Direct and inverse scattering problems for the local perturbation of an open periodic waveguide in the half plane

Takashi FURUYA (Nagoya University)

Let k > 0 be the wave number, and let $\mathbb{R}^2_+ := \mathbb{R} \times (0, \infty)$ be the upper half plane, and let $W := \mathbb{R} \times (0, h)$ be the waveguide in \mathbb{R}^2_+ . We denote by $\Gamma_a := \mathbb{R} \times \{a\}$ for a > 0. Let $n \in L^{\infty}(\mathbb{R}^2_+)$ be real value, 2π -periodic with respect to x_1 (that is, $n(x_1 + 2\pi, x_2) = n(x_1, x_2)$ for all $x = (x_1, x_2) \in \mathbb{R}^2_+$), and equal to one for $x_2 > h$. We assume that there exists a constant $n_0 > 0$ such that $n \ge n_0$ in \mathbb{R}^2_+ . Let $q \in L^{\infty}(\mathbb{R}^2_+)$ be real value with the compact support in W. We denote by Q := supp q.

We consider the following scattering problem: For fixed $y \in \mathbb{R}^2_+ \setminus \overline{W}$, determine the scattered field $u^s \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u^{s} + k^{2}(1+q)nu^{s} = -k^{2}qnu^{i}(\cdot, y) \text{ in } \mathbb{R}^{2}_{+}, \qquad (0.1)$$

$$u^s = 0 \text{ on } \Gamma_0, \tag{0.2}$$

Here, the incident field u^i is given by $u^i(x, y) = G_n(x, y)$, where G_n is the Dirichlet Green's function in the upper half plane \mathbb{R}^2_+ for $\Delta + k^2 n$, that is,

$$G_n(x,y) := G(x,y) + \tilde{u}^s(x,y),$$
(0.3)

where $G(x, y) := \Phi_k(x, y) - \Phi_k(x, y^*)$ is the Dirichlet Green's function in \mathbb{R}^2_+ for $\Delta + k^2$, and $y^* = (y_1, -y_2)$ is the reflected point of y at $\mathbb{R} \times \{0\}$. Here, $\Phi_k(x, y)$ is the fundamental solution to Helmholtz equation in \mathbb{R}^2 , that is,

$$\Phi_k(x,y) := \frac{i}{4} H_0^{(1)}(k|x-y|), \ x \neq y.$$
(0.4)

 \tilde{u}^s is the scattered field of the unperturbed problem by the incident field G(x, y), that is, \tilde{u}^s vanishes for $x_2 = 0$ and solves

$$\Delta \tilde{u}^s + k^2 n \tilde{u}^s = k^2 (1 - n) G(\cdot, y) \text{ in } \mathbb{R}^2_+.$$

$$(0.5)$$

If we impose a suitable radiation condition introduced by Kirsch and Lechleiter (see Definition 6.7 in [4]), the unperturbed solution \tilde{u}^s is uniquely determined.

In order to show the well-posedness of the perturbed scattering problem (0.1)-(0.2), we make the following assumption.

Assumption 0.1. We assume that k^2 is not the point spectrum of $\frac{1}{(1+q)n}\Delta$ in $H_0^1(\mathbb{R}^2_+)$, that is, every $v \in H^1(\mathbb{R}^2_+)$ which satisfies

$$\Delta v + k^2 (1+q) nv = 0 \text{ in } \mathbb{R}^2_+, \tag{0.6}$$

$$v = 0 \text{ on } \Gamma_0, \tag{0.7}$$

has to vanish for $x_2 > 0$.

Our first aim is to show the following theorem under Assumption 0.1.

Theorem 0.2 (Theorem 1.2 in [1]). Let Assumptions 0.1 hold and let $f \in L^2(\mathbb{R}^2_+)$ such that supp f = Q. Then, there exists a unique solution $u \in H^1_{loc}(\mathbb{R}^2_+)$ such that

$$\Delta u + k^2 (1+q) n u = f \text{ in } \mathbb{R}^2_+, \tag{0.8}$$

$$u = 0 \text{ on } \Gamma_0, \tag{0.9}$$

and u satisfies the radiation condition in the sense of Definition 6.7 in [4].

Roughly speaking, this radiation condition requires that we have a decomposition of the solution u into $u^{(1)}$ which decays in the direction of x_1 , and a finite combination $u^{(2)}$ of *propagative modes* which does not decay in x_1 , but it exponentially decays in x_2 .

By the well-posedness of this perturbed scattering problem, we are now able to consider the inverse problem of determing the supprot of q from measured scattered field u^s by the incident field u^i . Let $M := \{(x_1, m) : a < x_1 < b\}$ for a < b and m > h, and Q := suppq. With the scattered field u^s , we define the *near field operator* $N : L^2(M) \to L^2(M)$ by

$$Ng(x) := \int_{M} u^{s}(x, y)g(y)ds(y), \ x \in M.$$
 (0.10)

The inverse problem we consider here is to determine support Q of q from the scattered field $u^s(x, y)$ for all x and y in M with one k > 0. In other words, given the near field operator N, determine Q.

Our second aim is to provide the following theorem based on the idea of the *mono*tonicity mathod (e.g., see [3]).

Theorem 0.3 (Theorem 1.1 in [2]). Let $B \subset \mathbb{R}^2$ be a bounded open set. Let Assumption hold, and assume that there exists $q_{min} > 0$ such that $q \geq q_{min}$ a.e. in Q. Then for $0 < \alpha < k^2 n_{min} q_{min}$,

$$B \subset Q \quad \iff \quad \alpha H_B^* H_B \leq_{\text{fin}} \text{Re}N,$$
 (0.11)

where the operator $H_B: L^2(M) \to L^2(B)$ is given by

$$H_Bg(x) := \int_M \overline{G_n(x,y)}g(y)ds(y), \ x \in B,$$
(0.12)

and the inequality on the right hand side in (0.11) denotes that $\operatorname{Re} N - \alpha H_B^* H_B$ has only finitely many negative eigenvalues, and the real part of an operator A is self-adjoint operators given by $\operatorname{Re}(A) := \frac{1}{2}(A + A^*)$.

By Theorem 0.3, we understand whether an artificial domain B is contained in Q or not. Then, by dispersing a lot of balls B in \mathbb{R}^2_+ and for each B checking (0.11) we can reconstruct the shape and location of unknown Q.

References

- [1] T. Furuya, Scattering by the local perturbation of an open periodic waveguide in the half plane, Prepreint arXiv:1906.01180, (2019).
- [2] T. Furuya, The factorization and monotonicity method for the defect in an open periodic waveguide, Prepreint arXiv:1907.10670, (2019).
- [3] B. Harrach, V. Pohjola, M. Salo, Monotonicity and local uniqueness for the Helmholtz equation, Prepreint arXiv:1709.08756, (2017).
- [4] A. Kirsch, A. Lechleiter, The limiting absorption principle and a radiation condition for the scattering by a periodic layer, SIAM J. Math. Anal. 50, (2018), no. 3, 2536–2565.

Graduate School of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8602, Japan

e-mail: takashi.furuya0101@gmail.com