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In this talk, we aim to solve the inverse problem of the following form

F (x) = y, (1)

where F : D(F ) ⊂ X → Y is a nonlinear operator between two Banach spaces X and Y. We are in particular
interested in the case that we only have noisy data yδ satisfying∥∥yδ − y∥∥ ≤ δ,
where the noise level δ > 0 is known. Due to the inherent ill-posedness of inverse problems, some regularization
methods should be used to produce a stable approximate solution of (1).

Landweber iteration is one of the most prominent regularization methods for solving nonlinear inverse
problems due to its simplicity, see [1] and reference therein. In order to capture the special features of the
sought solutions, such as sparsity and discontinuities, the penalty term is allowed to be non-smooth to include
L1 and total variation (TV) like penalty functionals. Let θ : X → (−∞,∞] be a proper, lower semi-continuous,
convex function, then the method in [1] has the form of

ξδn+1 = ξδn − tδnF ′
(
xδn
)∗
JYr
(
F
(
xδn
)
− yδ

)
, xδn+1 = arg min

x∈X

{
θ (x)−

〈
ξδn+1, x

〉}
(2)

with the suitable chosen step size tδn, JYr denotes the duality mapping of Y with the gauge function t→ tr−1.
This method could give satisfactory reconstructed solutions, however, the slow convergence of (2) makes it
inefficient in practical applications. Hence, it is necessary to introduce some accelerate strategies to fasten its
convergence speed.

One starting point is to use the sequential subspace optimization (SESOP) method, which was first proposed
to solve the large scale well-posed optimization problems by utilizing multiple search directions per iteration.
Then it was extended to solve the linear inverse problems [2,3] and nonlinear inverse problems [4,5]. The SESOP
method in [5], however, only covers θ (x) = ‖x‖s/s with 1 < s <∞ on uniformly convex and uniformly smooth
Banach spaces and thus excludes the use of the L1 and TV like penalty functionals. Also the duality mapping
JYr : Y → Y∗ requires r = 2 to guarantee the convergence and regularization of the method in [5], which is not
suitable for the data containing non-Gaussian noise.

Aiming at accelerating the iteration (2), we formulate an extension of the SESOP method in the sprit of
[5] to solve nonlinear inverse problems with both X and Y being Banach spaces and the non-smooth convex
function θ : X → (−∞,∞] is incorporated as the penalty term so that the method can be used for sparsity
reconstruction and discontinuity detection. Then the proposed SESOP method with convex penalty can be
formulated as

ξδn+1 = ξδn −
∑
i∈In

tδn,iF
′(xδi )∗JYr (F (xδi )− yδ) , xδn+1 = arg min

x∈X

{
θ (x)−

〈
ξδn+1, x

〉}
, (3)

where JYr denotes the duality mapping of Y with 1 < r < ∞ and In ⊆ {n−N + 1, · · · , n} is a finite index
set with given N > 1. A detailed convergence analysis and regularization results are given when the proposed
method is terminated by the discrepancy principle. Finally, we present some numerical examples for parameter
identification problems to validate the theoretical analysis and to verify the efficiency of the proposed method.

One-dimensional Sparsity Reconstruction. In this subsection, we assume that the sought parameter is
sparse and the data only contains Gaussian noise with δ = 0.5%, 0.1%, 0.05%. For this situation, we take
θ (x) = 1

2β

∫
Ω
|x (w)|2dw +

∫
Ω
|x (w)|dw with β > 0.

The numerical results by our proposed SESOP method with the number M of search directions, called
SESOP-M in the following, and Landweber iteration in [1] are summarized in Table 1. Observe that the
SESOP-2 method could produce the same accurate solutions but requires much less iteration numbers and
computation time, validating its acceleration effect.
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Table 1: Numerical results of one-dimensional sparsity reconstruction for noisy data.

δ = 0.5% δ = 0.1% δ = 0.05%

Method nδ Time(s) RE nδ Time(s) RE nδ Time(s) RE

Landweber 2698 10.5514 0.8044 37721 142.1369 0.2553 47036 193.6245 0.1191
SESOP-1 686 3.4247 0.8089 10271 49.0497 0.2542 17861 86.4013 0.1192
SESOP-2 212 1.7004 0.8073 4091 27.8389 0.2553 6614 47.5240 0.1188

One-dimensional Discontinuity Detection. In this subsection, we consider that the sought parameter is
piecewise constant. For this case, we choose θ (x) = 1

2β

∫
Ω
|x (w)|2dw + TV (x), where β > 0 and TV (x)

denotes the total variation of x.
We first consider that the data only contains Gaussian noise with various noise levels. The numerical results

by SESOP-2, SESOP-1 and Landweber iteration are displayed in Table 2. It is shown that SESOP-2 could lead
to a significant reduction of iteration numbers through comparison with Landweber type iteration.

Table 2: Numerical results of one-dimensional discontinuity detection under Gaussian noise.

δ = 0.5% δ = 0.1% δ = 0.05%

Method nδ Time(s) RE nδ Time(s) RE nδ Time(s) RE

Landweber 2973 18.0963 0.1181 27518 207.8141 0.0696 37927 308.1425 0.0653
SESOP-1 1242 14.6804 0.1181 17087 145.4954 0.0697 26952 214.6641 0.0653
SESOP-2 600 13.1969 0.1182 8430 94.7757 0.0695 11862 130.0063 0.0653

We also investigate the effect of Banach spaces when the data contains impulsive noise. The impulsive
noise is plotted in Figure 1(a). Figure 1(b)-(d) present the reconstructions by SESOP-2 using Banach space
Y = Lr[0, 1] with r = 2, r = 1.5 and r = 1.1, respectively. Observe that L1.1 misfit data terms could produce a
more accurate solution, which verifies that the Lr misfit data terms with r > 1 close to 1 are suitable for this
kind of noise.

(a) (b) (c) (d)

Figure 1: The one-dimensional discontinuity detection under Impulsive noise. (a) Impulsive noise; (b) Re-
construction by SESOP-2 with r = 1.1; (c) Reconstruction by SESOP-2 with r = 1.5; (d) Reconstruction by
SESOP-2 with r = 2.
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