1}{(x+2)(x-1)^2} = \frac{1}{x+2} + \frac{x}{(x-1)^2} = \frac{1}{x+2} + \frac{1}{x-1} + \frac{1}{(x-1)^2}$$

☆ 分子の最大次数が分母の最大次数より小さい場合。

♡ point 1 部分分数分解では、分母の各因子が、各項の分母に分解される。

例:
$$\frac{P(x)}{(x+1)(x+2)(x+3)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3}$$

♡ point 2 分子の最大次数は、【分母の次数 -1】(以下)となる。

例:
$$\frac{P(x)}{(x+1)(x^2+x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$$

☆ 分子の最大次数が分母の最大次数以上の場合。

♡ **point 3** この場合は、0次以上の項がある。

例:
$$\frac{P(x)}{x+1} = Ax + B + \frac{C}{x+1}$$

♡ **確認** ここでは、部分分数分解を式の計算と係数比較で求める。次回ではヘビサイド の展開定理を用いる。この展開定理と併せて、部分分数展開と言うこともある。

例 1.7.2. 有理関数
$$\frac{2x^3-4x^2+1}{(x-1)^2}$$
 を $Ax+B+\frac{C}{x-1}+\frac{D}{(x-1)^2}$ の形に変形する。

まず、 $2x^3 - 4x^2 + 1$ を $(x-1)^2 = x^2 - 2x + 1$ で割ると (多項式の割り算は OK?)、

$$2x^3 - 4x^2 + 1 = 2x(x^2 - 2x + 1) -2x + 1$$

なので、

$$\frac{2x^3 - 4x^2 + 1}{(x-1)^2} = 2x + \frac{-2x+1}{(x-1)^2} = 2x - \frac{2x-1}{(x-1)^2}$$

となる。ここで、
$$\frac{2x-1}{(x-1)^2} = \frac{C}{x-1} + \frac{D}{(x-1)^2}$$
 とおくと、

$$\frac{2x-1}{(x-1)^2} = \frac{C(x-1)+D}{(x-1)^2} = \frac{Cx-C+D}{(x-1)^2}$$

となるので、係数比較により

$$C = 2, -C + D = -1$$

より、

$$C = 2, D = 1$$

が得られる。

以上より、

$$\frac{2x^3 - 4x^2 + 1}{(x-1)^2} = 2x - \frac{2}{x-1} - \frac{1}{(x-1)^2}$$

となる。

問題 1.7.1.
$$\frac{-3x^2+1}{x(x+1)(x^2+1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} \ \mathcal{O} \ A, B, C, D \ を求めよ。$$

右辺 =
$$\frac{A(x+1)(x^2+1) + Bx(x^2+1) + (Cx+D)x(x+1)}{x(x+1)(x^2+1)}$$
$$= \frac{(A+B+C)x^3 + (A+C+D)x^2 + (A+B+D)x + A}{x(x+1)(x^2+1)}$$

となるので、係数比較により

$$A + B + C = 0$$
, $A + C + D = -3$, $A + B + D = 0$, $A = 1$

となり、

$$A = 1, B = 1, C = -2, D = -2$$

1.7.2 有理関数の不定積分

例 1.7.3.
$$\int \frac{2x^3 - 4x^2 + 1}{(x-1)^2} dx$$
 を考える。

例 1.7.2. より、

$$\int \frac{2x^3 - 4x^2 + 1}{(x-1)^2} dx = \int \left(2x - \frac{2}{x-1} - \frac{1}{(x-1)^2}\right) dx \tag{*}$$

である。

よって、

$$(*) = \int 2x \, dx - \int \frac{2}{x-1} \, dx - \int (x-1)^{-2} \, dx$$

$$= 2 \cdot \frac{x^2}{2} - 2\log|x-1| - \frac{1}{-1}(x-1)^{-1} + C$$

$$= x^2 - 2\log|x-1| + \frac{1}{x-1} + C \qquad (C: 積分定数)$$

となる。

問題 1.7.2.
$$\int \frac{-3x^2+1}{x(x+1)(x^2+1)} dx$$
 を計算せよ。

問題 1.7.1. より、

$$\int \frac{-3x^2 + 1}{x(x+1)(x^2+1)} \, dx = \int \left(\frac{1}{x} + \frac{1}{x+1} - \frac{2x+2}{x^2+1}\right) dx \tag{*}$$

である。

よって、

$$(*) = \int \frac{1}{x} dx + \int \frac{1}{x+1} dx - 2 \int \frac{x}{x^2+1} dx - 2 \int \frac{1}{x^2+1} dx$$

$$= \log|x| + \log|x+1| - 2 \cdot \frac{1}{2} \log(x^2+1) - 2 \tan^{-1} x + C$$

$$= \log|x(x+1)| - \log(x^2+1) - 2 \tan^{-1} x + C$$

$$= \log \frac{|x(x+1)|}{x^2+1} - 2 \tan^{-1} x + C \qquad (C: 積分定数)$$

1.7.3 演習問題

問題 1.7.3. 以下の有利関数を部分分数分解せよ。

(1)
$$\frac{1}{x^2 - 1}$$
 (2) $\frac{1}{x^2 - 3x + 2}$

(3)
$$\frac{x^3 + 3x - 7}{(x+2)(x-1)}$$
 (4)
$$\frac{1}{x^3 + 1}$$

(5)
$$\frac{3x+2}{x^3+3x^2-x-3}$$
 (6) $\frac{1}{x^3-x}$

(7)
$$\frac{2x+3}{x^2-3x+2}$$
 (8) $\frac{x+2}{2x^2-3x-2}$

(9)
$$\frac{2x^2 - x - 4}{x^3 + x^2 - 2x}$$
 (10) $\frac{x^2 + x + 2}{x^3 - x^2 + x - 1}$

(11)
$$\frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8}$$
 (12)
$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24}$$

(13)
$$\frac{11}{(x-4)(x^2-2x+3)}$$
 (14)
$$\frac{5x^2-19x+29}{(x-4)(x^2-2x+3)}$$

問題 1.7.4. 以下の関数の不定積分を求めよ。

(1)
$$\frac{1}{x^2 - 1}$$
 (2) $\frac{1}{x^2 - 3x + 2}$

(3)
$$\frac{x^3 + 3x - 7}{(x+2)(x-1)}$$
 (4) $\frac{1}{x^3 + 1}$

(5)
$$\frac{3x+2}{x^3+3x^2-x-3}$$
 (6) $\frac{1}{x^3-x}$

(7)
$$\frac{2x+3}{x^2-3x+2}$$
 (8) $\frac{x+2}{2x^2-3x-2}$

(9)
$$\frac{2x^2 - x - 4}{x^3 + x^2 - 2x}$$
 (10) $\frac{x^2 + x + 2}{x^3 - x^2 + x - 1}$

(11)
$$\frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8}$$
 (12)
$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24}$$

(13)
$$\frac{11}{(x-4)(x^2-2x+3)}$$
 (14)
$$\frac{5x^2-19x+29}{(x-4)(x^2-2x+3)}$$

1.7.4 演習問題 略解

略解 1.7.1. 分母が展開された形の場合、分母の因数分解を行う。

(1) まず、
$$\frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)}$$
 と変形し、

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$

とおいて、A, B を求める。右辺は

(右辺) =
$$\frac{A(x+1) + B(x-1)}{(x-1)(x+1)} = \frac{(A+B)x + (A-B)}{(x-1)(x+1)}$$

と変形できるので、係数比較を行うと、

$$A + B = 0, \quad A - B = 1$$

なので、
$$A=\frac{1}{2},\ B=-\frac{1}{2}$$
をえる。よって、

$$\frac{1}{x^2 - 1} = \frac{\frac{1}{2}}{x - 1} + \frac{-\frac{1}{2}}{x + 1} = \frac{1}{2} \cdot \frac{1}{x - 1} - \frac{1}{2} \cdot \frac{1}{x + 1}$$

となる。

(2) まず、
$$\frac{1}{x^2 - 3x + 2} = \frac{1}{(x-1)(x-2)}$$
 と変形し、

$$\frac{1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$

とおいて、A, B を求める。右辺は

(右辺) =
$$\frac{A(x-2) + B(x-1)}{(x-1)(x-2)} = \frac{(A+B)x + (-2A-B)}{(x-1)(x-2)}$$

と変形できるので、係数比較を行うと、

$$A + B = 0, -2A - B = 1$$

なので、A = -1, B = 1 をえる。よって、

$$\frac{1}{x^2 - 3x + 2} = \frac{-1}{x - 1} + \frac{1}{x - 2} = \frac{1}{x - 2} - \frac{1}{x - 1}$$

(3) 分母の次数より分子の次数の方が高いので分子を分母で割ると、

$$x^{3} + 3x - 7 = (x - 1)(x^{2} + x - 2) + 6x - 9$$

となるので、

$$\frac{x^3 + 3x - 7}{(x+2)(x-1)} = x - 1 + \frac{6x - 9}{(x+2)(x-1)}$$

である。よって、

$$\frac{6x-9}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1} = \frac{Ax-A+Bx+2B}{(x+2)(x-1)}$$

となるので、係数比較を行うと、

$$A + B = 6$$
, $-A + 2B = -9$

なので、A = 7, B = -1をえる。以上より、

$$\frac{x^3 + 3x - 7}{(x+2)(x-1)} = x - 1 + \frac{7}{x+2} - \frac{1}{x-1}$$

となる。

(4) まず、
$$\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)}$$
 と変形し、
$$\frac{1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x^2 - x + 1) + (Bx + C)(x + 1)}{(x + 1)(x^2 - x + 1)}$$
$$= \frac{(A + B)x^2 - (A - B - C)x + (A + C)}{(x + 1)(x^2 - x + 1)}$$

と変形できるので、係数比較を行うと、

$$A + B = 0$$
, $A - B - C = 0$, $A + C = 1$

なので、
$$A=\frac{1}{3},\;B=-\frac{1}{3},\;C=\frac{2}{3}$$
をえる。よって、

$$\frac{1}{x^3+1} = \frac{1}{3} \cdot \frac{1}{x+1} - \frac{1}{3} \cdot \frac{x-2}{x^2-x+1}$$

(5) まず、 x^3+3x^2-x-3 の因数分解を行うと、 $x^3+3x^2-x-3=(x-1)(x+1)(x+3)$ である。

よって、
$$\frac{3x+2}{x^3+3x^2-x-3} = \frac{3x+2}{(x-1)(x+1)(x+3)}$$
 と変形し、

$$\frac{3x+2}{(x-1)(x+1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+3}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x+1)(x+3) + B(x-1)(x+3) + C(x-1)(x+1)}{(x-1)(x+1)(x+3)}$$
$$= \frac{Ax^2 + 4Ax + 3A + Bx^2 + 2Bx - 3B + Cx^2 - C}{(x-1)(x+1)(x+3)}$$

と変形できるので、係数比較を行うと、

$$A + B + C = 0$$
, $4A + 2B = 3$, $3A - 3B - C = 2$

なので、
$$A=\frac{5}{8},\ B=\frac{1}{4},\ C=-\frac{7}{8}$$
をえる。よって、

$$\frac{3x+2}{x^3+3x^2-x-3} = \frac{5}{8} \cdot \frac{1}{x-1} + \frac{1}{4} \cdot \frac{1}{x+1} - \frac{7}{8} \cdot \frac{1}{x+3}$$

となる。

(6) まず、
$$\frac{1}{x^3-x} = \frac{1}{x(x-1)(x+1)}$$
 と変形し、
$$\frac{1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x-1)(x+1) + Bx(x+1) + Cx(x-1)}{x(x-1)(x+1)}$$
$$= \frac{(A+B+C)x^2 + (B-C)x - A}{x(x-1)(x+1)}$$

と変形できるので、係数比較を行うと、

$$A + B + C = 0$$
, $B - C = 0$, $-A = 1$

なので、
$$A=-1,\ B=rac{1}{2},\ C=rac{1}{2}$$
をえる。よって、

$$\frac{1}{x(x-1)(x+1)} = -\frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x-1} + \frac{1}{2} \cdot \frac{1}{x+1}$$

(7) まず、
$$\frac{2x+3}{x^2-3x+2}=\frac{2x+3}{(x-1)(x-2)}$$
 と変形し、
$$\frac{2x+3}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$$

とおいて、A, B を求める。

右辺は

(右辺) =
$$\frac{A(x-2) + B(x-1)}{(x-1)(x-2)} = \frac{(A+B)x - (2A+B)}{(x-1)(x-2)}$$

と変形できるので、係数比較を行うと、

$$A + B = 2$$
, $-(2A + B) = 3$

なので、A = -5, B = 7をえる。

よって、

$$\frac{2x+3}{x^2-3x+2}=-\frac{5}{x-1}+\frac{7}{x-2}$$

となる。

(8) まず、
$$\frac{x+2}{2x^2-3x-2}=\frac{x+2}{(2x+1)(x-2)}$$
 と変形し、
$$\frac{x+2}{(2x+1)(x-2)}=\frac{A}{2x+1}+\frac{B}{x-2}$$

とおいて、A, B を求める。

右辺は

(右辺) =
$$\frac{A(x-2) + B(2x+1)}{(2x+1)(x-2)} = \frac{(A+2B)x - (2A-B)}{(2x+1)(x-2)}$$

と変形できるので、係数比較を行うと、

$$A + 2B = 1$$
, $-(2A - B) = 2$

なので、
$$A=-\frac{3}{5},\;B=\frac{4}{5}$$
をえる。
よって、

$$\frac{x+2}{2x^2-3x-2} = -\frac{3}{5} \cdot \frac{1}{2x+1} + \frac{4}{5} \cdot \frac{1}{x-2}$$

$$(9) \frac{2x^2 - x - 4}{x^3 + x^2 - 2x} = \frac{2x^2 - x - 4}{x(x - 1)(x + 2)}$$
と変形し、
$$\frac{2x^2 - x - 4}{x(x - 1)(x + 2)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 2}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{Ax^2 + Ax - 2A + Bx^2 + 2Bx + Cx^2 - Cx}{x(x-1)(x+2)}$$
$$= \frac{(A+B+C)x^2 + (A+2B-C)x - 2A}{x(x-1)(x+2)}$$

と変形できるので、係数比較を行うと、

$$A + B + C = 2$$
, $A + 2B - C = -1$, $-2A = -4$

なので、A = 2, B = -1, C = 1 をえる。よって、

$$\frac{2x^2 - x - 4}{x^3 + x^2 - 2x} = \frac{2}{x} - \frac{1}{x - 1} + \frac{1}{x + 2}$$

となる。

$$(10) \frac{x^2 + x + 2}{x^3 - x^2 + x - 1} = \frac{x^2 + x + 2}{(x - 1)(x^2 + 1)}$$
 と変形し、
$$\frac{x^2 + x + 2}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x^2+1) + (Bx+C)(x-1)}{(x-1)(x^2+1)} = \frac{(A+B)x^2 - (B-C)x + (A-C)}{(x-1)(x^2+1)}$$

と変形できるので、係数比較を行うと、

$$A + B = 1$$
, $-(B - C) = 1$, $A - C = 2$

なので、A = 2, B = -1, C = 0 をえる。 よって、

$$\frac{x^2 + x + 2}{x^3 - x^2 + x - 1} = \frac{2}{x - 1} - \frac{x}{x^2 + 1}$$

とおいて、A, B, C, D を求める。右辺は

(右辺) =
$$\frac{A(x-2)^3 + B(x-1)(x-2)^2 + C(x-1)(x-2) + D(x-1)}{(x-1)(x-2)^3}$$
$$= \frac{(A+B)x^3 - (6A+5B-C)x^2 + (12A+8B-3C+D)x}{(x-1)(x-2)^3}$$
$$+ \frac{-8A-4B+2C-D}{(x-1)(x-2)^3}$$

と変形できるので、係数比較を行うと、

$$A+B=0,\ -6A-5B+C=3,\ 12A+8B-3C+D=-9,\ -8A-4B+2C-D=7$$

なので、
$$A = -1$$
, $B = 1$, $C = 2$, $D = 1$ をえる。よって、

$$\frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8} = -\frac{1}{x - 1} + \frac{1}{x - 2} + \frac{2}{(x - 2)^2} + \frac{1}{(x - 2)^3}$$

となる。

(12) まず、
$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24} = \frac{(x-1)(x+1)}{(x+1)(x+2)(x+3)(x+4)}$$
 と変形し、
$$\frac{x-1}{(x+2)(x+3)(x+4)} = \frac{A}{x+2} + \frac{B}{x+3} + \frac{C}{x+4}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x+3)(x+4) + B(x+2)(x+4) + C(x+2)(x+3)}{(x+2)(x+3)(x+4)}$$
$$= \frac{(A+B+C)x^2 + (7A+6B+5C)x + 12A + 8B + 6C}{(x+2)(x+3)(x+4)}$$

と変形できるので、係数比較を行うと、

$$A + B + C = 0$$
, $7A + 6B + 5C = 1$, $12A + 8B + 6C = -1$

なので、
$$A = -\frac{3}{2}, \ B = 4, \ C = -\frac{5}{2}$$
 をえる。 よって、

$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24} = -\frac{3}{2} \cdot \frac{1}{x+2} + \frac{4}{x+3} - \frac{5}{2} \cdot \frac{1}{x+4}$$

(13) まず、

$$\frac{11}{(x-4)(x^2-2x+3)} = \frac{A}{x-4} + \frac{Bx+C}{x^2-2x+3}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x^2 - 2x + 3) + (Bx + C)(x - 4)}{(x - 4)(x^2 - 2x + 3)}$$
$$= \frac{(A + B)x^2 - (2A + 4B - C)x + 3A - 4C}{(x - 4)(x^2 - 2x + 3)}$$

と変形できるので、係数比較を行うと、

$$A + B = 0$$
, $-2A - 4B + C = 0$, $3A - 4C = 11$

なので、A = 1, B = -1, C = -2 をえる。 よって、

$$\frac{11}{(x-4)(x^2-2x+3)} = \frac{1}{x-4} - \frac{x+2}{x^2-2x+3}$$

となる。

(14) (13) と分母が同じなので、途中までは (13) と同じ。 まず、

$$\frac{5x^2 - 19x + 29}{(x-4)(x^2 - 2x + 3)} = \frac{A}{x-4} + \frac{Bx + C}{x^2 - 2x + 3}$$

とおいて、A, B, C を求める。右辺は

(右辺) =
$$\frac{A(x^2 - 2x + 3) + (Bx + C)(x - 4)}{(x - 4)(x^2 - 2x + 3)}$$
$$= \frac{(A + B)x^2 - (2A + 4B - C)x + 3A - 4C}{(x - 4)(x^2 - 2x + 3)}$$

と変形できるので、係数比較を行うと、

$$A + B = 5$$
, $-2A - 4B + C = -19$, $3A - 4C = 29$

なので、A = 3, B = 2, C = -5 をえる。よって、

$$\frac{5x^2 - 19x + 29}{(x - 4)(x^2 - 2x + 3)} = \frac{3}{x - 4} + \frac{2x - 5}{x^2 - 2x + 3}$$

略解 1.7.2. 部分分数分解が前間で得られているので、それを用いて積分を行う。

なお、以下の C はすべて積分定数とし、計算途中では省略する場合もある。また、 \log の和、 差を積、商に変形していない。

(1)
$$\int \frac{1}{x^2 - 1} dx = \frac{1}{2} \int \frac{1}{x - 1} dx - \frac{1}{2} \int \frac{1}{x + 1} dx$$
$$= \frac{1}{2} \log|x - 1| - \frac{1}{2} \log|x + 1| + C$$

(2)
$$\int \frac{1}{x^2 - 3x + 2} dx = \int \frac{1}{x - 2} dx - \int \frac{1}{x - 1} dx$$
$$= \log|x - 2| - \log|x + 1| + C$$

(3)
$$\int \frac{x^3 + 3x - 7}{(x+2)(x-1)} dx = \int x dx - \int 1 dx + 7 \int \frac{1}{x+2} dx - \int \frac{1}{x-1} dx$$
$$= \frac{1}{2}x^2 - x + 7\log|x+2| - \log|x-1| + C$$

$$(4)$$

$$\int \frac{1}{x^3 + 1} dx = \frac{1}{3} \int \frac{1}{x - 1} dx - \frac{1}{3} \int \frac{x}{x^2 - x + 1} + \frac{2}{3} \int \frac{1}{x^2 - x + 1} dx$$

$$= \frac{1}{3} \log|x - 1| - \frac{1}{6} \int \frac{2x - 1}{x^2 - x + 1} + \frac{2}{3} \int \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} dx$$

$$= \frac{1}{3} \log|x - 1| - \frac{1}{6} \log|x^2 - x + 1| + \frac{1}{2} \int \frac{1}{(x - \frac{1}{2})^2 + \frac{3}{4}} dx$$

$$= \frac{1}{3} \log|x - 1| - \frac{1}{6} \log|x^2 - x + 1| + \frac{1}{2} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}} + C$$

$$= \frac{1}{3} \log|x - 1| - \frac{1}{6} \log|x^2 - x + 1| + \frac{1}{\sqrt{3}} \tan^{-1} \frac{x - 1}{\sqrt{3}} + C$$

$$※$$
 $\boxed{+1}$ はその右の項に移動。 $-\frac{1}{6}+\frac{2}{3}=\frac{1}{2}$

(5)
$$\int \frac{3x+2}{x^3+3x^2-x-3} dx = \frac{5}{8} \int \frac{1}{x-1} dx + \frac{1}{4} \int \frac{1}{x+1} dx - \frac{7}{8} \int \frac{1}{x+3} dx$$
$$= \frac{5}{8} \log|x-1| + \frac{1}{4} \log|x+1| - \frac{7}{8} \log|x+3| + C$$

(6)
$$\int \frac{1}{x(x-1)(x+1)} dx = -\int \frac{1}{x} dx + \frac{1}{2} \int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{1}{x+1} dx$$
$$= -\log|x| + \frac{1}{2}\log|x-1| + \frac{1}{2}\log|x+1| + C$$

(7)
$$\int \frac{2x+3}{x^2-3x+2} dx = -5 \int \frac{1}{x-1} dx + 7 \int \frac{1}{x-2} dx$$
$$= -5 \log|x-1| + 7 \log|x-2| + C$$

(8)
$$\int \frac{x+2}{2x^2 - 3x - 2} dx = -\frac{3}{5} \int \frac{1}{2x+1} dx + \frac{4}{5} \int \frac{1}{x-2} dx$$
$$= -\frac{3}{10} \log|2x+1| + \frac{4}{5} \log|x-2| + C$$

※ 計算方法によっては、
$$-\frac{3}{10}\log\left|x+\frac{1}{2}\right|+\frac{4}{5}\log|x-2|+C'$$
となる。

(9)
$$\int \frac{2x^2 - x - 4}{x^3 + x^2 - 2x} dx = 2 \int \frac{1}{x} dx - \int \frac{1}{x - 1} dx + \int \frac{1}{x + 2} dx$$
$$= 2 \log|x| - \log|x - 1| + \log|x + 2| + C$$

(10)
$$\int \frac{x^2 + x + 2}{x^3 - x^2 + x - 1} dx = 2 \int \frac{1}{x - 1} dx - \int \frac{x}{x^2 + 1} dx$$
$$= 2 \log|x - 1| - \frac{1}{2} \log(x^2 + 1) + C$$

(11)
$$\int \frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8} dx$$

$$= -\int \frac{1}{x - 1} dx + \int \frac{1}{x - 2} dx + 2 \int \frac{1}{(x - 2)^2} dx + \int \frac{1}{(x - 2)^3} dx$$

$$= -\log|x - 1| + \log|x - 2| - \frac{2}{x - 2} - \frac{1}{2(x - 2)^2} + C$$

(12)
$$\int \frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24} dx$$
$$= -\frac{3}{2} \int \frac{1}{x+2} dx + 4 \int \frac{1}{x+3} dx - \frac{5}{2} \int \frac{1}{x+4} dx$$
$$= -\frac{3}{2} \log|x+2| + 4 \log|x+3| - \frac{5}{2} \log|x+4| + C$$

(13)
$$\int \frac{11}{(x-4)(x^2-2x+3)} dx$$

$$= \int \frac{1}{x-4} dx - \int \frac{x+2}{x^2-2x+3} dx$$

$$= \log|x-4| - \frac{1}{2} \int \frac{2x-2+6}{x^2-2x+3} dx$$

$$= \log|x-4| - \frac{1}{2} \int \frac{2x-2}{x^2-2x+3} dx - \int \frac{3}{x^2-2x+3} dx$$

$$= \log|x-4| - \frac{1}{2} \log|x^2-2x+3| - \int \frac{3}{x^2-2x+3} dx$$

$$= \log|x-4| - \frac{1}{2} \log|x^2-2x+3| - \int \frac{3}{(x-1)^2+(\sqrt{2})^2} dx$$

$$= \log|x-4| - \frac{1}{2} \log|x^2-2x+3| - \frac{3}{\sqrt{2}} \tan^{-1} \frac{x-1}{\sqrt{2}} + C$$

(14) 部分分数分解の場合と同様に、(13) と分母が同じなので有る程度 (13) の結果を用いることができる。

$$\int \frac{5x^2 - 19x + 29}{(x - 4)(x^2 - 2x + 3)} dx$$

$$= 3 \int \frac{1}{x - 4} dx + \int \frac{2x - 5}{x^2 - 2x + 3} dx$$

$$= 3 \log|x - 4| + \int \frac{2x - 5}{x^2 - 2x + 3} dx$$

$$= 3 \log|x - 4| + \int \frac{2x - 2 - 3}{x^2 - 2x + 3} dx$$

$$= 3 \log|x - 4| + \int \frac{2x - 2}{x^2 - 2x + 3} dx - \int \frac{3}{x^2 - 2x + 3} dx$$

$$= 3 \log|x - 4| + \log|x^2 - 2x + 3| - \frac{3}{\sqrt{2}} \tan^{-1} \frac{x - 1}{\sqrt{2}} + C$$

1.8 ヘビサイドの展開定理

1.8.1 ヘビサイドの展開定理を使うために

部分分数分解を行う方法として、ヘビサイドの展開公式を紹介する。まず、最初に注意 点としてこの講義では実数のみを扱うので、

分母 = 0 の解がすべて実数解であること

が必要である。

可能:
$$\frac{P(x)}{(2x+1)(x+2)^3}$$
 不可能: $\frac{P(x)}{(x+1)(x^2+1)}$

1.8.2 ヘビサイドの展開定理 I

例 1.8.1. 以下の部分分数分解を考える。

$$\frac{2x+5}{(x-1)(x-3)} = \frac{A}{x-1} + \frac{B}{x-3}$$

まず、この式は任意の実数 $x \neq 1.3$ で成り立つ。各式に x-1 をかけると、

$$\frac{2x+5}{x-3} = A + \frac{B(x-1)}{x-3}$$

となり、この式は任意の $x \neq 3$ で成り立つ。よって、x = 1 を代入すると、 $A = -\frac{7}{2}$ がえられる。同様に、

$$\frac{2x+5}{x-1} = \frac{A(x-3)}{x-1} + B$$

の式に x=3 を代入すると、 $B=\frac{11}{2}$ がえられる。

これを、形式的に書くと、

$$A = \frac{2x+5}{x-3} \Big|_{x=1} = \frac{2 \cdot 1 + 5}{1-3} = \frac{7}{-2} = -\frac{7}{2},$$

$$B = \frac{2x+5}{x-1} \Big|_{x=3} = \frac{2 \cdot 3 + 5}{3-1} = \frac{11}{2}$$

よって、

$$\frac{2x+5}{(x-1)(x-3)} = \frac{-7/2}{x-1} + \frac{11/2}{x-3}$$

1.8.3 ヘビサイドの展開定理 ||

例 1.8.2. 以下の部分分数分解を考える。

$$\frac{x^3}{(x-5)^4} = \frac{A}{x-5} + \frac{B}{(x-5)^2} + \frac{C}{(x-5)^3} + \frac{D}{(x-5)^4}$$

まず、各式に $(x-5)^4$ をかけて、両辺を x で 3 回微分すると、

$$x^{3} = A(x-5)^{3} + B(x-5)^{2} + C(x-5) + D$$
(0)

$$3x^{2} = 3A(x-5)^{2} + 2B(x-5) + C$$
(1)

$$3 \cdot 2x = 3 \cdot 2 \cdot A(x-5) + 2B \tag{2}$$

$$3 \cdot 2 \cdot 1 = 3 \cdot 2 \cdot 1 \cdot A \tag{3}$$

となる。式 (3) の左辺は (x^3) " であり、右辺は 3!A であることから

$$A = \frac{1}{3!} (x^3)^{""} \bigg|_{x=5} = \frac{1}{3!} (3x^2)^{"} \bigg|_{x=5} = \frac{1}{3!} (3 \cdot 2x)^{"} \bigg|_{x=5} = \frac{1}{3!} \cdot 3 \cdot 2 \cdot 1 \bigg|_{x=5} = 1$$

である (制限 x = 5 があるのは、次の例で紹介)。

以下同様に考えて、

$$B = \frac{1}{2!} (x^3)'' \Big|_{x=5} = \frac{1}{2!} (3x^2)' \Big|_{x=5} = \frac{1}{2!} \cdot 3 \cdot 2x \Big|_{x=5} = 15,$$

$$C = \frac{1}{1!} (x^3)' \Big|_{x=5} = \frac{1}{1!} \cdot 3x^2 \Big|_{x=5} = 75,$$

$$D = \frac{1}{0!} x^3 \Big|_{x=5} = 125$$

となる。よって、

$$\frac{x^3}{(x-5)^4} = \frac{1}{x-5} + \frac{15}{(x-5)^2} + \frac{75}{(x-5)^3} + \frac{125}{(x-5)^4}$$

である。

一般形として、有理関数 $\frac{P(x)}{(x-a)^n}$ が

$$\frac{P(x)}{(x-a)^n} = \frac{A_1}{x-a} + \dots + \frac{A_i}{(x-a)^i} + \dots + \frac{A_n}{(x-a)^n} \qquad (1 \le i \le n, A_i \in \mathbb{R})$$

と表されるとき

$$A_i = \frac{1}{(n-i)!} (P(x))^{(n-i)} \Big|_{x=a}$$

1.8.4 ヘビサイドの展開定理 I+II

例 1.8.3. 以下の部分分数分解を考える。

$$\frac{x^2+4}{(x-2)(x-3)^2} = \boxed{\frac{A}{x-2}} + \boxed{\frac{B}{x-3}} + \boxed{\frac{C}{(x-3)^2}}$$

まず、A は ヘビサイドの展開定理 I で求める。基本に戻れば、各項を x-2 倍し、 x=2 を代入する。

$$\frac{x^2+4}{(x-3)^2} = A + \frac{B(x-2)}{x-3} + \frac{C(x-2)}{(x-3)^2}$$

すなわち、

$$A = \frac{x^2 + 4}{(x - 3)^2} \bigg|_{x=2} = \frac{2^2 + 4}{(2 - 3)^2} = \frac{4 + 4}{(-1)^2} = 8$$

である。B,C は ヘビサイドの展開定理 II で求める。まず、各式に $(x-3)^2$ 倍し、左 辺を P(x) とおくと、

$$P(x) := \frac{x^2 + 4}{x - 2} = \frac{A}{x - 2}(x - 3)^2 + B(x - 3) + C$$

のように書き表すことができる。よって、

$$B = \frac{1}{1!} P'(x) \Big|_{x=3}$$

$$= \frac{1}{1!} \cdot \left(\frac{x^2 + 4}{x - 2} \right)' \Big|_{x=3} = \frac{1}{1!} \cdot \frac{2x(x - 2) - (x^2 + 4) \cdot 1}{(x - 2)^2} \Big|_{x=3}$$

$$= \frac{2 \cdot 3 \cdot (3 - 2) - (3^2 + 4)}{(3 - 2)^2} = \frac{6 - 13}{1} = -7,$$

$$C = \frac{1}{0!} P(x) \Big|_{x=3}$$

$$= \frac{1}{0!} \cdot \frac{x^2 + 4}{x - 2} \Big|_{x=3} = \frac{9 + 4}{3 - 2} = 13$$

となる。したがって、

$$\frac{x^2+4}{(x-2)(x-3)^2} = \frac{8}{x-2} + \frac{-7}{x-3} + \frac{13}{(x-3)^2}$$

1.8.5 ヘビサイドの展開定理を利用するために

有理関数 $\frac{P(x)}{Q(x)}$ において、P(x) の最高次数が Q(x) の最高次数以上のとき、

$$\left(\text{ (M)} : \frac{x^3}{x^2 - 4}, \, \frac{x^4 - x^3 + 1}{x^2 - 2x + 1}, \, \frac{x^2}{x^2 - 4x + 3} \right)$$

多項式の割り算を行い、P(x) = Q(x)S(x) + T(x) の形にし、

$$\frac{P(x)}{Q(x)} = S(x) + \frac{T(x)}{Q(x)}$$

として $\frac{T(x)}{Q(x)}$ に対して、ヘビサイドの展開定理を利用する。

例 1.8.4. 有理関数 $\frac{x^3}{x^2-4}$ の部分分数分解を考える。 まず、 x^3 を x^2-4 で割ると、

$$x^3 = x(x^2 - 4) + 4x$$

となるので、

$$\frac{x^3}{x^2 - 4} = \boxed{x} + \boxed{\frac{4x}{x^2 - 4}}$$

と変形できる。

よって、

$$\frac{4x}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$$

$$A = \frac{4x}{x+2} \Big|_{x=2} = \frac{8}{4} = 2,$$

$$B = \frac{4x}{x-2} \Big|_{x=-2} = \frac{-8}{-4} = 2$$

となり、

$$\frac{x^3}{x^2 - 4} = x + \frac{2}{x - 2} + \frac{2}{x + 2}$$

例 1.8.5. 以下の部分分数分解を考える。ただし、 $i=\sqrt{-1}$ とする。

$$\frac{2x+5}{(x-i)(x+i)} = \frac{A}{x-i} + \frac{B}{x+i}$$

各式にx-iをかけると、

$$\frac{2x+5}{x+i} = A + \frac{B(x-i)}{x+i}$$

となる。ここでx = iを代入すると、

$$A = \frac{2x+5}{x+i} \bigg|_{x=i} = \frac{2i+5}{2i} = \frac{2-5i}{2}$$

がえられる。同様に、

$$B = \frac{2x+5}{x-i} \bigg|_{x=-i} = \frac{-2i+5}{-2i} = \frac{2+5i}{2}$$

がえられる。よって、

$$\frac{2x+5}{(x-i)(x+i)} = \frac{1}{2} \cdot \frac{2-5i}{x-i} + \frac{1}{2} \cdot \frac{2+5i}{x+i}$$

である。

1.8.6 演習問題

問題 1.8.1. 以下の有理関数に対して、ヘビサイドの展開定理が使えるものは展開定理を 使って部分分数分解を求め、ヘビサイドの展開定理が使えない場合は、使えないと答えよ。

(1)
$$\frac{1}{x^2-1}$$

(2)
$$\frac{1}{x^2 - 3x + 2}$$

(3)
$$\frac{x^3 + 3x - 7}{(x+2)(x-1)}$$

$$(4) \qquad \frac{1}{x^3 + 1}$$

$$(5) \quad \frac{3x+2}{x^3+3x^2-x-3}$$

$$(6) \quad \frac{1}{x^3 - x}$$

$$(7) \quad \frac{2x+3}{x^2 - 3x + 2}$$

$$(8) \quad \frac{x+2}{2x^2 - 3x - 2}$$

$$(9) \quad \frac{2x^2 - x - 4}{x^3 + x^2 - 2x}$$

$$(10) \quad \frac{x^2 + x + 2}{x^3 - x^2 + x - 1}$$

(11)
$$\frac{2x}{(x-2)^2}$$

$$(12) \quad \frac{x^2 + x + 2}{(x+3)^3}$$

$$(13) \quad \frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8}$$

$$(14) \quad \frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24}$$

(15)
$$\frac{4}{x^2-2}$$

$$(16) \quad \frac{x-2}{x^2 - 2x - 4}$$

1.8.7 演習問題 略解

略解 1.8.1. (1) まず、 $x^2 - 1 = (x - 1)(x + 1)$ より、分母 = 0 の実数解が求まる。 従って、ヘビサイドの展開定理が使える。

$$\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

とおくと、

$$A = \frac{1}{x+1} \Big|_{x=1} = \frac{1}{1+1} = \frac{1}{2},$$

$$B = \frac{1}{x-1} \Big|_{x=-1} = \frac{1}{-1-1} = -\frac{1}{2}$$

となる。

以上より、

$$\frac{1}{x^2 - 1} = \frac{\frac{1}{2}}{x - 1} + \frac{-\frac{1}{2}}{x + 1}$$
$$= \frac{1}{2} \cdot \frac{1}{x - 1} - \frac{1}{2} \cdot \frac{1}{x + 1}$$

である。

(2) まず、 $x^2 - 3x + 2 = (x - 1)(x - 2)$ より、分母 = 0 の実数解が求まる。 従って、ヘビサイドの展開定理が使える。

$$\frac{1}{x^2 - 3x + 2} = \frac{A}{x - 1} + \frac{B}{x - 2}$$

とおくと、

$$A = \frac{1}{x-2} \Big|_{x=1} = \frac{1}{1-2} = -1,$$

$$B = \frac{1}{x-1} \Big|_{x=2} = \frac{1}{2-1} = 1$$

となる。

以上より、

$$\frac{1}{x^2 - 3x + 2} = -\frac{1}{x - 1} + \frac{1}{x - 2}$$

(3) 分母の最高次数 (2次) より分子の最高次数 (3次) の方が高い。

そこで、
$$x^3 + 3x - 7$$
 を $(x+2)(x-1) = x^2 + x - 2$ で割ってみると

$$x^{3} + 3x - 7 = (x - 1)(x^{2} + x - 2) + 6x - 9$$

なので

$$\frac{x^3 + 3x - 7}{(x+2)(x-1)} = x - 1 + \frac{6x - 9}{(x+2)(x-1)}$$

をえる。

ここで、分母=0の実数解が求まるので、ヘビサイドの展開定理が使える。

$$\frac{6x-9}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$$

とおくと、

$$A = \frac{6x - 9}{x - 1} \Big|_{x = -2} = \frac{-12 - 9}{-2 - 1} = 7,$$

$$B = \frac{6x - 9}{x + 2} \Big|_{x = 1} = \frac{6 - 9}{1 + 2} = -1$$

となる。

以上より、

$$\frac{x^3 + 3x - 7}{(x+2)(x-1)} = x - 1 + \frac{7}{x+2} + \frac{-1}{x-1}$$

である。

- (4) 分母 = $x^3+1=0$ を解くと、 $x=-1,\frac{1\pm\sqrt{-3}}{2}$ となり、複素数解がえられる。 従って、ヘビサイドの展開定理は使えない。
- (5) 分母 = $x^3 + 3x^2 x 3 = 0$ の方程式を解くと、x = -3, -1, 1 をえるので、ヘビサイドの展開定理が使える。

$$\frac{3x+2}{x^3+3x^2-x-3} = \frac{3x+2}{(x+3)(x+1)(x-1)} = \frac{A}{x+3} + \frac{B}{x+1} + \frac{C}{x-1}$$

とおくと、

$$A = \frac{3x+2}{(x+1)(x-1)} \Big|_{x=-3} = \frac{-9+2}{(-2)\cdot(-4)} = \frac{-7}{8},$$

$$B = \frac{3x+2}{(x+3)(x-1)} \Big|_{x=-1} = \frac{-3+2}{2\cdot(-2)} = \frac{-1}{-4} = \frac{1}{4},$$

$$C = \frac{3x+2}{(x+3)(x+1)} \Big|_{x=1} = \frac{3+2}{4\cdot 2} = \frac{5}{8}$$

以上より、

$$\frac{3x+2}{x^3+3x^2-x-3} = -\frac{7}{8} \cdot \frac{1}{x+3} + \frac{1}{4} \cdot \frac{1}{x+1} + \frac{5}{8} \cdot \frac{1}{x-1}$$

である。

(6) まず、 $x^3 - x = x(x-1)(x+1)$ より、分母 = 0 の実数解が求まる。 従って、ヘビサイドの展開定理が使える。

$$\frac{1}{x^3 - x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}$$

とおくと、

$$A = \frac{1}{(x-1)(x+1)} \Big|_{x=0} = \frac{1}{(-1) \cdot 1} = -1,$$

$$B = \frac{1}{x(x-1)} \Big|_{x=-1} = \frac{1}{(-1) \cdot (-2)} = \frac{1}{2},$$

$$C = \frac{1}{x(x+1)} \Big|_{x=1} = \frac{1}{1 \cdot 2} = \frac{1}{2}$$

となる。

以上より、

$$\frac{1}{x^3 - x} = -\frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x - 1} - \frac{1}{2} \cdot \frac{1}{x + 1}$$

である。

(7) 分母は(2) と同じなので、ヘビサイドの展開定理が使える。

$$\frac{2x+3}{r^2-3r+2} = \frac{A}{r-1} + \frac{B}{r-2}$$

とおくと、

$$A = \frac{2x+3}{x-2} \Big|_{x=1} = \frac{2+3}{1-2} = -5,$$

$$B = \frac{2x+3}{x-1} \Big|_{x=2} = \frac{4+3}{2-1} = 7$$

となる。

以上より、

$$\frac{2x+3}{x^2-3x+2} = \frac{-5}{x-1} + \frac{7}{x-2}$$

(8) まず、 $2x^2 - 3x - 2 = (x - 2)(2x + 1)$ より、分母 = 0 の実数解が求まるため、ヘビサイドの展開定理が使える。

$$\frac{x+2}{2x^2-3x-2} = \frac{A}{x-2} + \frac{B}{2x+1}$$

とおくと、

$$A = \left. \frac{x+2}{2x+1} \right|_{x=2} = \frac{2+2}{4+1} = \frac{4}{5},$$

$$B = \left. \frac{x+2}{x-2} \right|_{x=-\frac{1}{2}} = \frac{-\frac{1}{2}+2}{-\frac{1}{2}-2} = -\frac{3}{5}$$

となる。

以上より、

$$\frac{x+2}{2x^2-3x-2} = \frac{4}{5} \cdot \frac{1}{x-2} - \frac{3}{5} \cdot \frac{1}{2x+1}$$

である。

(9) まず、分母 = $x^3 + x^2 - 2x = x(x-1)(x+2) = 0$ となるため、ヘビサイドの展開定理が使える。

$$\frac{2x^2 - x - 4}{x^3 + x^2 - 2x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 2}$$

とおくと、

$$A = \frac{2x^2 - x - 4}{(x - 1)(x + 2)} \Big|_{x=0} = \frac{-4}{(-1) \cdot 2} = 2,$$

$$B = \frac{2x^2 - x - 4}{x(x + 2)} \Big|_{x=1} = \frac{2 - 1 - 4}{1 \cdot 3} = -1,$$

$$C = \frac{2x^2 - x - 4}{x(x - 1)} \Big|_{x=-2} = \frac{8 + 2 - 4}{(-2) \cdot (-3)} = 1$$

となる。

以上より、

$$\frac{2x^2 - x - 4}{x^3 + x^2 - 2x} = \frac{2}{x} - \frac{1}{x - 1} + \frac{1}{x + 2}$$

である。

(10) 分母 = $x^3 - x^2 + x - 1 = 0$ の方程式を解くと、

$$x=1,\pm\sqrt{-1}$$

となり、複素数解がえられる。従って、ヘビサイドの展開定理は使えない。

(11) この問題は、ヘビサイドの展開定理 II を用いる。 まず、

$$\frac{2x}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$$

として、公式に当てはめると

$$A = \frac{1}{1!} (2x)' \Big|_{x=2} = \frac{1}{1!} (2) \Big|_{x=2} = 2$$

$$B = \frac{1}{1!}(2x)\Big|_{x=2} = 4$$

となる。

以上より、

$$\frac{2x}{(x-2)^2} = \frac{2}{x-2} + \frac{4}{(x-2)^2}$$

である。

(12) この問題も、ヘビサイドの展開定理 II を用いる。 まずは、

$$\frac{x^2 + x + 2}{(x+3)^3} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{(x+3)^3}$$

として、公式に当てはめると

$$A = \frac{1}{2!}(x^2 + x + 2)'' \Big|_{x=-3}$$

$$= \frac{1}{2}(2x+1)' \Big|_{x=-3} = \frac{1}{2}(2) \Big|_{x=-3} = 1,$$

$$B = \frac{1}{1!}(x^2 + x + 2)' \Big|_{x=-3} = (2x+1)|_{x=-3} = -5,$$

$$C = \frac{1}{1!}(x^2 + x + 2) \Big|_{x=-3} = 8$$

となる。

以上より、

$$\frac{x^2 + x + 2}{(x+3)^3} = \frac{1}{x+3} - \frac{5}{(x+3)^2} + \frac{8}{(x+3)^3}$$

(13) まず、分母 = $x^4 - 7x^3 + 18x^2 - 20x + 8 = (x - 1)(x - 2)^3$ となるため、ヘビサイドの展開定理が使える。

$$\frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8} = \frac{3x^2 - 9x + 7}{(x - 1)(x - 2)^3}$$
$$= \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2} + \frac{D}{(x - 2)^3}$$

とおくと、まず、

$$A = \frac{3x^2 - 9x + 7}{(x - 2)^3} \bigg|_{x = 1} = \frac{3 - 9 + 7}{(1 - 2)^3} = \frac{1}{(-1)^3} = -1$$

である。

次に、
$$P(x) = \frac{3x^2 - 9x + 7}{x - 1}$$
 とおくと、

$$B = \frac{1}{2!}P''(x)\Big|_{x=2} = \frac{1}{2} \cdot \left(\frac{3x^2 - 9x + 7}{x - 1}\right)''\Big|_{x=2}$$

$$= \frac{1}{2} \cdot \left(\frac{(6x - 9)(x - 1) - (3x^2 - 9x + 7) \cdot 1}{(x - 1)^2}\right)'\Big|_{x=2}$$

$$= \frac{1}{2} \cdot \left(\frac{3x^2 - 6x + 2}{(x - 1)^2}\right)'\Big|_{x=2}$$

$$= \frac{1}{2} \cdot \frac{2}{(x - 1)^3}\Big|_{x=2}$$

$$= 1,$$

$$C = \frac{1}{1!}P'(x)\Big|_{x=2} = \left(\frac{3x^2 - 9x + 7}{x - 1}\right)'\Big|_{x=2}$$

$$= \frac{3x^2 - 6x + 2}{(x - 1)^2}\Big|_{x=2}$$

$$D = \frac{1}{0!}P(x)\bigg|_{x=2} = \frac{3x^2 - 9x + 7}{x - 1}\bigg|_{x=2}$$
= 1

となる。以上より、

$$\frac{3x^2 - 9x + 7}{x^4 - 7x^3 + 18x^2 - 20x + 8} = -\frac{1}{x - 1} + \frac{1}{x - 2} + \frac{2}{(x - 2)^2} + \frac{1}{(x - 2)^3}$$

(14) まずは、分母の因数分解を行う。

$$x^4 + 10x^3 + 35x^2 + 50x + 24 = (x+1)(x+2)(x+3)(x+4)$$

となり、分母、分子のどちらも因数 x+1 をもつので、

$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24} = \frac{x - 1}{(x + 2)(x + 3)(x + 4)} = \frac{A}{x + 2} + \frac{B}{x + 3} + \frac{C}{x + 4}$$

と変形して、ヘビサイドの展開定理を利用すると、

$$A = \frac{x-1}{(x+3)(x+4)} \Big|_{x=-2} = \frac{-2-1}{1\cdot 2} = -\frac{3}{2},$$

$$B = \frac{x-1}{(x+2)(x+4)} \Big|_{x=-3} = \frac{-3-1}{(-1)\cdot 1} = 4,$$

$$C = \frac{x-1}{(x+2)(x+3)} \Big|_{x=-4} = \frac{-4-1}{(-2)\cdot (-1)} = -\frac{5}{2}$$

となる。以上より、

$$\frac{x^2 - 1}{x^4 + 10x^3 + 35x^2 + 50x + 24} = -\frac{3}{2} \cdot \frac{1}{x+2} + \frac{4}{x+3} - \frac{5}{2} \cdot \frac{1}{x+4}$$

である。

(15) まず、

$$x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$$

より、分母=0の実数解が求まる。従って、ヘビサイドの展開定理が使える。

$$\frac{4}{x^2 - 2} = \frac{A}{x - \sqrt{2}} + \frac{B}{x + \sqrt{2}}$$

とおくと、

$$A = \frac{4}{x + \sqrt{2}} \Big|_{x = \sqrt{2}} = \frac{4}{\sqrt{2} + \sqrt{2}} = \sqrt{2},$$

$$B = \frac{4}{x - \sqrt{2}} \Big|_{x = -\sqrt{2}} = \frac{4}{-\sqrt{2} - \sqrt{2}} = -\sqrt{2}$$

となる。

以上より、

$$\frac{4}{x^2 - 1} = \frac{\sqrt{2}}{x - 1} - \frac{\sqrt{2}}{x + 1}$$

(16) まず、分母は

$$x^{2} - 2x - 4 = \left(x - 1 + \sqrt{5}\right)\left(x - 1 - \sqrt{5}\right)$$

と因数分解できる。

よって、分母=0の実数解が求まるので、ヘビサイドの展開定理が使える。

$$\frac{x-2}{x^2-2x-4} = \frac{A}{x-1+\sqrt{5}} + \frac{B}{x-1-\sqrt{5}}$$

とおくと、

$$A = \frac{x-2}{x-1-\sqrt{5}} \Big|_{x=1-\sqrt{5}}$$

$$= \frac{1-\sqrt{5}-2}{1-\sqrt{5}-1-\sqrt{5}}$$

$$= \frac{-1-\sqrt{5}}{-2\sqrt{5}}$$

$$= \frac{5+\sqrt{5}}{-2\sqrt{5}},$$

$$B = \frac{x-2}{x-1+\sqrt{5}} \Big|_{x=1+\sqrt{5}}$$

$$= \frac{1+\sqrt{5}-2}{1+\sqrt{5}-1+\sqrt{5}}$$

$$= \frac{-1+\sqrt{5}}{2\sqrt{5}}$$

$$= \frac{5-\sqrt{5}}{10}$$

となる。

以上より、

$$\frac{x-2}{x^2-2x-4} = \frac{1}{10} \cdot \frac{5+\sqrt{5}}{x-1+\sqrt{5}} + \frac{1}{10} \cdot \frac{5-\sqrt{5}}{x-1-\sqrt{5}}$$

である。

※ 有理数でない解が求まる場合は、途中の計算が複雑になるが、部分分数分解は確かに 可能である。

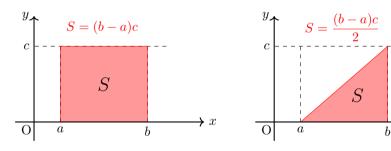
第2章

定積分と基本定理

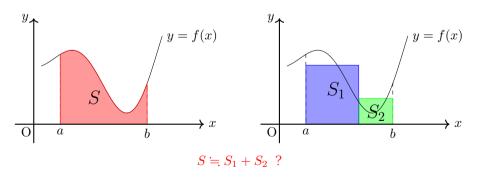
2.1 面積と積分法

2.1.1 面積

ある区間内で、定数関数と x 軸 (長方形) や一次関数と x 軸 (直角三角形) の間の面積は

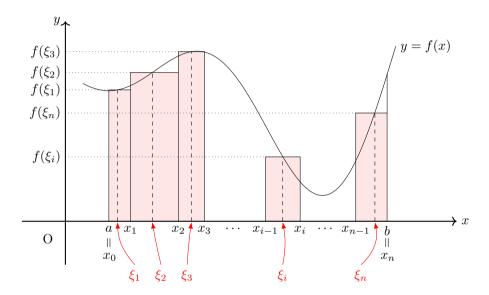


である。では、一般の関数とx軸との間の面積は?



2.1.2 リーマン和

・長方形の面積で近似
$$f(x)$$
 の a から b までの積分 $f(x)$ の a から b までの積分 $f(x)$ か割を細かくする $\int_a^b f(x)\,dx$ を定義する



 $^{\exists}M, ^{\exists}m>0, \, m\leq f(x)\leq M \,\, (a\leq x\leq b)$ であると仮定する。

- **♠ 注意!** [∃] は存在する (exist) や、ある~という意味。
- 訳 1) ある正の数 M, m に対して、f(x) が $a \le x \le b$ の範囲で $m \le f(x) \le M$
- 訳 2) f(x) が $a \le x \le b$ の範囲で $m \le f(x) \le M$ を満たす正の数 M,m が存在する 分割 $\overset{\vec{r}_{n}p}{\Delta}$ を

$$\Delta : a = x_0 < x_1 < x_2 < \dots < x_n = b$$

とする。小区間 $[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n]$ の中に、それぞれ任意に ξ_1,ξ_2,\ldots,ξ_n をとる。このとき、

$$S(\Delta) = f(\xi_1)(x_1 - x_0) + f(\xi_2)(x_2 - x_1) + \dots + f(\xi_n)(x_n - x_{n-1})$$

$$= \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$
長方形面積の和

を分割 Δ に対する関数 f(x) のリーマン和という。

2.1 面積と積分法 99

いま、

$$|\Delta| : \stackrel{def}{=} \max_{1 \le i \le n} (x_i - x_{i-1})$$

とする。 $|\Delta| \to 0$ のとき (すなわち、分割 Δ の幅を限りなく小さくするとき)、 分割の仕方及び ξ_i の選び方に依らず、 $S(\Delta)$ が一定の値 α に近づく。

$$\lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) = \alpha$$

が成り立つならば、この極限値 α を f(x) の区間 [a,b] における (定) 積分といい、

で表す。

※ 上端は [ジョウタン]、下端 は [カタン] とよむ。 [ウワバ]、[シタバ] と読むと建築用語。 また、このとき、f(x) は区間 [a,b] において、**積分可能** であるという。

$$\int_a^b f(x) dx$$
 を求めることを、 $f(x)$ を区間 $[a,b]$ で 積分する という。

補題 2.1.1. $f(x) \leq 0$ の場合、x 軸と x=a, x=b 及び f(x) で囲まれた面積 に"—"を付けた値になる。

また、

$$\int_b^a f(x) dx := -\int_a^b f(x) dx \quad (a < b),$$
$$\int_a^a f(x) dx := 0$$

とする。

 \clubsuit 補足 区間 [a,b] において、f(x) の符号が変わるときは、区間を分けて考える (後述)。

定理 2.1.1. f(x) に対して、

$$f(x): [a,b]$$
 上 連続 $\Longrightarrow f(x): [a,b]$ 上 積分可能

が成り立つ。

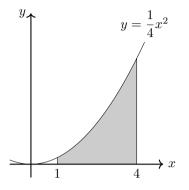
証明 2.1.1. 各自にゆだねる。

2.1.3 練習問題

問題 2.1.1. $f(x) = \frac{1}{4}x^2$ に対して、y = f(x), x = 1, x = 4 および x 軸で囲まれた部分の面積をリーマン和で近似することを考える。

次の分割 Δ , ξ_i に対して、関数 f(x) のリーマン和 を求めよ。

※ 分数で答えても良いが、小数の近似値 (小数点 以下 2 位) で構わない。電卓使用も可。



(1)
$$\Delta: 1 < 2 < 3 < 4$$

$$\xi_1 = 2, \ \xi_2 = 3, \ \xi_3 = 4$$

(2)
$$\Delta: 1 < 2 < 3 < 4$$

$$\xi_1 = 1, \ \xi_2 = 2, \ \xi_3 = 3$$

(3)
$$\Delta: 1 < \frac{3}{2} < 2 < \frac{5}{2} < 3 < \frac{7}{2} < 4$$

$$\xi_1 = \frac{3}{2}, \ \xi_2 = 2, \ \xi_3 = \frac{5}{2}, \ \xi_4 = 3, \ \xi_5 = \frac{7}{2}, \ \xi_6 = 4$$

(4) n は 1 以上の自然数とする。

$$\Delta: 1 < 1 + \frac{3}{n} < 1 + 2 \cdot \frac{3}{n} < 1 + 3 \cdot \frac{3}{n} < \dots < 1 + (n-1) \cdot \frac{3}{n} < 1 + n \cdot \frac{3}{n} = 4$$
$$\xi_i = 1 + i \cdot \frac{3}{n} \quad (i = 1, \dots, n)$$

** n = 3 のときが (1)、n = 6 のときが (3)、すなわち、n は分割の数である。

念のため -

自然数の和、2乗の和の公式

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$

2.1 面積と積分法 101

2.1.4 練習問題 略解

略解 2.1.1. (1) 定義に Δ : 1 < 2 < 3 < 4 と ξ_1 = 2, ξ_2 = 3, ξ_3 = 4 を当てはめると、

$$S(\Delta) = f(2)(2-1) + f(3)(3-2) + f(4)(4-3)$$
$$= \frac{1}{4} \cdot 2^2 + \frac{1}{4} \cdot 3^2 + \frac{1}{4} \cdot 4^2 = \frac{29}{4}$$

となる。

(2)(1)と同様に当てはめると、

$$S(\Delta) = f(1)(2-1) + f(2)(3-2) + f(3)(4-3)$$
$$= \frac{1}{4} \cdot 1^2 + \frac{1}{4} \cdot 2^2 + \frac{1}{4} \cdot 3^2 = \frac{7}{2}$$

となる。

(3) これまで同様に当てはめると、

$$\begin{split} S(\Delta) &= f\left(\frac{3}{2}\right)\left(\frac{3}{2} - 1\right) + f(2)\left(2 - \frac{3}{2}\right) + f\left(\frac{5}{2}\right)\left(\frac{5}{2} - 2\right) \\ &+ f(3)\left(3 - \frac{5}{2}\right) + f\left(\frac{7}{2}\right)\left(\frac{7}{2} - 3\right) + f(4)\left(4 - \frac{7}{2}\right) \\ &= \frac{1}{2} \cdot \frac{1}{4}\left\{\frac{3^2}{2^2} + 2^2 + \frac{5^2}{2^2} + 3^2 + \frac{7^2}{2^2} + 4^2\right\} \\ &= \frac{1}{8} \cdot \frac{1}{2^2}(3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2) = \frac{199}{32} \end{split}$$

となる。

(4) 定義に従うと、

$$S(\Delta) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} \left\{ f\left(1 + i \cdot \frac{3}{n}\right) \left(\left(1 + i \cdot \frac{3}{n}\right) - \left(1 + (i-1) \cdot \frac{3}{n}\right)\right) \right\}$$

$$= \frac{3}{n} \cdot \frac{1}{4} \sum_{i=1}^{n} \left(1 + \frac{3}{n}i\right)^2 = \frac{3}{4n} \sum_{i=1}^{n} \left(1 + 2 \cdot \frac{3}{n}i + \frac{3^2}{n^2}i^2\right)$$

$$= \frac{3}{4n} \left\{ n + \frac{6}{n} \cdot \frac{1}{2}n(n+1) + \frac{9}{n^2} \cdot \frac{1}{6}n(n+1)(2n+1) \right\} = \frac{21}{4} + \frac{45}{8n} + \frac{9}{8n^2}$$

となる。

** n = 3 のときが (1)、n = 6 のときが (3) となっている。

2.2 区分求積法

2.2.1 リーマン和から区分求積法

復習(リーマン和)

区間 [a,b] の分割を Δ : $a=x_0 < x_1 < x_2 < \cdots < x_n = b_{(1)}$ として、分割幅の最大を $|\Delta| = \max_{1 \le i \le n} (x_i - x_{i-1})$ で定める。また、 $\underline{\text{小区間}}[x_{i-1},x_i]$ 内に任意の $\underline{\xi_i}$ (2)をとる。このとき、以下をリーマン和という。

$$\lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

(1) 区間 [a,b] の分割 Δ : $a = x_0 < x_1 < x_2 < \cdots < x_n = b$

$$\frac{b-a}{n} \quad b-a \\ \hline a=x_0 \quad x_1 \quad x_2 \quad \cdots \quad x_{i-1} \quad x_i \quad \cdots \quad x_{n-1} \quad x_n=b \\ \end{pmatrix} x$$

このとき、各小区間の幅 (x_i-x_{i-1}) は、 $\frac{b-a}{n}$ となり、 $|\Delta|=\frac{b-a}{n}$ である。 ちなみに

$$\Delta : a < a + \frac{b-a}{n} < a + \frac{b-a}{n} \cdot 2 < \dots < a + \frac{b-a}{n} \cdot n = b$$

であり、 $|\Delta| \to 0$ は、 $n \to \infty$ である。

(2) 小区間 $[x_{i-1},x_i]$ 内に任意の $\overline{\xi_i}$

↓小区間の左端か、右端にする。

$$\xi_i = x_{i-1} = a + \frac{b-a}{n} \cdot (i-1) \, \, \sharp \, \sharp \, \sharp \, \xi = x_i = a + \frac{b-a}{n} \cdot i$$

以上の変更によって、

$$\lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \quad \Rightarrow \begin{cases} \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n} \cdot (i - 1)\right) \cdot \frac{b - a}{n} \\ \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n} \cdot i\right) \cdot \frac{b - a}{n} \end{cases}$$

となる。この方法を**区分求積法**という。

2.2 区分求積法 103

2.2.2 区分求積法とは

まず、f(x) は [a,b] 上積分可能とする。[a,b] を n 等分すると、各小区間の幅は、

$$\frac{b-a}{n}$$

である。よって、各分点は

$$x_i = a + \frac{b-a}{n}i$$
 $(i = 0, 1, 2, \dots, n)$

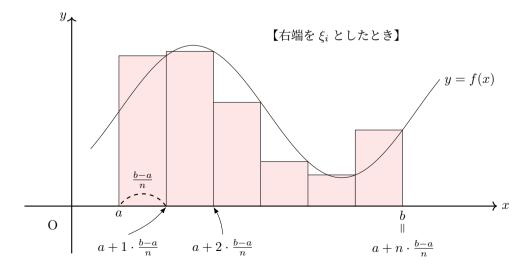
と表される。

小区間 $[x_{i-1},x_i]$ において、 $\boxed{\text{左端 }x_{i-1}}$ または $\boxed{\text{右端 }x_i}$ のどちらかを ξ_i とする。 すなわち、

$$\xi_i = x_{i-1}$$
 or $\xi_i = x_i$

とすることにより、

$$\int_{a}^{b} f(x) dx = \begin{cases} \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}(i-1)\right) & (\xi_{i} = x_{i-1} : 左端の場合) \\ \\ \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}i\right) & (\xi_{i} = x_{i} : 右端の場合) \\ \\ \text{こっちを使う!} \end{cases}$$



例 2.2.1. 区分求積法を用いて
$$\int_0^1 x^3 dx$$
 を求めよ。まず、

$$\int_{a}^{1} x^3 dx = \int_{a}^{b} f(x) dx$$

なので、 $a=0,b=1,f(x)=x^3$ として $(\xi_i=x_i$: 右端の場合を) 考える。

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n}i\right)$$

$$\int_{0}^{1} x^{3} dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{i=1}^{n} \left(0 + \frac{1 - 0}{n}i\right)^{3}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{3}$$

$$= \lim_{n \to \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}$$

3乗の和の公式は、1乗の和の公式の2乗

$$= \lim_{n \to \infty} \frac{1}{n^4} \left\{ \frac{1}{2} n(n+1) \right\}^2 = \lim_{n \to \infty} \frac{1}{n^4} \cdot \frac{1}{4} n^2 (n+1)^2$$
$$= \lim_{n \to \infty} \frac{1}{4} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{1}{4} \left(1 + \frac{1}{n} \right)^2 = \frac{1}{4}$$

例 2.2.2. (定数関数の積分)

区間 [a,b] において、定数関数 f(x)=c と x 軸の間の面積を求めよ $(c\in\mathbb{R})$ 。 言い換えると $\int_{-b}^{b}c\,dx=c(b-a)$ を示せ。

 $\forall x \in \mathbb{R}$ に対して、f(x) = c であるから、

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n}i\right)$$

$$\int_{a}^{b} c dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} c$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \cdot nc$$

$$= \lim_{n \to \infty} \underbrace{(b - a)c}_{n}$$

$$= (b - a)c$$

である。(別解: $\lim_{|\Delta|\to 0} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) = \alpha$ で示す。)

2.2 区分求積法 105

2.2.3 演習問題

問題 2.2.1. 区分求積法を用いて 、以下の関数の与えられた区間における定積分を求めよ。

(1) 関数:3x-1, 区間:[1,2]

(2) 関数: $3x^2$, 区間: [0,1]

(3) 関数: e^x , 区間: [a,b] ただし、0 < a < b

問題 2.2.2. 以下の極限が $\int_a^b f(x) \, dx$ に等しくなる 関数 f(x), 下端 a, 上端 b の組を 1 つ求めよ。

$$(1) \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i^2}{n^3} - \frac{3}{n} \right)$$

$$(2) \lim_{n \to \infty} \sum_{i=n+1}^{3n} \left(-\frac{i^2}{n^3} + \frac{6}{n^2} i \right)$$

問題 2.2.3. 以下の極限が $\int_a^b f(x) dx$ に等しくなる 関数 f(x), 下端 a, 上端 b の組を 1 つ求めよ。

(1)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2^2}} + \frac{1}{\sqrt{n^2 + 3^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

(2) k は 2 以上の自然数とする。

(5)

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+kn} \right)$$

(3)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{n^2}{9n^2 + 1} + \frac{n^2}{9n^2 + 4} + \frac{n^2}{9n^2 + 9} + \dots + \frac{n^2}{9n^2 + n^2} \right)$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4n^2 - k^2}}$$

$$\lim_{n\to\infty}\sum_{k=0}^{3n}\frac{1}{k}$$

2.2.4 演習問題 略解

略解 2.2.1. (1) 例 2.2.1. を参考に考える。

$$\int_{1}^{2} (3x - 1) dx = \lim_{n \to \infty} \frac{2 - 1}{n} \sum_{i=1}^{n} \left(3 \cdot \left(1 + \frac{2 - 1}{n} i \right) - 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(2 + \frac{3}{n} i \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left\{ 2n + \frac{3}{n} \cdot \frac{1}{2} n(n+1) \right\}$$

$$= \lim_{n \to \infty} \left\{ 2 + \frac{3}{2n} (n+1) \right\} = \frac{7}{2}$$

(2) 例 2.2.1. を参考に考える。

$$\int_{0}^{1} 3x^{2} dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{i=1}^{n} 3 \left(0 + \frac{1 - 0}{n} i \right)^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n^{3}} \cdot \frac{1}{6} n(n+1)(2n+1)$$

$$= \lim_{n \to \infty} \frac{1}{2n^{2}} \cdot (n+1)(2n+1) = 1$$

(3) 定義にしたがって考える。ただし、 $\delta = \frac{b-a}{n}$ とおく。

$$\int_{a}^{b} e^{x} dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} e^{a + \frac{b-a}{n}i}$$

$$= \lim_{\delta \to 0} \delta \cdot e^{a} \cdot e^{\delta} \left\{ 1 + e^{\delta} + e^{2\delta} + \dots + e^{(n-1)\delta} \right\}$$

$$= \lim_{\delta \to 0} \delta \cdot e^{a} \cdot e^{\delta} \cdot \frac{1 - e^{n\delta}}{1 - e^{\delta}}$$

$$= (e^{a} - e^{b}) \lim_{\delta \to 0} (-1) \cdot \frac{-\delta}{e^{-\delta} - 1}$$

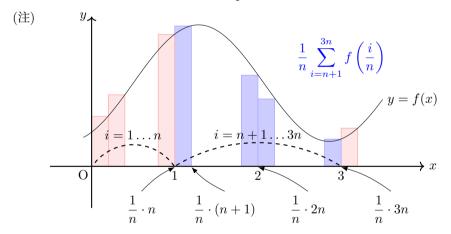
$$= (e^{a} - e^{b}) \cdot (-1) = e^{b} - e^{a}$$

2.2 区分求積法 107

略解 2.2.2. 解答の例.

(1)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i^2}{n^3} - \frac{3}{n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i^2}{n^2} - 3 \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\left(0 + \frac{i}{n} \right)^2 - 3 \right)$$
$$= \int_{0}^{1} (x^2 - 3) \, dx$$

(2)
$$\lim_{n \to \infty} \sum_{i=n+1}^{3n} \left(-\frac{i^2}{n^3} + \frac{6}{n^2} i \right) = \lim_{n \to \infty} \sum_{i=n+1}^{3n} \frac{1}{n} \left(-\frac{i^2}{n^2} + 6 \cdot \frac{i}{n} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=n+1}^{3n} \left(-\left(\frac{i}{n}\right)^2 + 6\left(\frac{i}{n}\right) \right)$$
$$= \int_1^3 (-x^2 + 6x) \, dx$$



略解 2.2.3.

$$(1) \quad \lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2^2}} + \frac{1}{\sqrt{n^2 + 3^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{1}{n}\right)^2}} + \frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{2}{n}\right)^2}} + \dots + \frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{n}{n}\right)^2}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1 + \left(\frac{i}{n}\right)^2}}$$

$$= \int_{0}^{1} \frac{1}{\sqrt{1 + x^2}} dx$$

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+kn} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{1}{1+\frac{1}{n}} + \frac{1}{n} \cdot \frac{1}{1+\frac{2}{n}} + \frac{1}{n} \cdot \frac{1}{1+\frac{3}{n}} + \dots + \frac{1}{n} \cdot \frac{1}{1+\frac{kn}{n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{kn} \frac{1}{1+\frac{i}{n}}$$

$$= \int_{0}^{k} \frac{1}{1+x} dx$$

(3)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{n^2}{9n^2 + 1} + \frac{n^2}{9n^2 + 4} + \frac{n^2}{9n^2 + 9} + \dots + \frac{n^2}{9n^2 + n^2} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{9 + \left(\frac{1}{n}\right)^2} + \frac{1}{9 + \left(\frac{2}{n}\right)^2} + \frac{1}{9 + \left(\frac{3}{n}\right)^2} + \dots + \frac{1}{9 + \left(\frac{n}{n}\right)^2} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{9 + \left(\frac{i}{n}\right)^2}$$

$$= \int_0^1 \frac{1}{9 + x^2} dx$$

(4)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4n^2 - k^2}} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{4n^2 - i^2}}$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cdot \frac{1}{\sqrt{4 - \left(\frac{i}{n}\right)^2}}$$
$$= \int_{0}^{1} \frac{1}{\sqrt{4 - x^2}} dx$$

(5)
$$\lim_{n \to \infty} \sum_{k=2n+1}^{3n} \frac{1}{k} = \lim_{n \to \infty} \sum_{i=2n+1}^{3n} \frac{1}{i}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=2n+1}^{3n} \frac{1}{\frac{i}{n}}$$
$$= \int_{2}^{3} \frac{1}{x} dx$$

2.3 定積分の性質 109

2.3 定積分の性質

2.3.1 定積分の性質

定理 2.3.1. f(x), g(x) : [a, b] において、積分可能であるとき、次が成り立つ。

(1)
$$\int_{a}^{b} \{f(x) \pm g(x)\} dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
 (複号同順)

(2)
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx \qquad (k \in \mathbb{R})$$

(3) a < c < b のとき、

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

(4) $f(x) \le g(x)$ $(a \le x \le b)$ のとき、 $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$

(5)
$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx$$

この (1), (2) を線形性, (3) を加法性, (4) を大小関係依存性という。

♣ 補足 (4) の前提は、『x が a から b の間で、常に g(x) の値は f(x) の値以上である』 ことを意味している。

証明 2.3.1. (1) まず f,g は積分可能なので、

$$\int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \pm \lim_{|\Delta| \to 0} \sum_{i=1}^{n} g(\xi_{i})(x_{i} - x_{i-1})$$

$$\lim \mathcal{O}$$
線形性 $\to = \lim_{|\Delta| \to 0} \left\{ \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \pm \sum_{i=1}^{n} g(\xi_{i})(x_{i} - x_{i-1}) \right\}$

$$\sum \mathcal{O}$$
線形性 $\to = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \left\{ f(\xi_{i})(x_{i} - x_{i-1}) \pm g(\xi_{i})(x_{i} - x_{i-1}) \right\}$

$$= \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \left\{ f(\xi_{i}) \pm g(\xi_{i}) \right\} (x_{i} - x_{i-1})$$
積分の定義 $\to = \int_{a}^{b} \left\{ f(x) \pm g(x) \right\} dx$

(2) f は積分可能なので、

$$k \int_{a}^{b} f(x) dx = k \lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$$

$$\lim \mathcal{O}$$
線形性 $\to = \lim_{|\Delta| \to 0} \left\{ k \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right\}$

$$\sum \mathcal{O}$$
線形性 $\to = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \left\{ k f(\xi_{i})(x_{i} - x_{i-1}) \right\}$

$$= \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \left\{ k f(\xi_{i}) \right\} (x_{i} - x_{i-1})$$
積分の定義 $\to = \int_{a}^{b} k f(x) dx$

である。

(3) a < c < b のとき、[a,b] で積分可能なので、[a,c] や [c,b] でも積分可能である。 いま 0 < m < n とし、

$$\Delta_1 : a = x_0 < x_1 < \dots < x_m = c,$$

 $\Delta_2 : c = x_m < x_{m+1} < \dots < x_n = b$

を考え、 Δ_1 と Δ_2 を合わせた分割を

$$\Delta : a = x_0 < x_1 < \dots < x_m < \dots < x_n = b$$

とし、 $|\Delta| = \max\{|\Delta_1|, |\Delta_2|\}$ とする。このとき、

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \lim_{|\Delta_{1}| \to 0} \sum_{i=1}^{m} f(\xi_{i})(x_{i} - x_{i-1}) + \lim_{|\Delta_{2}| \to 0} \sum_{i=m+1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$$

$$\Delta \mathcal{O}$$
定義より $\to = \lim_{|\Delta| \to 0} \sum_{i=1}^{m} f(\xi_{i})(x_{i} - x_{i-1}) + \lim_{|\Delta| \to 0} \sum_{i=m+1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$

$$\lim \mathcal{O}$$
線形性 $\to = \lim_{|\Delta| \to 0} \left\{ \sum_{i=1}^{m} f(\xi_{i})(x_{i} - x_{i-1}) + \sum_{i=m+1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right\}$

$$\sum \mathcal{O}$$
加法性 $\to = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$

$$= \int_{a}^{b} f(x) dx$$

である。 □ □

2.3 定積分の性質 111

2.3.2 演習問題

問題 2.3.1. 定理 2.3.1. の (4), (5) を証明せよ。

問題 2.3.2. 関数 f(x), g(x) に対して、

$$\int_{a}^{b} f(x) dx = 3, \ \int_{b}^{c} f(x) dx = 8, \ \int_{a}^{b} g(x) dx = 7, \ \int_{a}^{c} g(x) dx = 18$$

がいえる。ただし、0 < a < b < cである。

このとき、以下の値を答えよ。

(1)
$$\int_{a}^{b} 3f(x) dx$$
 (2) $\int_{a}^{b} (-f(x)) dx$ (3) $\int_{a}^{c} f(x) dx$ (4) $\int_{b}^{c} g(x) dx$ (5) $\int_{b}^{c} (f(x) + g(x)) dx$ (6) $\int_{a}^{c} (4f(x) - 3g(x)) dx$

問題 2.3.3. (1) 定積分 $I=\int_1^2 x^3\,dx$ に対して、区間 [1,2] における被積分関数 $f(x)=x^3$ の最大値 M と最小値 m を用いて考えたとき、正しいものを一つ選べ。

$$(\mathcal{7}) \ 1 \leq I \leq 8 \qquad (\mathcal{A}) \ 0 \leq I \leq 1 \qquad (\dot{\mathcal{T}}) \ 1 \leq I \leq 4 \qquad (\mathbf{I}) \ 8 \leq I \leq 16$$

$$(2) \ I = \int_0^1 e^{-x^2} \, dx \ \mbox{$\cal E$} \ J = \int_0^1 e^{-x} \, dx \ \mbox{の大小関係として正しいものを 1 つ選べ。}$$

$$(7) \ I = J \qquad (4) \ I < J \qquad (\red{p}) \ I > J \qquad (\mbox{$\cal E$}) \ \mbox{大小関係は比較できない。}$$

(3) 定積分
$$I = \int_{-1}^{0} (x^3 - 4) dx$$
 の符号として正しいものを 1 つ選べ。
 (ア) $I = 0$ (イ) $I < 0$ (ウ) $I > 0$ (エ)これだけでは符号は分からない

(4) 定積分
$$I = \int_{1-x}^{3} \frac{1}{x} dx$$
 の値の範囲として、次のうち最も適切なものを 1 つ選べ。

(ア)
$$\frac{1}{3} \le I \le \frac{2}{3}$$
 (イ) $\frac{2}{3} \le I \le 2$ (ウ) $2 \le I \le \frac{8}{3}$ (エ) $\frac{8}{3} \le I \le 4$

(5) 以下の各定積分に対して、値が大きい順に並べよ。

$$A = \int_0^1 x^2 dx$$
, $B = \int_0^1 1 dx$, $C = \int_0^1 x^3 dx$, $D = \int_0^1 x dx$

2.3.3 演習問題 略解

略解 2.3.1. (4) $f(x) \le g(x)$ ($a \le x \le b$) とする。

$$f(\xi_i)(x_i - x_{i-1}) \le g(\xi_i)(x_i - x_{i-1}),$$
 $(1 \le i \le n)$

の関係より、

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \le \sum_{i=1}^{n} g(\xi_i)(x_i - x_{i-1})$$

が成り立つ。よって、

$$\int_{a}^{b} f(x) dx = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1})$$

$$\leq \lim_{|\Delta| \to 0} \sum_{i=1}^{n} g(\xi_{i})(x_{i} - x_{i-1})$$

$$= \int_{a}^{b} g(x) dx$$

である。

 $|f(x)| \le |f(x)| \le |f(x)| \ge |f(x)| \ge |f(x)| \le |$

$$- \int_{a}^{b} |f(x)| \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} |f(x)| \, dx$$

である。したがって、

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

である。

略解 2.3.2.

(1)
$$\int_{a}^{b} 3f(x) dx = 3 \int_{a}^{b} f(x) dx$$
$$= 3 \cdot 3 = 9$$

(2)
$$\int_{a}^{b} (-f(x)) dx = (-1) \cdot \int_{a}^{b} f(x) dx$$
$$= (-1) \cdot 3 = -3$$

2.3 定積分の性質 113

(3)
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$
$$= 3 + 8 = 11$$

(4)
$$\int_{a}^{c} g(x) dx = \int_{a}^{b} g(x) dx + \int_{b}^{c} g(x) dx + \int_{b}^{c} g(x) dx + \int_{a}^{c} g(x) dx - \int_{a}^{b} g(x) dx$$
$$-18 - 7 - 11$$

(5)
$$\int_{b}^{c} (f(x) + g(x)) dx = \int_{b}^{c} f(x) dx + \int_{b}^{c} g(x) dx$$
$$= 8 + 11 = 19$$

(6)
$$\int_{a}^{c} (4f(x) - 3g(x)) dx = \int_{a}^{c} 4f(x) dx - \int_{a}^{c} 3g(x) dx$$
$$= 4 \cdot 11 - 3 \cdot 18 = -10$$

略解 2.3.3. (1) M=8, m=1 であり、定数関数 y=8 と y=1 の面積を考えると、 (\mathcal{P}) $1\leq I\leq 8$ が正解。

- (2) $y=e^x$ は単調増加関数である。また、 $0 \le x \le 1$ のとき、 $-x^2 \ge -x$ なので、 $e^{-x^2} \ge e^{-x}$ である。このことより、 (\dot{p}) I>J が正解。
- (3) 区間 $-1 \le x \le 0$ において、 $x^3 4x 3$ は常に負の値となる。よって、(イ) I < 0 が正解。
- (4) 区間 [1,3] において最小値 $m=\frac{1}{3}$,最大値 M=1 である。また、区間の幅は 2 なので、 $\frac{1}{3}\cdot 2 \leq I \leq 1\cdot 2$ 、すなわち(イ) $\frac{2}{3} \leq I \leq 2$ が正解。
- (5) 区間 $0 \le x \le 1$ において、 $1, x, x^2, x^3$ は非減少関数である。また、この区間では、 $x^3 \le x^2 \le x \le 1$ である。 よって、

$$B = \int_0^1 1 \, dx > D = \int_0^1 x \, dx > A = \int_0^1 x^2 \, dx > C = \int_0^1 x^3 \, dx$$

となる。

2.4 積分の平均値の定理

2.4.1 積分の平均値の定理

定理 2.4.1. (積分の平均値の定理)

 $f(x) \in C[a,b]$ ([a,b] で連続) のとき、

$$\exists \xi \in [a,b] : \int_a^b f(x) \, dx = f(\xi)(b-a)$$

が成り立つ。

証明 2.4.1. k を定数とする。

• $f(x) \equiv k \text{ のとき}^{*1}$ 、 $a \leq \forall \xi \leq b \text{ に対して}$ 、

$$\int_a^b f(x) dx \stackrel{(*)}{=} k(b-a) = f(\xi)(b-a)$$

より、成り立つ。(*)例 2.2.2. の定数関数により。

・ $f(x) \not\equiv k$ のとき、 $f(x) \in C[a,b]$ より、

$$\exists m = \min_{a \le x \le b} f(x), \quad \exists M = \max_{a \le x \le b} f(x)$$

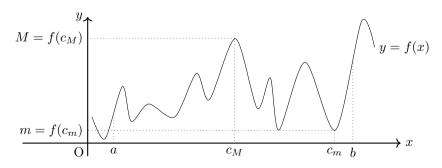
である。よって、

$$m \leq f(x) \leq M \quad (a \leq x \leq b, \ \underbrace{m < M}_{f(x) \not\equiv k})$$

である。このとき、

$$\exists c_m : m = f(c_m), \exists c_M : M = f(c_M)$$

を選べる。ただし、 $c_m,c_M\in[a,b],\ c_m\neq c_M \$ である。 $\overbrace{m< M},f(x)\not\equiv k\$ より



^{*1} $f(x) \equiv k$ とは、恒等的に等しいことを意味する。

以上を改めて書くと、

$$\exists c_m, \exists c_M \in [a, b], \quad m = f(c_m) \le f(x) \le f(c_M) = M \quad (a \le x \le b)$$

ただし、 $f(c_m) < f(c_M)$ かつ $c_m \neq c_M$ に注意 (この < と \neq は $f(x) \not\equiv k$ より解る)。 したがって、

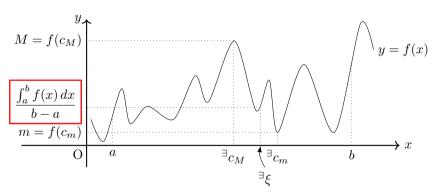
であるから、b-a で各辺を割ると

$$f(c_m) = m \le \frac{\int_a^b f(x) dx}{b-a} \le M = f(c_M)$$

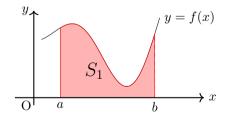
ここで、 $c_M < c_m$ の場合を考える。 $(c_M > c_m$ の場合も同様) $f(c_m) < f(c_M)$ より、中間値の定理を用いると、

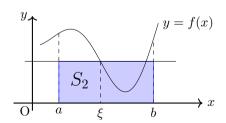
$$\exists \xi \in [c_M, c_m] \subset [a, b] : \frac{\int_a^b f(x) \, dx}{b - a} = f(\xi)$$

である。



☆ 積分の平均値の定理は、幾何学的に考えると、





$$S_1 = S_2$$

2.4.2 演習問題

問題 **2.4.1.** a を定数、n を自然数とする。また、

$$I_n = \int_{a}^{a + \frac{1}{n}} x \cos^2(x - a) dx$$

とする。

このとき、

$$\lim_{n\to\infty} nI_n$$

を求めよ。

問題 2.4.2. f(t) が [a,b] で連続な減少関数ならば、

$$m(x) := \frac{1}{x-a} \int_{a}^{x} f(t) dt$$

は (a,b] で連続な減少関数であることを示せ。

問題 2.4.3. a を正の実数とし、関数 f(x) を

$$f(x) = \frac{1}{\sqrt{x+a}}$$

とする。このとき、以下の問いに答えよ。

ただし、f(x) が x > 0 において単調減少関数であることは証明せず使用して良い。

(1) b を正の実数とするとき、

$$f(b), f(b+1), \int_{b}^{b+1} f(x) dx$$

の大小関係を調べよ。

予習

(2) 以下の値を求めよ。

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$

※ 積分の基本公式を用いる場面がある。

2.4.3 演習問題 略解

略解 2.4.1. $f(x) = x\cos^2(x-a)$ は連続関数なので、積分の平均値の定理より

$$\int_{a}^{a+\frac{1}{n}} x \cos^{2}(x-a) dx = \left(a + \frac{1}{n} - a\right) \cdot \xi \cos^{2}(\xi - a) \tag{1}$$

を満たす ξ が、

$$a < \xi < a + \frac{1}{n} \tag{2}$$

の範囲で存在する。

(1) より、
$$I_n = \frac{1}{n} \cdot \xi \cos^2(\xi - a)$$
 なので、 $nI_n = \xi \cos^2(\xi - a)$ となる。 また、(2) より、 $n \to \infty$ のとき、 $\xi \to a$ なので、

$$\lim_{n \to \infty} nI_n = \lim_{\xi \to a} \xi \cos^2(\xi - a)$$
$$= a \cos^2 0$$
$$= a$$

である。

略解 2.4.2. まず、f(t) は連続関数なので、定積分 $\int_a^x f(t)\,dt$ は x に関して連続関数となる。

また、x-a は x が $x\in(a,b]$ において連続 (正) であるので、 $\frac{1}{x-a}$ も $x\in(a,b]$ において連続である。

しがって、m(x) は $x \in (a, b]$ において連続である。

次に、m(x) の導関数を考えると、

$$m'(x) = \frac{d}{dx} \left(\frac{1}{x - a} \int_a^x f(t) dx \right)$$

$$= \left\{ \frac{d}{dx} \left(\frac{1}{x - a} \right) \right\} \cdot \int_a^x f(t) dt + \frac{1}{x - a} \cdot \frac{d}{dx} \left(\int_a^x f(t) dt \right)$$

$$= -\frac{1}{(x - a)^2} \int_a^x f(t) dt + \frac{1}{x - a} \cdot f(x)$$

$$= \frac{f(x)(x - a) - \int_a^x f(t) dt}{(x - a)^2}$$

となる。

ここで、積分の平均値の定理より、

$$\exists \xi \in [a, x] : \int_{a}^{x} f(t) dx = f(\xi)(x - a)$$

がいえる。

また、f(t) は減少関数なので $\xi \leq x$ において、 $f(\xi) \geq f(x)$ である。よって、m'(x) の分子は

$$f(x)(x-a) - \int_{a}^{x} f(t) dt = f(x)(x-a) - f(\xi)(x-a) \le 0$$

がいえる。

以上より、区間 (a,b] において、 $m'(x) \leq 0$ がいえるので、m(x) は減少関数である。 \square

略解 2.4.3. (1) f(x) は閉区間 $[\alpha, \beta]$ $(\beta > \alpha > 0)$ で連続かつ、微分可能なので、積分の平均値の定理より

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) = f(\xi)$$

を満たす $\alpha<\xi<\beta$ が存在する。(ここでは f(x) が単調減少関数なので、 $\xi\neq\alpha,\beta$) よって、 $\beta\leftarrow b+1, \alpha\leftarrow b$ と思えば、

$$\frac{1}{(b+1)-b} \int_{b}^{b+1} \frac{1}{\sqrt{x+a}} \, dx = \frac{1}{\sqrt{\xi+a}} \tag{7}$$

が成り立つ。

また、f(x) は単調減少関数であり、 $b < \xi < b+1$ より、

$$\frac{1}{\sqrt{b+1+a}} < \frac{1}{\sqrt{\xi+a}} < \frac{1}{\sqrt{b+a}} \tag{1}$$

が成り立つ。よって、(ア),(イ)より、

$$\frac{1}{\sqrt{b+1+a}} < \int_b^{b+1} \frac{1}{\sqrt{x+a}} \, dx < \frac{1}{\sqrt{b+a}}$$
 $($ $)$

であり、

$$f(b+1) < \int_{b}^{b+1} f(x) dx < f(b)$$

(2) (ウ) において、 $a = n^2, b = k$ とおくと、

$$\frac{1}{\sqrt{k+1+n^2}} < \int_k^{k+1} \frac{1}{\sqrt{x+n^2}} \, dx < \frac{1}{\sqrt{k+n^2}} \tag{\mathfrak{I}}$$

が成り立つ。

このとき、左の不等号のkをk-1で置き換えた式

$$\frac{1}{\sqrt{k+n^2}} < \int_{k-1}^k \frac{1}{\sqrt{x+n^2}} dx$$

を (エ) の右の不等式と合わせると、

$$\int_{k}^{k+1} \frac{1}{\sqrt{x+n^2}} \, dx < \frac{1}{\sqrt{k+n^2}} < \int_{k-1}^{k} \frac{1}{\sqrt{x+n^2}} \, dx$$

をえる。ここで、各項のk=1からnまでの数列和をとると、

$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{\sqrt{x+n^2}} dx = \int_{1}^{n+1} \frac{1}{\sqrt{x+n^2}} dx = \left[2\sqrt{x+n^2} \right]_{1}^{n+1}$$

$$= 2(\sqrt{n^2+n+1} - \sqrt{n^2+1})$$

$$\sum_{k=1}^{n} \int_{k-1}^{k} \frac{1}{\sqrt{x+n^2}} dx = \int_{0}^{n} \frac{1}{\sqrt{x+n^2}} dx = \left[2\sqrt{x+n^2} \right]_{0}^{n}$$

$$= 2(\sqrt{n^2+n} - n)$$

あとは、極限をとって挟み撃ちにする。

$$2 \lim_{n \to \infty} (\sqrt{n^2 + n} - n) = 2 \lim_{n \to \infty} \frac{(n^2 + n) - n^2}{\sqrt{n^2 + n} + n} = 2 \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = 1$$

$$2 \lim_{n \to \infty} (\sqrt{n^2 + n + 1} - \sqrt{n^2 + 1}) = 2 \lim_{n \to \infty} \frac{(n^2 + n + 1) - (n^2 + 1)}{\sqrt{n^2 + n + 2} + \sqrt{n^2 + 1}}$$

$$= 2 \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{1}{n}}} = 1$$

以上より、

$$1 < \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k+n^2}} < 1$$

となり、

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k+n^2}} = 1$$

2.5 微分積分の基本定理、基本公式

2.5.1 微分積分の基本定理

定理 2.5.1. (微分積分の基本定理)

 $f(x) \in C[a,b]$ のとき、

$$F(x) := \int_a^x f(t) dt \quad (a \le x \le b)$$

は $F'(x) = f(x) \quad (a \le x \le b)$ をみたす。

証明 2.5.1.
$$F(x+h) = \int_{a}^{x+h} f(t) dt$$
 より、

$$\begin{split} \frac{F(x+h) - F(x)}{h} &= \frac{1}{h} \left(\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt \right) \\ &= \frac{1}{h} \left(\int_x^a f(t) \, dt + \int_a^{x+h} f(t) \, dt \right) \\ &= \frac{1}{h} \int_x^{x+h} f(t) \, dt \end{split}$$

である。ここで、積分の平均値の定理

$$\exists \xi \in [a, b] : \int_a^b f(x) \, dx = f(\xi)(b - a)$$

を用いると、h > 0 のとき、

$$\exists \xi \in \llbracket x, x+h \rrbracket \ : \ \int x+h \int x dx = f(\xi)(\llbracket (x+h) \rrbracket - \llbracket x \rrbracket) = f(\xi)h$$

また、h<0のとき、

$$\exists \xi \in [x+h,x] : \int_{x+h}^{x} f(x) \, dx = f(\xi)(x-(x+h)) = -f(\xi)h$$

であり、これは

$$\Leftrightarrow \int_{x}^{x+h} f(x) dx = f(\xi)h$$

以上より、

$$\exists \xi \in [x, x+h]$$
 (または $\exists \xi \in [x+h, x]$) : $\int_{x+h}^x f(x) = f(\xi)h$

 ξ は x と x+h の間にあるので、 $h \to 0 \stackrel{\text{ならば}}{\Longrightarrow} \xi \to x$ である。よって、

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} f(\xi) = \lim_{\xi \to x} f(\xi) = f(x).$$
 //

定理 2.5.2. (基本公式)

 $f(x) \in C[a,b], G(x)$: f(x) の原始関数とする。このとき、

$$\int_{a}^{b} f(x) dx = G(b) - G(a) \quad \left(\stackrel{\text{def}}{=} : \left[G(x) \right]_{a}^{b} \right)$$

である。

証明 2.5.2. $f(x) \in C[a,b]$ より、f(x) は [a,b] で積分可能だから、

$$F(x) = \int_{a}^{x} f(t) dt \quad (a \le x \le b)$$

とすれば、微分積分の基本定理より、F(x) は f(x) の原始関数である。よって、

$$\exists C \in \mathbb{R} : G(x) = F(x) + C$$

となるから、

$$G(b) - G(a) = (F(b) + C) - (F(a) + C)$$

$$= F(b) - F(a)$$

$$= \int_a^b f(x) dx - \int_a^a f(x) dx$$

$$= \int_a^b f(x) dx$$
 //

例 2.5.1. 基本公式を用いて計算する。

(1)
$$\int_0^1 (x^2 + 1) dx = \left[\frac{1}{3}x^3 + x\right]_0^1 = \left(\frac{1}{3} \cdot 1^3 + 1\right) - \left(\frac{1}{3} \cdot 0^3 + 0\right) = \frac{4}{3}.$$

(2)
$$\int_{-\pi}^{\pi} \sin x \, dx = \left[-\cos x \right]_{-\pi}^{\pi} = -\cos \pi - (-\cos (-\pi)) = -(-1) - (-1 \cdot (-1)) = 0.$$

2.5.2 演習問題

問題 2.5.1. 以下の定積分を求めよ。

$$(1) \quad \int_0^2 5x^4 \, dx$$

(3)
$$\int_{1}^{4} \frac{2}{\sqrt{x}} dx$$

$$(5) \quad \int_0^{\frac{\pi}{4}} \left(2\sin x + \frac{1}{3}\cos x \right) dx$$

(7)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} \, dx$$

(9)
$$\int_0^2 (2x+3)(x-4) \, dx$$

(11)
$$\int_{-1}^{3} \frac{x-4}{2x^2-5x-12} \, dx$$

(13)
$$\int_{-1}^{1} e^{-2x} dx$$

$$(15) \quad \int_0^1 5^x \, dx$$

(17)
$$\int_{10}^{15} \frac{1}{\sqrt{x-6}} \, dx$$

$$(19) \quad \int_0^{\frac{\pi}{2}} \sin\left(x - \frac{\pi}{2}\right) \, dx$$

$$(21) \quad \int_{1}^{4} \frac{x}{2\sqrt{x}} \, dx$$

(23)
$$\int_{1}^{2} \frac{1}{x^2 + 6x + 9} \, dx$$

(25)
$$\int_{2}^{4} \frac{3}{\sqrt{x+1} - \sqrt{x-1}} \, dx$$

(27)
$$\int_{2}^{3} \frac{6x - 5}{3x^2 - 5x + 2} \, dx$$

(29)
$$\int_0^{\pi} \cos\left(2x + \frac{\pi}{2}\right) dx$$

(2)
$$\int_0^2 (x^2 - 2x) dx$$

(4)
$$\int_{1}^{2} (3e^{x} + 4^{x}) dx$$

(6)
$$\int_0^1 (2x+1)^5 \, dx$$

(8)
$$\int_{1}^{3} \frac{1}{5x - 3} \, dx$$

$$(10) \quad \int_{-\frac{3}{2}}^{0} \frac{2x^2 - 5x - 12}{x - 4} \, dx$$

(12)
$$\int_{2}^{4} \frac{1}{x^2 - 1} \, dx$$

(14)
$$\int_0^2 \sqrt{e^x} \, dx$$

$$(16) \quad \int_0^3 \sqrt{\frac{1}{3}x} \, dx$$

$$(18) \quad \int_0^\pi \sin 2x \, dx$$

(20)
$$\int_{1}^{2} \frac{2}{x^2} + \frac{1}{x} dx$$

$$(22) \quad \int_{-12}^{-4} \frac{1}{\sqrt{4-8x}} \, dx$$

(24)
$$\int_{-\frac{1}{2}}^{1} \frac{1}{(2x+1)^2 + 9} \, dx$$

(26)
$$\int_0^1 (3x^2 - 5x + 2)^2 (6x - 5) \, dx$$

(28)
$$\int_0^{\pi} \sin\left(2x + \frac{\pi}{2}\right) dx$$

(30)
$$\int_0^{\frac{\pi}{4}} \sin x \cos x \, dx$$

2.5.3 演習問題 略解

略解 2.5.1. 積分については問題 1.2.1. を参考に (ただし、すべて同じではない)。

(1)
$$\int_0^2 5x^4 dx = \left[x^5\right]_0^2 = 32 - 0 = 32$$

(2)
$$\int_0^2 (x^2 - 2x) dx = \left[\frac{1}{3}x^3 - x^2\right]_0^2 = \left(\frac{1}{3} \cdot 8 - 4\right) - (0 - 0) = -\frac{4}{3}$$

(3)
$$\int_{1}^{4} \frac{2}{\sqrt{x}} dx = \left[4\sqrt{x}\right]_{1}^{4} = 4\sqrt{4} - 4 \cdot 1 = 4$$

(4)
$$\int_{1}^{2} (3e^{x} + 4^{x}) dx = \left[3e^{x} + \frac{4^{x}}{\log 4} \right]_{1}^{2} = 3e^{2} + \frac{4^{2}}{\log 4} - 3e - \frac{4}{\log 4}$$
$$= 3e(e - 1) + \frac{12}{\log 4} \left(= 3e(e - 1) + \frac{6}{\log 2} \right)$$

(5)
$$\int_0^{\frac{\pi}{4}} \left(2\sin x + \frac{1}{3}\cos x \right) dx = \left[-2\cos x + \frac{1}{3}\sin x \right]_0^{\frac{\pi}{4}}$$
$$= -2 \cdot \frac{\sqrt{2}}{2} + \frac{1}{3} \cdot \frac{\sqrt{2}}{2} - (-2) \cdot 1$$
$$= 2 - \frac{5}{6}\sqrt{2}$$

(6)
$$\int_0^1 (2x+1)^5 dx = \left[\frac{1}{12} (2x+1)^6 \right]_0^1 = \frac{1}{12} \left(3^6 - 1 \right) = \frac{182}{3}$$

$$(7) - \frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$
 に注意する。

$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx = \left[\sin^{-1} \frac{x}{2}\right]_{-1}^{1} = \sin^{-1} \frac{1}{2} - \sin^{-1} \frac{1}{2} = \frac{1}{6}\pi - \left(-\frac{1}{6}\pi\right) = \frac{1}{3}\pi$$

(8)
$$\int_{1}^{3} \frac{1}{5x - 3} dx = \left[\frac{1}{5} \log(5x - 3) \right]_{1}^{3} = \frac{1}{5} \log 12 - \frac{1}{5} \log 2 = \frac{1}{5} \log 6$$

$$\int_{0}^{2} (2x+3)(x-4) dx = \left[\frac{2}{3}x^{3} - \frac{5}{2}x^{2} - 12x\right]_{0}^{2} = \frac{2}{3} \cdot 2^{3} - \frac{5}{2} \cdot 2^{2} - 12 \cdot 2 - 0$$
$$= -\frac{86}{3}$$

(10)
$$\int_{-\frac{3}{2}}^{0} \frac{2x^2 - 5x - 12}{x - 4} dx = \left[x^2 + 3x\right]_{-\frac{3}{2}}^{0} = 0 - \left\{\left(-\frac{3}{2}\right)^2 + 3\left(-\frac{3}{2}\right)\right\} = \frac{9}{4}$$

(11)
$$\int_{-1}^{3} \frac{x-4}{2x^2 - 5x - 12} \, dx = \left[\frac{1}{2} \log(2x+3) \right]_{-1}^{3} = \frac{1}{2} \log 9 - \frac{1}{2} \log 1 = \log 3$$

(12)
$$\int_{2}^{4} \frac{1}{x^{2} - 1} dx = \left[\frac{1}{2} \log \left(\frac{x - 1}{x + 1} \right) \right]_{2}^{4} = \frac{1}{2} \log \frac{3}{5} - \frac{1}{2} \log \frac{1}{3} = \log \frac{3}{\sqrt{5}}$$

(13)
$$\int_{-1}^{1} e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_{-1}^{1} = -\frac{1}{2} e^{-2} - \left(-\frac{1}{2} e^{2} \right) = \frac{1}{2} (e^{2} - e^{-2})$$

(14)
$$\int_0^2 \sqrt{e^x} \, dx = \left[2\sqrt{e^x}\right]_0^2 = 2\sqrt{e^2} - 2\sqrt{e^0} = 2e - 2$$

(15)
$$\int_0^1 5^x dx = \left[\frac{5^x}{\log 5} \right]_0^1 = \frac{5^1}{\log 5} - \frac{5^0}{\log 5} = \frac{4}{\log 5}$$

(16)
$$\int_0^3 \sqrt{\frac{1}{3}x} \, dx = \left[\frac{2\sqrt{3}}{9} x \sqrt{x} \right]_0^3 = \frac{2\sqrt{3}}{9} \cdot 3\sqrt{3} - \frac{2\sqrt{3}}{9} \cdot 0\sqrt{0} = 2$$

(17)
$$\int_{10}^{15} \frac{1}{\sqrt{x-6}} dx = \left[2\sqrt{x-6}\right]_{10}^{15} = 2\sqrt{9} - 2\sqrt{4} = 2$$

(18)
$$\int_0^{\pi} \sin 2x \, dx = \left[-\frac{1}{2} \cos 2x \right]_0^{\pi} = -\frac{1}{2} \cos 2\pi - \left(-\frac{1}{2} \cos 0 \right) = 0$$

(19)
$$\int_0^{\frac{\pi}{2}} \sin\left(x - \frac{\pi}{2}\right) dx = \left[-\sin x\right]_0^{\frac{\pi}{2}} = -1$$

(20)
$$\int_{1}^{2} \frac{2}{x^{2}} + \frac{1}{x} dx = \left[-\frac{2}{x} + \log|x| \right]_{1}^{2} = -\frac{2}{2} + \log 2 - \left(-\frac{2}{1} + \log 1 \right)$$
$$= 1 + \log 2$$

(21)
$$\int_{1}^{4} \frac{x}{2\sqrt{x}} dx = \left[\frac{1}{3}x\sqrt{x}\right]_{1}^{4} = \frac{1}{3} \cdot 4\sqrt{4} - \frac{1}{3} \cdot 1\sqrt{1} = \frac{7}{3}$$

(22)
$$\int_{-12}^{-4} \frac{1}{\sqrt{4 - 8x}} dx = \left[-\frac{1}{2} \sqrt{1 - 2x} \right]_{-12}^{-4}$$
$$= -\frac{1}{2} \sqrt{1 - 2 \cdot (-4)} - \left(-\frac{1}{2} \sqrt{1 - 2 \cdot (-12)} \right) = 1$$

(23)
$$\int_{1}^{2} \frac{1}{x^{2} + 6x + 9} dx = \left[-\frac{1}{x+3} \right]_{1}^{2} = -\frac{1}{5} - \left(-\frac{1}{4} \right) = \frac{1}{20}$$

$$(24)$$
 $-\frac{\pi}{2} < \tan^{-1}\theta < \frac{\pi}{2}$ に注意に注意する。

$$\int_{-\frac{1}{6}}^{1} \frac{1}{(2x+1)^2 + 9} dx = \left[\frac{1}{6} \tan^{-1} \frac{2x+1}{3} \right]_{-\frac{1}{2}}^{1} = \frac{1}{6} \tan^{-1} 1 - \frac{1}{6} \tan^{-1} 0 = \frac{\pi}{24}$$

(25)
$$\int_{2}^{4} \frac{3}{\sqrt{x+1} - \sqrt{x-1}} dx = \left[(x+1)\sqrt{x+1} + (x-1)\sqrt{x-1} \right]_{2}^{4}$$
$$= 5\sqrt{5} + 3\sqrt{3} - \left(3\sqrt{3} + \sqrt{1} \right) = 5\sqrt{5} - 1$$

(26)
$$\int_0^1 (3x^2 - 5x + 2)^2 (6x - 5) \, dx = \left[\frac{1}{3} (3x^2 - 5x + 2)^3 \right]_0^1 = \frac{1}{3} \cdot 0^3 - \frac{1}{3} \cdot 2^3 = -\frac{8}{3}$$

(27)
$$\int_{2}^{3} \frac{6x - 5}{3x^{2} - 5x + 2} dx = \left[\log|3x - 2| + \log|x - 1| \right]_{2}^{3}$$
$$= \log 7 + \log 2 - (\log 4 + \log 1) = \log 7 - \log 2$$

(28)
$$\int_0^{\pi} \sin\left(2x + \frac{\pi}{2}\right) dx = \left[-\frac{1}{2}\cos\left(2x + \frac{\pi}{2}\right)\right]_0^{\pi}$$
$$= -\frac{1}{2}\cos\frac{5}{2}\pi - \left(-\frac{1}{2}\cos\frac{\pi}{2}\right) = 0$$

(29)
$$\int_0^\pi \cos\left(2x + \frac{\pi}{2}\right) dx = \left[\frac{1}{2}\sin\left(2x + \frac{\pi}{2}\right)\right]_0^\pi = 0$$

(30)
$$\int_0^{\frac{\pi}{4}} \sin x \cos x \, dx = \left[\frac{1}{2} \sin^2 x \right]_0^{\frac{\pi}{4}} = \frac{1}{2} \sin^2 \frac{\pi}{4} - \frac{1}{2} \sin^2 0 = \frac{1}{4}$$
$$(\mathbb{S}|\mathbf{R}|) = \left[-\frac{1}{2} \cos^2 x \right]_0^{\frac{\pi}{4}} = -\frac{1}{2} \cos^2 \frac{\pi}{4} - \left(-\frac{1}{2} \cos^2 0 \right) = \frac{1}{4}$$

2.6 演習Ⅱ

2.6.1 演習問題

問題 2.6.1. 以下の定積分を求めよ。

$$(1) \int_{-1}^{2} (3x^{2} - 4x) dx$$

$$(2) \int_{0}^{1} e^{2x} dx$$

$$(3) \int_{1}^{e} \frac{2}{x} dx$$

$$(4) \int_{0}^{\frac{\pi}{2}} 4 \cos x dx$$

$$(5) \int_{-\pi}^{\pi} \sin x dx$$

$$(6) \int_{0}^{1} (2x + 1)^{3} dx$$

$$(7) \int_{1}^{2} x(x^{2} - 1)^{4} dx$$

$$(8) \int_{0}^{\frac{\pi}{2}} \sin x \cos^{2} x dx$$

$$(9) \int_{0}^{\pi} x \sin x dx$$

$$(10) \int_{0}^{1} x e^{-x} dx$$

$$(11) \int_{1}^{e} x \log x dx$$

$$(12) \int_{-2}^{2} |x^{2} - 1| dx$$

$$(13) \int_{0}^{1} \frac{x}{\sqrt{x^{2} + 1}} dx$$

$$(14) \int_{0}^{\frac{\pi}{2}} \cos^{3} x dx$$

$$(15) \int_{0}^{\pi} \sin^{2} x dx$$

$$(16) \int_{-2}^{4} (x^{3} - x) dx$$

$$(17) \int_{0}^{1} \frac{1}{x^{2} + 1} dx$$

$$(18) \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx$$

問題 2.6.2. 以下の問いに答えよ。

(21) $\int_{0}^{4} \frac{2x+5}{r^2-r-2} dx$

(19) $\int_{-3}^{3} |x| \, dx$

- (1) 関数 $y=x^2$ と x 軸、直線 $x=1,\,x=3$ で囲まれた部分の面積 S_1 を求めよ。
- (2) 関数 $y = x^2 4$ と x 軸、直線 x = 0, x = 2 で囲まれた部分の面積 S_2 を求めよ。

(20) $\int_{-1}^{1} \frac{1}{\sqrt{2-x^2}} dx$

(22) $\int_{4}^{7} \frac{x^2 - 10x + 26}{(x+2)(x-3)^2} dx$

- (3) 2 つの曲線 $y=x^2$ と y=x で囲まれた部分の面積 S_3 を求めよ。
- (4) 3 つの領域 $y \le -\frac{1}{4}x^2 + 7$, $y \ge \frac{1}{2}x^2 2x$, $y \ge \frac{3}{4}x$ の共通部分の面積 S_4 を求めよ。

2.6 演習 II **127**

2.6.2 演習問題 略解

略解 2.6.1.

(1)
$$\int_{-1}^{2} (3x^2 - 4x) dx = \left[x^3 - 2x^2 \right]_{-1}^{2} = (8 - 8) - (-1 - 2)$$

(2)
$$\int_0^1 e^{2x} dx = \left[\frac{1}{2}e^{2x}\right]_0^1$$

$$= \frac{1}{2}(e^2 - 1)$$

(3)
$$\int_{1}^{e} \frac{2}{x} dx = 2 \left[\log |x| \right]_{1}^{e} = 2(\log e - \log 1)$$
$$= 2$$

(4)
$$\int_0^{\frac{\pi}{2}} 4\cos x \, dx = 4 \left[\sin x\right]_0^{\frac{\pi}{2}}$$

$$= 4$$

(5)
$$\int_{-\pi}^{\pi} \sin x \, dx = \left[-\cos x \right]_{-\pi}^{\pi}$$

(6)
$$\int_0^1 (2x+1)^3 dx = \left[\frac{1}{4}(2x+1)^4 \cdot \frac{1}{2}\right]_0^1 = \frac{1}{8}(3^4 - 1^4)$$
$$= 20$$

(7)まず、不定積分で考える。 $t=x^2-1$ とおくと、 $dt=2x\,dx$ より、

$$\int x(x^2 - 1)^4 dx = \int xt^4 \cdot \frac{1}{2x} dt = \frac{1}{2} \int t^4 dt = \frac{1}{2} \cdot \frac{1}{5} t^5 + C = \frac{1}{10} (x^2 - 1)^5 + C$$

となるので、定積分は以下となる。

$$\int_{1}^{2} x(x^{2} - 1)^{4} dx = \left[\frac{1}{10}(x^{2} - 1)^{5}\right]_{1}^{2} = \frac{1}{10}\left\{(2^{2} - 1)^{5} - (1^{2} - 1)^{5}\right\}$$
$$= \frac{243}{10}$$

(8) まず、不定積分で考える。 $t = \cos x$ とおくと、 $dt = -\sin x \, dx$ より、

$$\int \sin x \cos^2 x \, dx = \int \sin x \cdot t^2 \cdot \frac{1}{-\sin x} \, dt$$

$$= -\frac{1}{3} t^3 + C = -\frac{1}{3} \cos^3 x + C$$

$$\therefore \int_0^{\frac{\pi}{2}} \sin x \cos^2 x \, dx = \left[-\frac{1}{3} \cos^3 x \right]_0^{\frac{\pi}{2}} = -\frac{1}{3} \left(0^3 - 1^3 \right)$$

$$= \frac{1}{3}$$

(9) まず、部分積分法を使うと (問題 1.5.1.(1))、

$$\int x \sin x \, dx = (-\cos x) \cdot x - \int (-\cos x) \cdot x' \, dx = -x \cos x + \sin x + C$$

なので、

$$\int_0^{\pi} x \sin x \, dx = \left[-x \cos x + \sin x \right]_0^{\pi} = \left\{ -\pi \cdot (-1) + 0 \right\} - \left\{ 0 + 0 \right\}$$

$$= \pi$$

(10) 部分積分法によって、

$$\int xe^{-x} dx = -e^{-x} \cdot x - \int (-e^{-x}) \cdot 1 dx = -(x+1)e^{-x} + C$$

となるので

$$\int_0^1 xe^{-x} dx = \left[-(x+1)e^{-x} \right]_0^1 = -2e^{-1} - \left\{ -1 \cdot e^0 \right\}$$
$$= 1 - \frac{2}{e}$$

(11) 例 1.5.3. (3) より、

$$\int x \log x \, dx = \frac{1}{2} x^2 \log x - \int \frac{1}{2} x \, dx = \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + C$$

なので、

$$\begin{split} \int_{1}^{e} x \log x \, dx &= \left[\frac{1}{2} x^{2} \log x - \frac{1}{4} x^{2} \right]_{1}^{e} \\ &= \left(\frac{1}{2} e^{2} \log e - \frac{1}{4} e^{2} \right) - \left(\frac{1}{2} \cdot 1^{2} \log 1 - \frac{1}{4} \cdot 1^{2} \right) \\ &= \frac{e^{2}}{4} + \frac{1}{4} \end{split}$$

2.6 演習 II 129

(12) 絶対値を外すため、定理 2.3.1. (3) を使う。

$$\int_{-2}^{2} |x^2 - 1| \, dx = \int_{-2}^{-1} (x^2 - 1) \, dx + \int_{-1}^{1} (1 - x^2) \, dx + \int_{1}^{2} (x^2 - 1) \, dx$$
$$= \left[\frac{1}{3} x^3 - x \right]_{-2}^{-1} + \left[x - \frac{1}{3} x^3 \right]_{-1}^{1} + \left[\frac{1}{3} x^3 - x \right]_{1}^{2}$$
$$= 4$$

(13) $t = x^2 + 1$ とすると dt = 2x dx であり、不定積分は

$$\int \frac{x}{\sqrt{x^2 + 1}} \, dx = \int \frac{x}{\sqrt{t}} \cdot \frac{1}{2x} \, dt = \sqrt{t} + C = \sqrt{x^2 + 1} + C$$

となるので、定積分は以下の通りである。

$$\int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx = \left[\sqrt{x^2 + 1} \right]_0^1$$
$$= \sqrt{2} - 1$$

 $(14)\cos^3 x = \cos x(1-\sin^2 x)$ と、例 1.3.2. より

$$\int \cos^3 x \, dx = \int \cos x (1 - \sin^2 x) \, dx = \sin x - \frac{\sin^3 x}{3} + C$$

である。よって、定積分は以下の通りである。

$$\int_0^{\frac{\pi}{2}} \cos^3 x \, dx = \left[\sin x - \frac{\sin^3 x}{3} \right]_0^{\frac{\pi}{2}}$$
$$= \left(1 - \frac{1}{3} \right) - 0 = \frac{2}{3}$$

(15)
$$\int_0^{\pi} \sin^2 x \, dx = \int_0^{\pi} \frac{1 - \cos 2x}{2} dx = \left[\frac{1}{2} x - \frac{1}{4} \sin 2x \right]_0^{\pi}$$
$$= \left(\frac{\pi}{2} - 0 \right) - 0 = \frac{\pi}{2}$$

(16)
$$\int_{-2}^{4} (x^3 - x) dx = \left[\frac{x^4}{4} - \frac{x^2}{2} \right]_{-2}^{4} = (64 - 8) - (4 - 2) = 54$$

(17)
$$\int_0^1 \frac{1}{x^2 + 1} dx = \left[\tan^{-1} x \right]_0^1 = \frac{\pi}{4} - 0$$
$$= \frac{\pi}{4}$$

(18) 例 1.5.2. (2) を参考に部分積分法を用いる。

$$\int_0^{\frac{\pi}{2}} e^x \cos x \, dx = \left[\frac{1}{2} e^x (\cos x + \sin x) \right]_0^{\frac{\pi}{2}} = \frac{1}{2} e^{\frac{\pi}{2}} (0+1) - \frac{1}{2} e^0 (1+0)$$
$$= \frac{1}{2} (e^{\frac{\pi}{2}} - 1)$$

(19)
$$\int_{-3}^{3} |x| \, dx = \int_{-3}^{0} (-x) \, dx + \int_{0}^{3} x \, dx = \left[-\frac{x^{2}}{2} \right]_{-3}^{0} + \left[\frac{x^{2}}{2} \right]_{0}^{3}$$
$$= \left\{ 0 - \left(-\frac{(-3)^{2}}{2} \right) \right\} + \left\{ \frac{3^{2}}{2} - 0 \right\}$$
$$= 9$$

$$(20) - \frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$
 に注意する。
$$\int_{-1}^{1} \frac{1}{\sqrt{2 - x^2}} dx = \left[\sin^{-1} \frac{x}{\sqrt{2}} \right]_{-1}^{1} = \sin^{-1} \frac{1}{\sqrt{2}} - \sin^{-1} \frac{-1}{\sqrt{2}}$$
$$= \frac{1}{4}\pi - \left(-\frac{1}{4}\pi \right) = \frac{1}{2}\pi$$

(21)
$$\int_{3}^{4} \frac{2x+5}{x^{2}-x-2} dx = \int_{3}^{4} \left(\frac{3}{x-2} - \frac{1}{x+1}\right) dx$$
$$= \left[3\log|x-2| - \log|x+1|\right]_{3}^{4}$$
$$= (3\log 2 - \log 5) - (3\log 1 - \log 4)$$
$$= \log \frac{32}{5}$$

(22)
$$\int_{4}^{7} \frac{x^{2} - 10x + 26}{(x+2)(x-3)^{2}} dx = \int_{4}^{7} \left(\frac{2}{x+2} - \frac{1}{x-3} + \frac{1}{(x-3)^{2}}\right) dx$$
$$= \left[2\log|x+2| - \log|x-3| - \frac{1}{x-3}\right]_{4}^{7}$$
$$= \left(2\log 9 - \log 4 - \frac{1}{4}\right) - (2\log 6 - \log 1 - 1)$$
$$= \log \frac{81}{4} - \frac{1}{4} - \log 36 + 1$$
$$= \log \frac{9}{16} + \frac{3}{4}$$
$$\left(= 2\log \frac{3}{4} + \frac{3}{4}\right)$$

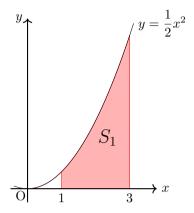
略解 2.6.2. (1) まず、関数 $f(x) = \frac{1}{2}x^2$ の区間 [1,3] の定積分 S を求める。

$$S = \int_{1}^{3} \frac{1}{2}x^{2} dx = \left[\frac{1}{2} \cdot \frac{1}{3}x^{3}\right]_{1}^{3}$$
$$= \frac{13}{3}$$

右図のとおり、関数は常にx軸より上なので、

$$S_1 = S = \frac{13}{3}$$

である。

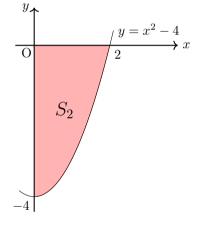


(2) (1) と同様に、 $f(x) = x^2 - 4$ の区間 [0, 2] の定積分 S を求める。

$$S = \int_0^2 (x^2 - 4) dx = \left[\frac{1}{3}x^3 - 4x \right]_0^2$$
$$= -\frac{16}{3}$$

右図のとおり、関数 $f(x)=x^2-4$ は区間 [0,2] において $f(x)\leq 0$ なので (補題 2.1.1. より)、 $S_2=-S$ である。よって、

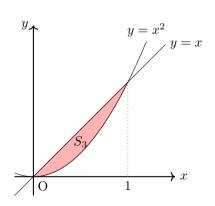
$$S_2 = \frac{16}{3}$$



である。

(3) まず、2つの曲線 $y=x^2,\ y=x$ の交点を求めると、 $(0,0),\ (1,1)$ である。 いずれの曲線も区間 [0,1] において ≥ 0 である ことに注意し、[0,1] における $y=x^2$ と x 軸の間 の面積を $S,\ y=x$ と x 軸の間の面積を S' とする と、 $S_3=S'-S$ なので、

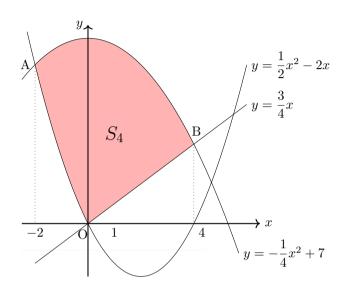
$$S_3 = \int_0^1 x \, dx - \int_0^1 x^2 \, dx$$
$$= \left[\frac{1}{2} x^2 \right]_0^1 - \left[\frac{1}{3} x^3 \right]_0^1$$
$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$



(4) 3 つの領域

$$y \le -\frac{1}{4}x^2 + 7, \ y \ge \frac{1}{2}x^2 - 2x, \ y \ge \frac{3}{4}x$$

の共通部分は下図のようになる。



この領域をつくる関数の交点は、図中の

$$O(0,0), A(-2,6), B(4,3)$$

である。

図から解るように、区間 [-2,0] では $y=-\frac{1}{4}x^2+7$ と $y=\frac{1}{2}x^2-2x$ で挟まれた部分、区間 [0,4] では $y=-\frac{1}{4}x^2+7$ と $y=\frac{3}{4}x$ で挟まれた部分の領域となる。 したがって、

$$S_4 = \int_{-2}^0 \left(-\frac{1}{4}x^2 + 7 \right) dx - \int_{-2}^0 \left(\frac{1}{2}x^2 - 2x \right) dx$$
$$+ \int_0^4 \left(-\frac{1}{4}x^2 + 7 \right) dx - \int_0^4 \frac{3}{4}x dx$$
$$= \left[-\frac{1}{4} \cdot \frac{1}{3}x^3 + 7x \right]_{-2}^4 - \left[\frac{1}{2} \cdot \frac{1}{3}x^3 - x^2 \right]_{-2}^0 - \left[\frac{3}{8}x^2 \right]_0^4$$
$$= \frac{74}{3}$$

となる。

※ なお、
$$\int_{-2}^{0} f(x) dx + \int_{0}^{4} f(x) dx$$
 は $\int_{-2}^{4} f(x) dx$ になる。 (定積分の性質 (3))

2.7 まとめ

2.7.1 まとめのテスト MA

問題 1. 以下の有理関数を部分分数展開 (部分分数分解) せよ。

(1)
$$\frac{x-7}{(x-2)(x+3)}$$

(2)
$$\frac{7x-5}{x^3-x^2-x+1}$$

問題 2. 以下の関数の不定積分を求めよ。

(1)
$$x^2 + 2x - 3$$

(2)
$$\sqrt{x} - \frac{1}{\sqrt{x}}$$

$$(3) \quad e^x - 2^x$$

$$(4)$$
 $\cos 3x$

(5)
$$\tan(2x-1)$$

(6)
$$\frac{1}{\sqrt{4-x^2}}$$

$$(7) \quad \frac{2}{4+x^2}$$

$$(8) \quad \frac{2x}{4-x^2}$$

(9)
$$\frac{7x-5}{x^3-x^2-x+1}$$

問題 3. 以下の定積分を求めよ。

(1)
$$\int_{1}^{2} (x^{2} + 2x - 3) dx$$
 (2) $\int_{2}^{4} (\sqrt{x} - \frac{1}{\sqrt{x}}) dx$ (3) $\int_{1}^{3} (e^{x} - 2^{x}) dx$

(2)
$$\int_{2}^{4} \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$$

(3)
$$\int_{1}^{3} (e^{x} - 2^{x}) dx$$

$$(4) \int_0^\pi |\sin(2x)| \, dx$$

(4)
$$\int_0^{\pi} |\sin(2x)| dx$$
 (5) $\int_0^{\frac{\pi}{4}} \cos x \sin x dx$ (6) $\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$

(6)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} \, dx$$

(7)
$$\int_{2}^{2\sqrt{3}} \frac{2}{4+x^2} \, dx$$

(8)
$$\int_{-1}^{1} \frac{2x}{4-x^2} dx$$

(7)
$$\int_{2}^{2\sqrt{3}} \frac{2}{4+x^2} dx$$
 (8) $\int_{-1}^{1} \frac{2x}{4-x^2} dx$ (9) $\int_{2}^{3} \frac{7x-5}{x^3-x^2-x+1} dx$

問題 4. 以下の問いに答えよ。

- (1) 2 つの曲線 $y = \sin x, y = -\cos x$ で囲まれた領域のうち、点 (1,0) を含む領域の面 積を求めよ。
- (2) 3 つの曲線 $y=x^2+2x-1, y=-2x^2-7x-1, y=-\frac{3}{2}x^2-x+\frac{9}{2}$ で囲まれた領 域のうち、原点を含む領域の面積を求めよ。
- (3) 定数 a を $-5 \le a \le 4$ とする。 区間 [a,a+1] において曲線 $y=x^2-25$ と x 軸の 間にある領域の面積が $\frac{14}{9}$ であるとき、定数 a の値を求めよ。

2.7.2 **まとめのテスト** MB

問題 1. 以下の有理関数を部分分数展開 (部分分数分解) せよ。

(1)
$$\frac{x+7}{(x-3)(x+2)}$$

(2)
$$\frac{7x+5}{x^3+x^2-x-1}$$

問題 2. 以下の関数の不定積分を求めよ。

(1)
$$x^2 + 2x + 3$$

(2)
$$\frac{1}{\sqrt{x}} - \sqrt{x}$$

$$(3) \quad 2^x - e^x$$

$$(4)$$
 $\sin 3x$

$$(5) \quad \tan(2x-1)$$

(5)
$$\tan(2x-1)$$
 (6) $\frac{1}{\sqrt{4-x^2}}$

(7)
$$\frac{2}{4+x^2}$$

$$(8) \quad \frac{2x}{4-x^2}$$

$$(9) \quad \frac{7x+5}{x^3+x^2-x-1}$$

問題 3. 以下の定積分を求めよ。

(1)
$$\int_{1}^{2} (x^2 + 2x + 3) dx$$

(1)
$$\int_{1}^{2} (x^{2} + 2x + 3) dx$$
 (2) $\int_{2}^{4} \left(\frac{1}{\sqrt{x}} - \sqrt{x}\right) dx$ (3) $\int_{3}^{4} (2^{x} - e^{x}) dx$

(3)
$$\int_{3}^{4} (2^{x} - e^{x}) dx$$

(4)
$$\int_0^{\pi} |\cos(2x)| dx$$

(4)
$$\int_0^{\pi} |\cos(2x)| dx$$
 (5) $\int_0^{\frac{\pi}{4}} \sin x \cos x dx$ (6) $\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$

(6)
$$\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx$$

(7)
$$\int_{2}^{2\sqrt{3}} \frac{2}{4+x^2} \, dx$$

(8)
$$\int_{-1}^{1} \frac{2x}{4 - x^2} \, dx$$

(7)
$$\int_{2}^{2\sqrt{3}} \frac{2}{4+x^2} dx$$
 (8) $\int_{-1}^{1} \frac{2x}{4-x^2} dx$ (9) $\int_{2}^{3} \frac{7x+5}{x^3+x^2-x-1} dx$

問題 4. 以下の問いに答えよ。

- (1) 2 つの曲線 $y = \cos x, y = -\sin x$ で囲まれた領域のうち、点 (1,0) を含む領域の面 積を求めよ。
- (2) 3 つの曲線 $y = -x^2 + 2x + 1, y = 2x^2 7x + 1, y = \frac{3}{2}x^2 x \frac{9}{2}$ で囲まれた領域 のうち、原点を含む領域の面積を求めよ。
- (3) 定数 a を $-5 \le a \le 4$ とする。区間 [a, a+1] において曲線 $y = x^2 25$ と x 軸の 間にある領域の面積が $\frac{14}{a}$ であるとき、定数 a の値を求めよ。

2.7 まとめ **135**

2.7.3 **まとめのテスト** MA 略解

略解 1. ヘビサイドの方法、または係数比較の方法で展開する。

$$(1)\frac{x-7}{(x-2)(x+3)} = \frac{2}{x+3} - \frac{1}{x-2}$$

$$(2)\frac{7x-5}{x^3-x^2-x+1} = \frac{3}{x-1} - \frac{3}{x+1} + \frac{1}{(x-1)^2}$$

略解 2. 以下のCはすべて積分定数とする。

(1)
$$\int (x^2 + 2x - 3) dx = \frac{1}{3}x^3 + x^2 - 3x + C$$

$$(2)\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = \frac{2}{3}\sqrt{x}(x-3) + C$$

(3)
$$\int (e^x - 2^x) dx = e^x - \frac{2^x}{\log 2} + C$$

$$(4) \int \cos 3x \, dx = \frac{1}{3} \sin 3x + C$$

(5)
$$\int \tan(2x-1) \, dx = -\frac{1}{2} \log|\cos(2x-1)| + C$$

(6)
$$\int \frac{1}{\sqrt{4-x^2}} dx = \sin^{-1} \frac{x}{2} + C$$

(7)
$$\int \frac{2}{4+x^2} dx = 2 \cdot \frac{1}{2} \tan^{-1} \frac{x}{2} + C$$
$$= \tan^{-1} \frac{x}{2} + C$$

(8)
$$\int \frac{2x}{4 - x^2} dx = -\log|4 - x^2| + C$$

$$(9) \int \frac{7x+5}{x^3+x^2-x-1} \, dx = 3\log\left|\frac{x-1}{x+1}\right| - \frac{1}{x-1} + C$$

略解 3.

(1)
$$\int_{1}^{2} (x^{2} + 2x - 3) dx = \left[\frac{1}{3}x^{3} + x^{2} - 3x \right]_{1}^{2}$$

= $\frac{7}{3}$

(2)
$$\int_{2}^{4} \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = \left[\frac{2}{3}\sqrt{x}(x-3)\right]_{2}^{4}$$

= $\frac{4}{3} + \frac{2}{3}\sqrt{2}$

(3)
$$\int_{1}^{3} (e^{x} - 2^{x}) dx = \left[e^{x} - \frac{2^{x}}{\log 2} \right]_{1}^{3}$$

= $e^{3} - e - \frac{6}{\log 2}$

$$(4) \int_0^{\pi} |\sin 2x| \, dx = \int_0^{\frac{\pi}{2}} \sin 2x \, dx + \int_{\frac{\pi}{2}}^{\pi} (-\sin 2x) \, dx$$

$$= \left[-\frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{2}} - \left[-\frac{1}{2} \cos 2x \right]_{\frac{\pi}{2}}^{\pi}$$

$$= -\frac{1}{2} \cdot (-1) - \left(-\frac{1}{2} \cdot 1 \right) - \left\{ -\frac{1}{2} \cdot 1 - \left(-\frac{1}{2} \cdot (-1) \right) \right\}$$

$$= 2$$

(5)
$$\int_0^{\frac{\pi}{4}} \cos x \sin x \, dx = \left[\frac{1}{2} \sin^2 x \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{4}$$

(6)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx = \left[\sin^{-1} \frac{x}{2}\right]_{-1}^{1}$$
$$= \frac{\pi}{3}$$

$$(7) \int_{2}^{2\sqrt{3}} \frac{2}{4+x^{2}} dx = \left[\tan^{-1} \frac{x}{2} \right]_{2}^{2\sqrt{3}}$$

$$= \tan^{-1} \sqrt{3} - \tan^{-1} 1$$

$$= \frac{\pi}{3} - \frac{\pi}{4}$$

$$= \frac{\pi}{12}$$

(8)
$$\int_{-1}^{1} \frac{2x}{4 - x^2} dx = \left[-\log|4 - x^2| \right]_{-1}^{1}$$
$$= 0$$

$$(9) \int_{2}^{3} \frac{7x - 5}{x^{3} - x^{2} - x + 1} dx = \left[3 \log \left| \frac{x + 1}{x - 1} \right| - \frac{1}{x - 1} \right]_{2}^{3}$$
$$= 3 \log \frac{3}{2} + \frac{1}{2}$$

略解 4.

(1)
$$2\sqrt{2}$$
 (2) $\frac{35}{6}$ (3) $\frac{13}{3}, -\frac{16}{3}$

2.7 まとめ **137**

2.7.4 **まとめのテスト** MB 略解

略解 1. ヘビサイドの方法、または係数比較の方法で展開する。

$$(1)\frac{x+7}{(x-3)(x+2)} = \frac{2}{x-3} - \frac{1}{x+2}$$

$$(2)\frac{7x+5}{x^3+x^2-x-1} = \frac{3}{x-1} - \frac{3}{x+1} + \frac{1}{(x+1)^2}$$

略解 2. 以下のCはすべて積分定数とする。

(1)
$$\int (x^2 + 2x + 3) dx = \frac{1}{3}x^3 + x^2 + 3x + C$$

$$(2)\int \left(\frac{1}{\sqrt{x}} - \sqrt{x}\right) dx = -\frac{2}{3}\sqrt{x}(x-3) + C$$

(3)
$$\int (2^x - e^x) dx = \frac{2^x}{\log 2} - e^x + C$$

(4)
$$\int \sin 3x \, dx = -\frac{1}{3} \cos 3x + C$$

(5)
$$\int \tan(2x-1) \, dx = -\frac{1}{2} \log|\cos(2x-1)| + C$$

(6)
$$\int \frac{1}{\sqrt{4-x^2}} dx = \sin^{-1} \frac{x}{2} + C$$

(7)
$$\int \frac{2}{4+x^2} dx = 2 \cdot \frac{1}{2} \tan^{-1} \frac{x}{2} + C$$
$$= \tan^{-1} \frac{x}{2} + C$$

(8)
$$\int \frac{2x}{4-x^2} dx = -\log|4-x^2| + C$$

$$(9) \int \frac{7x+5}{x^3-x^2-x+1} \, dx = 3 \log \left| \frac{x-1}{x+1} \right| - \frac{1}{x+1} + C$$

略解 3.

(1)
$$\int_{1}^{2} (x^{2} + 2x + 3) dx = \left[\frac{1}{3}x^{3} + x^{2} + 3x\right]_{1}^{2}$$

= $\frac{25}{3}$

(2)
$$\int_{2}^{4} \left(\frac{1}{\sqrt{x}} - \sqrt{x} \right) dx = \left[-\frac{2}{3} \sqrt{x} (x - 3) \right]_{2}^{4}$$

= $-\frac{4}{3} - \frac{2}{3} \sqrt{2}$

(3)
$$\int_3^4 (2^x - e^x) dx = \left[\frac{2^x}{\log 2} - e^x \right]_3^4$$

= $\frac{8}{\log 2} - e^4 + e^3$

$$(4) \int_0^{\pi} |\cos(2x)| \, dx = \int_0^{\frac{\pi}{4}} \cos(2x) \, dx + \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi} (-\cos(2x)) \, dx + \int_{\frac{3}{4}\pi}^{\pi} \cos(2x) \, dx$$

$$= \left[\frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{4}} - \left[\frac{1}{2} \sin(2x) \right]_{\frac{\pi}{4}}^{\frac{3}{4}\pi} + \left[\frac{1}{2} \sin(2x) \right]_{\frac{3}{4}\pi}^{\pi}$$

$$= \frac{1}{2} - (-1) + \frac{1}{2}$$

$$= 2$$

(5)
$$\int_0^{\frac{\pi}{4}} \sin x \cos x \, dx = \left[\frac{1}{2} \sin^2 x \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{4}$$

(6)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx = \left[\sin^{-1} \frac{x}{2}\right]_{-1}^{1}$$
$$= \frac{\pi}{3}$$

$$(7) \int_{2}^{2\sqrt{3}} \frac{2}{4+x^{2}} dx = \left[\tan^{-1} \frac{x}{2} \right]_{2}^{2\sqrt{3}}$$

$$= \tan^{-1} \sqrt{3} - \tan^{-1} 1$$

$$= \frac{\pi}{3} - \frac{\pi}{4}$$

$$= \frac{\pi}{12}$$

(8)
$$\int_{-1}^{1} \frac{2x}{4 - x^2} dx = \left[-\log |4 - x^2| \right]_{-1}^{1}$$

$$(9) \int_{2}^{3} \frac{7x+5}{x^{3}+x^{2}-x-1} dx = \left[3\log\left|\frac{x-1}{x+1}\right| - \frac{1}{x+1}\right]_{2}^{3}$$
$$= 3\log\frac{3}{2} + \frac{1}{12}$$

略解 4.

(1)
$$2\sqrt{2}$$
 (2) $\frac{35}{6}$ (3) $\frac{13}{3}, -\frac{16}{3}$

2.7 まとめ 139

2.7.5 まとめのテスト 再

問題 1. 以下の有理関数を部分分数展開 (部分分数分解) せよ。

(1)
$$\frac{4x+1}{(2x-1)(x+1)}$$

(2)
$$\frac{x^2 - 3x + 5}{x^3 - 3x^2 + 3x - 1}$$

問題 2. 以下の関数の不定積分を求めよ。

(1) $x\sqrt{x}$

(2) e^{2x}

(3) $\sin \frac{x}{2}$

- (4) $\frac{1}{\sqrt{1-r^2}}$
- $(5) \quad \frac{1}{4-r^2}$

問題 3. 以下の定積分を求めよ。

- (1) $\int_{1}^{4} x \sqrt{x} \, dx$ (2) $\int_{0}^{2} e^{2x} \, dx$
- (3) $\int_{0}^{2} |x^{3} 3x^{2} + 2x| dx$

- (4) $\int_0^{\pi} \sin \frac{x}{2} dx$ (5) $\int_0^4 \frac{x^2 3x + 5}{x^3 3x^2 + 3x 1} dx$

問題 4. 以下の問いに答えよ。

- (1) 領域 $y < -x^2 2x + 3$, x < 0, y > 0 の面積を求めよ。
- (2) 曲線 $y = x^2 + 4x$ と、x 軸で囲まれた領域の面積を y = ax が 2 等分している。 定 数aの値を求めよ。
- (3) 定数 a を $-6 \le a \le 4$ とする。 区間 [a, a+2] において曲線 $y = x^2 36$ と x 軸の 間にある領域の面積が $\frac{59}{18}$ であるとき、定数 a の値を求めよ。なお、 $35^2=1225$ である。

2.7.6 まとめのテスト 再 略解

略解 1.(1)
$$\frac{4x+1}{(2x-1)(x+1)} = \frac{2}{2x-1} + \frac{1}{x+1}$$
(2)
$$\frac{x^2 - 3x + 5}{x^3 - 3x^2 + 3x - 1} = \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{3}{(x-1)^3}$$

略解 2.(1)
$$\int x\sqrt{x} dx = \frac{2}{5}x^2\sqrt{x} + C$$
 (2) $\int e^{2x} dx = \frac{1}{2}e^{2x} + C$

(3)
$$\int \sin \frac{x}{2} dx = -2\cos \frac{x}{2} + C$$
 (4) $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$

(5)
$$\int \frac{1}{4-x^2} dx = \frac{1}{4} \log \left| \frac{x+2}{x-2} \right| + C$$

略解 3. (1)
$$\int_{1}^{4} x\sqrt{x} \, dx = \frac{62}{5}$$
 (2) $\int_{0}^{2} e^{2x} \, dx = \frac{1}{2}e^{4} - \frac{1}{2}$ (3) $\int_{0}^{2} |x^{3} - 3x^{2} + 2x| \, dx = \int_{0}^{1} (x^{3} - 3x^{2} + 2x) \, dx + \int_{1}^{2} -(x^{3} - 3x^{2} + 2x) \, dx$
$$= \left[\frac{1}{4}x^{4} - x^{3} + x^{2}\right]_{0}^{1} + \left[-\frac{1}{4}x^{4} + x^{3} - x^{2}\right]_{1}^{2} = \frac{1}{2}$$
 (4) $\int_{0}^{\pi} \sin \frac{x}{2} \, dx = 2$ (5) $\int_{2}^{4} \frac{x^{2} - 3x + 5}{x^{3} - 3x^{2} + 3x - 1} \, dx = \frac{2}{3} + \log 3$

略解 4. (1) $y=-x^2-2x+3$ と x 軸との交点は -3,1 である。また、区間 [-3,1] において、この関数のグラフは x 軸より上である。さらに問題の条件 $x\leq 0$ により、積分区間は [-3,0] となる。よって、求める面積は

$$\int_{-3}^{0} (-x^2 - 2x + 3) dx = \left[-\frac{1}{3}x^3 - x^2 + 3x \right]_{-3}^{0}$$
$$= -\left\{ -\frac{1}{3} \cdot (-3)^3 - (-3)^2 + 3 \cdot (-3) \right\} = 9$$

である。

(2) まず、交点の x 座標を求める。 $x^2 + 4x = ax$ より、x(x+4-a) = 0 であり、 x = 0, a-4 である。

次に、 $y = x^2 + 4x$ と x 軸で囲まれた面積 S を求めると、

$$S = \int_{-4}^{0} |x^2 + 4x| \ dx = \left[-\frac{1}{3}x^3 - 2x^2 \right]_{-4}^{0} = -\frac{64}{3} + 32 = \frac{32}{3}$$

となる。(※ 🔓 公式を使ってもよい)

したがって、 $y=x^2+4x$ と y=ax で囲まれた部分の面積が $\frac{16}{3}$ となればよい。

$$\frac{16}{3} = \int_{a-4}^{0} \left\{ ax - (x^2 + 4x) \right\} dx = \left[\frac{1}{2} ax^2 - \frac{1}{3}x^3 - 2x^2 \right]_{a-4}^{0}$$
$$= -\left(\frac{1}{2} a(a-4)^2 - \frac{1}{3}(a-4)^3 - 2(a-4)^2 \right) = -\frac{1}{6}(a-4)^3$$

 $2xb, a = 4 - 2\sqrt[3]{4} 2xb$

(3) 曲線 $y=x^2-36$ は、区間 [-6,6] において 0 以下となるため、区間 [a,a+2] における x 軸の間にある領域の面積 S は

$$S = \int_{a}^{a+2} |x^{2} - 36| dx = \int_{a}^{a+2} (36 - x^{2}) dx = \left[36x - \frac{1}{3}x^{3}\right]_{a}^{a+2}$$
$$= 36(a+2) - \frac{1}{3}(a+2)^{3} - 36a + \frac{1}{3}a^{3} = \frac{208}{3} - 2a^{2} - 4a$$

となる。この値が、 $\frac{59}{18}$ なので、 $\frac{208}{3}-2a^2-4a=\frac{59}{18}$ を満たす a を求める。よって、 $36a^2+72a-1189=0$

をとく。ここで、対称性 (右図) より、a の 正の解が $\frac{q}{p}$ ならば $-\frac{q}{p}-2=-\frac{q+2p}{p}$ も解 となる。

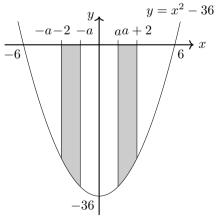
ここで、6a=x と置くことにより、求める方程式は

$$x^2 + 12x - 1189 = 0$$

となる。

ここで、もし解が有理数なら q と q+2 は 35 を挟む差が 12 の奇数同士となるので、

$$(37,25), (39,27), (41,29), (43,31), (45,33) \\$$



が候補となる。

それぞれの下 1 桁の積を考えると下 1 桁が 9 となるのは、(41,29) のみであり、代入すると成り立つことが解る。よって、p=6,q=29 であり、求める a の値は、 $-\frac{41}{6},\frac{29}{6}$ となる。

※ 答えが無理数の場合は解の公式が必要になるが、この手の問題では有理数で落ち着くことが多い。