2.2.1 リーマン和から区分求積法

復習 (リーマン和)

区間 [a,b] の分割を Δ : $a=x_0 < x_1 < x_2 < \cdots < x_n = b$ (1) として、分割幅の最大を $|\Delta| = \max_{1 \le i \le n} (x_i - x_{i-1})$ で定める。また、小区間 $[x_{i-1}, x_i]$ 内に任意の ξ_i (2) をとる。このとき、以下をリーマン和という。

$$\lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_i) (x_i - x_{i-1})$$

(1) 区間 [a,b] の分割 Δ : $a = x_0 < x_1 < x_2 < \cdots < x_n = b$

$$\frac{b-a}{n} \quad b-a \\ \hline a = x_0 \quad x_1 \quad x_2 \quad \cdots \quad x_{i-1} \quad x_i \quad \cdots \quad x_{n-1} \quad x_n = b$$

このとき、各小区間の幅 (x_i-x_{i-1}) は、 $\frac{b-a}{n}$ となり、 $|\Delta|=\frac{b-a}{n}$ である。 ちなみに

$$\Delta : a < a + \frac{b-a}{n} < a + \frac{b-a}{n} \cdot 2 < \dots < a + \frac{b-a}{n} \cdot n = b$$

であり、 $|\Delta| \to 0$ は、 $n \to \infty$ である。

(2) 小区間 $[x_{i-1},x_i]$ 内に任意の ξ_i

⇒小区間の左端か、右端にする。

$$\xi_i = x_{i-1} = a + \frac{b-a}{n} \cdot (i-1)$$
 または $\xi = x_i = a + \frac{b-a}{n} \cdot i$

以上の変更によって、

$$\lim_{|\Delta| \to 0} \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \quad \Rightarrow \quad \begin{cases} \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n} \cdot (i - 1)\right) \cdot \frac{b - a}{n} \\ \lim_{n \to \infty} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n} \cdot i\right) \cdot \frac{b - a}{n} \end{cases}$$

となる。この方法を**区分求積法**という。

2.2.2 区分求積法とは

まず、f(x) は [a,b] 上積分可能とする。 [a,b] を n 等分すると、各小区間の幅は、

$$\frac{b-a}{n}$$

である。よって、各分点は

$$x_i = a + \frac{b-a}{n}i$$
 $(i = 0, 1, 2, \dots, n)$

と表される。

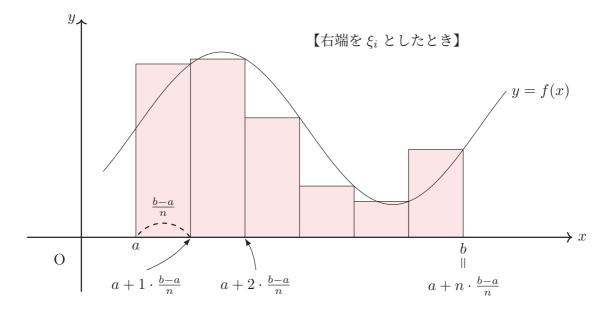
小区間 $[x_{i-1},x_i]$ において、 $\boxed{ 左端 \ x_{i-1} }$ または $\boxed{ 右端 \ x_i }$ のどちらかを ξ_i とする。 すなわち、

$$\xi_i = x_{i-1}$$
 or $\xi_i = x_i$

とすることにより、

$$\int_{a}^{b} f(x) dx = \begin{cases} \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}(i-1)\right) & (\xi_{i} = x_{i-1} : 左端の場合) \\ \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}i\right) & (\xi_{i} = x_{i} : 右端の場合) \\ & \text{こっちを使う!} \end{cases}$$

となる。



例 2.2.1. 区分求積法を用いて $\int_0^1 x^3 dx$ を求めよ。 まず、

$$\int_0^1 x^3 dx = \int_a^b f(x) dx$$

なので、 $a=0,b=1,f(x)=x^3$ として $(\xi_i=x_i$: 右端の場合を) 考える。

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n}i\right)$$

$$\int_{0}^{1} x^{3} dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{i=1}^{n} \left(0 + \frac{1 - 0}{n}i\right)^{3}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{3}$$

$$= \lim_{n \to \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}$$

3乗の和の公式は、1乗の和の公式の2乗

$$= \lim_{n \to \infty} \frac{1}{n^4} \left\{ \frac{1}{2} n(n+1) \right\}^2 = \lim_{n \to \infty} \frac{1}{n^4} \cdot \frac{1}{4} n^2 (n+1)^2$$
$$= \lim_{n \to \infty} \frac{1}{4} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{1}{4} \left(1 + \frac{1}{n} \right)^2 = \frac{1}{4}$$

例 2.2.2. (定数関数の積分)

区間 [a,b] において、定数関数 f(x)=c と x 軸の間の面積を求めよ $(c\in\mathbb{R})$ 。言い換えると $\int_a^b c\,dx=c(b-a)$ を示せ。

 $\forall x \in \mathbb{R}$ に対して、f(x) = c であるから、

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} f\left(a + \frac{b - a}{n}i\right)$$

$$\int_{a}^{b} c dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{i=1}^{n} c$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \cdot nc$$

$$= \lim_{n \to \infty} \frac{(b - a)c}{n}$$

$$= (b - a)c$$

である。(別解: $\lim_{|\Delta|\to 0}\sum_{i=1}^n f(\xi_i)(x_i-x_{i-1})=\alpha$ で示す。)

2.2.3 演習問題

問題 2.2.1. 区分求積法を用いて 、以下の関数の与えられた区間における定積分を求めよ。

(1) 関数:3x-1, 区間:[1,2]

(2) 関数: $3x^2$, 区間: [0,1]

(3) 関数: e^x , 区間: [a,b] ただし、0 < a < b

問題 2.2.2. 以下の極限が $\int_a^b f(x) dx$ に等しいとき、関数 f(x), 下端 a, 上端 b を求めよ。

(1)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i^2}{n^3} - \frac{3}{n} \right)$$
 (2) $\lim_{n \to \infty} \sum_{i=n+1}^{3n} \left(-\frac{i^2}{n^3} + \frac{6}{n^2} i \right)$

問題 2.2.3. 以下の極限が $\int_a^b f(x)\,dx$ に等しいとき、関数 f(x), 下端 a, 上端 b を求めよ。

(1)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2^2}} + \frac{1}{\sqrt{n^2 + 3^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

(2) k は 2 以上の自然数とする。

(5)

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+kn} \right)$$

(3)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{n^2}{9n^2 + 1} + \frac{n^2}{9n^2 + 4} + \frac{n^2}{9n^2 + 9} + \dots + \frac{n^2}{9n^2 + n^2} \right)$$

$$\lim_{n \to \infty} \sum_{l=1}^{n} \frac{1}{\sqrt{4n^2 - k^2}}$$

$$\lim_{n \to \infty} \sum_{k=2n+1}^{3n} \frac{1}{k}$$

2.2.4 演習問題 略解

略解 2.2.1. (1) 例 2.2.1. を参考に考える。

$$\int_{1}^{2} (3x - 1) dx = \lim_{n \to \infty} \frac{2 - 1}{n} \sum_{i=1}^{n} \left(3 \cdot \left(1 + \frac{2 - 1}{n} i \right) - 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(2 + \frac{3}{n} i \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left\{ 2n + \frac{3}{n} \cdot \frac{1}{2} n(n+1) \right\}$$

$$= \lim_{n \to \infty} \left\{ 2 + \frac{3}{2n} (n+1) \right\} = \frac{7}{2}$$

(2) 例 2.2.1. を参考に考える。

$$\int_{0}^{1} 3x^{2} dx = \lim_{n \to \infty} \frac{1 - 0}{n} \sum_{i=1}^{n} 3 \left(0 + \frac{1 - 0}{n} i \right)^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$= \lim_{n \to \infty} \frac{3}{n^{3}} \cdot \frac{1}{6} n(n+1)(2n+1)$$

$$= \lim_{n \to \infty} \frac{1}{2n^{2}} \cdot (n+1)(2n+1) = 1$$

(3) 定義にしたがって考える。ただし、 $\delta = \frac{b-a}{n}$ とおく。

$$\int_{a}^{b} e^{x} dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} e^{a+\frac{b-a}{n}i}$$

$$= \lim_{\delta \to 0} \delta \cdot e^{a} \cdot e^{\delta} \left\{ 1 + e^{\delta} + e^{2\delta} + \dots + e^{(n-1)\delta} \right\}$$

$$= \lim_{\delta \to 0} \delta \cdot e^{a} \cdot e^{\delta} \cdot \frac{1 - e^{n\delta}}{1 - e^{\delta}}$$

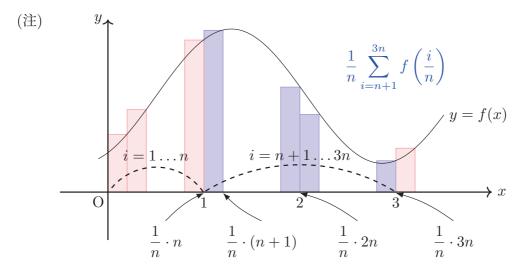
$$= (e^{a} - e^{b}) \lim_{\delta \to 0} (-1) \cdot \frac{-\delta}{e^{-\delta} - 1}$$

$$= (e^{a} - e^{b}) \cdot (-1) = e^{b} - e^{a}$$

略解 2.2.2.

(1)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i^2}{n^3} - \frac{3}{n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i^2}{n^2} - 3 \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\left(0 + \frac{i}{n} \right)^2 - 3 \right)$$
$$= \int_{0}^{1} (x^2 - 3) \, dx$$

(2)
$$\lim_{n \to \infty} \sum_{i=n+1}^{3n} \left(-\frac{i^2}{n^3} + \frac{6}{n^2} i \right) = \lim_{n \to \infty} \sum_{i=n+1}^{3n} \frac{1}{n} \left(-\frac{i^2}{n^2} + 6 \cdot \frac{i}{n} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=n+1}^{3n} \left(-\left(\frac{i}{n}\right)^2 + 6\left(\frac{i}{n}\right) \right)$$
$$= \int_1^3 (-x^2 + 6x) \, dx$$



略解 2.2.3.

(1)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2^2}} + \frac{1}{\sqrt{n^2 + 3^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{1}{n}\right)^2}} + \frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{2}{n}\right)^2}} + \dots + \frac{1}{n} \cdot \frac{1}{\sqrt{1 + \left(\frac{n}{n}\right)^2}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1 + \left(\frac{i}{n}\right)^2}}$$

$$= \int_{0}^{1} \frac{1}{\sqrt{1 + x^2}} dx$$

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+kn} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{1}{1+\frac{1}{n}} + \frac{1}{n} \cdot \frac{1}{1+\frac{2}{n}} + \frac{1}{n} \cdot \frac{1}{1+\frac{3}{n}} + \dots + \frac{1}{n} \cdot \frac{1}{1+\frac{kn}{n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{kn} \frac{1}{1+\frac{i}{n}}$$

$$= \int_0^k \frac{1}{1+x} dx$$

(3)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{n^2}{9n^2 + 1} + \frac{n^2}{9n^2 + 4} + \frac{n^2}{9n^2 + 9} + \dots + \frac{n^2}{9n^2 + n^2} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{9 + \left(\frac{1}{n}\right)^2} + \frac{1}{9 + \left(\frac{2}{n}\right)^2} + \frac{1}{9 + \left(\frac{3}{n}\right)^2} + \dots + \frac{1}{9 + \left(\frac{n}{n}\right)^2} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{9 + \left(\frac{i}{n}\right)^2}$$

$$= \int_0^1 \frac{1}{9 + x^2} dx$$

(4)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4n^2 - k^2}} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{4n^2 - i^2}}$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cdot \frac{1}{\sqrt{4 - \left(\frac{i}{n}\right)^2}}$$
$$= \int_{0}^{1} \frac{1}{\sqrt{4 - x^2}} dx$$

(5)
$$\lim_{n \to \infty} \sum_{k=2n+1}^{3n} \frac{1}{k} = \lim_{n \to \infty} \sum_{i=2n+1}^{3n} \frac{1}{i}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=2n+1}^{3n} \frac{1}{\frac{i}{n}}$$
$$= \int_{2}^{3} \frac{1}{x} dx$$