Reconstruction for the coefficients of a quasilinear elliptic partial differential equation

Manmohan Vashisth

Beijing Computational Science Research Center, Beijing 100193, China

Abstract

In this talk, we consider an inverse coefficients problem for a quasilinear elliptic equation of divergence form \(\nabla \cdot \overline{C}(x, \nabla u(x)) = 0 \), in a bounded smooth domain \(\Omega \). We assume that \(\overline{C}(x, \overline{p}) = \gamma(x) \overline{p} + \overline{b}(x)|\overline{p}|^2 + \mathcal{O}(|\overline{p}|^3) \), by expanding \(\overline{C}(x, \overline{p}) \) around \(\overline{p} = 0 \). We give a reconstruction method for \(\gamma \) and \(\overline{b} \) from the Dirichlet to Neumann map defined on \(\partial \Omega \).

This is a joint work with Cătălin I. Cărstea (distinguished associate researcher), School of Mathematics, Sichuan University, China and Gen Nakamura (emeritus professor), Department of Mathematics, Hokkaido University, Japan.