Increasing stability in the inverse source and conductivity problems.

Victor Isakov, Wichita State University, Wichita, KS, USA
January 4, 2016

1 Increasing stability for sources

Let
\[(\Delta + k^2)u = -f_1 - ikf_0 \text{ in } \mathbb{R}^3, \] with the Sommerfeld radiation condition. \(f_0, f_1 \in L^2(\Omega) \) and are zero outside a bounded domain \(\Omega \) with \(\partial \Omega \in C^1 \).

We are interested in uniqueness and stability of \(f_0, f_1 \) from the near field data
\[u = u_0, \partial_\nu u = u_1 \text{ on } \Gamma, \text{when } 0 < k < K, \] (1.2)
where \(\Gamma \) is an open part of \(\partial \Omega \). For any non empty \(\Gamma \) and any \(K \) one can show uniqueness of \(f_0, f_1 \). For better than logarithmic stability we assume that \(\Gamma = \partial \Omega \).

Theorem 1.1. [1]
There is \(C = C(\Omega) \) such that
\[\|f_0\|_{(1)}^2(\Omega) + \|f_1\|_{(0)}^2(\Omega) \leq C(\varepsilon^2 + M_2^2 \frac{1}{1 + (K)^4 E^2}) \]
for all \(u \in H(2)(\Omega) \) solving (1.1), (1.2), where
\[\varepsilon^2 = \int_0^K ((1 + k^2)\|u(\cdot, k)\|^2_{(0)}(\partial \Omega) + \|\nabla u(\cdot, k)\|^2_{(0)}(\partial \Omega))dk, \quad E = -ln\varepsilon \]
and \(\|f_0\|_{(2)}(\Omega) + \|f_1\|_{(1)}(\Omega) \leq M_2 \).

In [1] there are proofs based on sharp bounds of special harmonic measure to trace dependence on \(K \) of analytic continuation of \(u(\cdot, k) \) from \((0, K)\) onto all real \(k \), the Fourier transform in \(k \) into time domain, and exact boundary observability for the corresponding wave equation. We also give a strong numerical evidence of increasing resolution for larger \(K \).

2 Increasing stability for conductivity coefficient

The stationary electromagnetic field \((E, H)\) of frequency \(k \) satisfies
\[\text{curl} E = ikH \text{ in } \Omega, \]
\[\text{curl} H = \sigma E - ikE, \] (2.3)
where magnetic and electric permeabilities are assumed to be 1, and \(\sigma \) is electric conductivity of a bounded \(C^1 \) three-dimensional domain \(\Omega \).

We are interested in better stability of recovery of \(\sigma \) from the complete Cauchy data
\[C = \{(\nu \times E, \nu \times H)\} \text{ on } \partial \Omega. \]
Let
\[\varepsilon = \sup \sup \inf \frac{||\nu \times \mathbf{E}(j), \nu \times \mathbf{H}(j)) - (\nu \times \mathbf{E}(l), \nu \times \mathbf{H}(l))||_{TH(\partial \Omega)}}{||\nu \times \mathbf{E}(j)||_{TH(\partial \Omega)}} \]
where \(\inf\) is over tangential traces of \(\mathbf{E}(l), \mathbf{H}(l)\), next \(\sup\) is over \(\mathbf{E}(j), \mathbf{H}(j)\) and outer \(\sup\) is over \(j \neq l\), \(\mathbf{E}(j), \mathbf{H}(j)\) solve (2.3) with \(\sigma = \sigma(j), j = 1, 2\), the norms are in known tangential traces of solutions with \(\text{curl}\) in \(L^2(\Omega)\), and \(\mathcal{E} = -\ln \varepsilon\).

Theorem 2.1. [3]

Suppose that \(\text{supp}(\sigma(1) - \sigma(2)) \subset \Omega\).

There are \(C = C(\Omega), m = m(\Omega)\) such that if \(1 < k\) and
\[||\sigma_j||_{(4)}(\Omega) < m, \]
then
\[||\sigma_1 - \sigma_2||_{(-2)}(\Omega) \leq \frac{C}{k + \mathcal{E}} + \frac{C(k + \mathcal{E})}{k} \varepsilon^2. \]

Proofs in [3] are based on a reduction to a vectorial Schrödinger equation and use of complex and real geometrical optics as initiated in [2].

Both Theorems suggest that logarithmic (unstable) component in stability bounds is decreasing when \(k\) grows.

References

