On polynomial solutions of the Lamé and Stokes systems

Hiroya ITO*

The University of Electro-Communications

1 Introduction

The Laplacian Δ is one of the most important differential operators in Mathematics. Solutions of the Laplace equation $\Delta u = 0$ are called harmonic functions, which play significant roles in many subjects of mathematical research fields. It is well known that harmonic polynomials in n variables are well classified. Moreover, the restriction of nonzero elements of \mathcal{H}_m to the unit sphere \mathbb{S}^{n-1} , called spherical harmonics of degree m, become eigenfunctions of the Laplace-Beltrami operator $-\Delta_{\mathbb{S}^{n-1}}$ on \mathbb{S}^{n-1} with the common eigenvalue m(m+n-2), and this restriction is a linear isomorphism between \mathcal{H}_m and the space of spherical harmonics of degree m. Furthermore, we can think that all the harmonic polynomials in \mathbb{R}^n (or all the spherical harmonics) generate most function spaces on \mathbb{S}^{n-1} (see Theorem 1 below). We shall study that such beautiful theory can be partially generalized to vector-valued elliptic systems.

Fixing *n* variables x_1, \ldots, x_n with $n \ge 2$, for each $m \in \mathbb{N}_0$, we denote by \mathcal{P}_m the vector space of all the homogeneous polynomials of degree *m* in $x = (x_1, \ldots, x_n)$, and by \mathcal{H}_m its subspace consisting of those in \mathcal{P}_m which are harmonic. Moreover, \mathcal{H}_m denotes the vector space of all the functions on \mathbb{S}^{n-1} obtained by restricting each element of \mathcal{H}_m to \mathbb{S}^{n-1} ; each element of \mathcal{H}_m is called a spherical harmonic of degree *m*:

$$\mathcal{H}_m = \left\{ u \in \mathcal{P}_m \mid \Delta u = 0 \right\}, \quad \mathring{\mathcal{H}}_m = \left\{ u|_{\mathbb{S}^{n-1}} \mid u \in \mathcal{H}_m \right\}.$$

Then, the dimension d_m of \mathcal{P}_m is given by $d_m = \binom{m+n-1}{n-1}$ and the restriction map $\mathcal{H}_m \ni u \mapsto u|_{\mathbb{S}^{n-1}} \in \mathcal{H}_m$ is, due to the homogeneity of elements of \mathcal{H}_m , a linear isomorphism: $\mathcal{H}_m \cong \mathcal{H}_m$. Fundamental properties of spherical harmonics on \mathbb{S}^{n-1} are described in the following theorem (see, e.g., Chapter 2 of Shimakura [4], Chapter 3 of Simon [5], Nomura [2]).

Theorem 1. The space $\mathring{\mathcal{H}}_m$ $(m \in \mathbb{N}_0)$ has the following properties.

- (i) The dimension of $\mathring{\mathcal{H}}_m$ is given by $\dim \mathring{\mathcal{H}}_m = d_m d_{m-2}$, where $d_{-1} = d_{-2} = 0$.
- (ii) $L^2(\mathbb{S}^{n-1}) = \bigoplus_{m=0}^{\infty} \mathring{\mathcal{H}}_m$ in the sense that

$$\mathring{\mathcal{H}}_{\ell} \perp \mathring{\mathcal{H}}_{m} \ (\ell \neq m) \ in \ L^{2}(\mathbb{S}^{n-1}) \ and \ \overline{\operatorname{span}(\bigcup_{m=0}^{\infty} \mathring{\mathcal{H}}_{m})}^{L^{2}} = L^{2}(\mathbb{S}^{n-1}).$$

In the present paper, we consider the homogeneous equation of the Lamé system

$$\mathcal{L}\boldsymbol{u} := \mu \Delta \boldsymbol{u} + (\lambda + \mu) \nabla (\operatorname{div} \boldsymbol{u}) = \boldsymbol{0} \quad \text{in } \mathbb{R}^n$$
(1)

for *n*-vector valued functions (vector fields) \boldsymbol{u} , where λ and μ are elasticity constants. We study the structure of the restriction of polynomial solutions of (1) to \mathbb{S}^{n-1} (or analogues of spherical harmonics

^{*}e-mail: ito-hiroya@uec.ac.jp

for (1)). Here, the operator \mathcal{L} of (1) appears in linear theory of isotropic elasticity and the constants λ and μ are assumed to satisfy

$$\mu(\lambda + 2\mu) > 0, \qquad \gamma := \frac{\lambda + \mu}{\lambda + 3\mu} \in (-1, 1).$$
⁽²⁾

The symbol of \mathcal{L} is

$$L(\xi) = \mu |\xi|^2 I + (\lambda + \mu) \boldsymbol{\xi} \otimes \boldsymbol{\xi}, \tag{3}$$

whose eigenvalues are given by $\mu |\xi|^2$ (multiplicity n-1) and $(\lambda + 2\mu) |\xi|^2$ (simple), where we write ξ in boldface in order to clarify that $\boldsymbol{\xi}$ is a column vector. Assumption (2) implies that $\mathcal{L} = L(\partial)$ is a strongly elliptic system. In a similar way we also deal with polynomial solutions of the homogeneous equations of the Stokes system.

$\mathbf{2}$ Orthogonally invariant partial differential operators for vector fields

Let $P(\partial)$ be a partial differential operator with constant coefficients for scalar fields u on \mathbb{R}^n . It is well-known that $P(\partial)$ is invariant under the special orthogonal group SO(n) if and only if $P(\partial)$ is in the form $P(\partial)u = f(\Delta)u$ for some polynomial f(t). How about the case $P(\partial)$ is for vector fields u on \mathbb{R}^n ? The following theorem In the case $P(\partial)$ for scalar functions u, it is well-known that $P(\partial)$ is invariant under SO(n) if and only if it is in the form $P(\partial)u = f(\Delta)u$. The following theorem shows, in a sense, the necessity of considering the Lame system.

Theorem 2. A partial differential operator $P(\partial)$ with constant coefficients for vector fields \boldsymbol{u} on \mathbb{R}^n is invariant under the orthogonal group O(n) if and only if $P(\partial)$ is in the form

$$P(\partial)\boldsymbol{u} = f(\Delta)\boldsymbol{u} + g(\Delta)\,\nabla(\operatorname{div}\boldsymbol{u}).$$

for some polynomials f(t) and q(t).

Even if we restrict O(n) to SO(n) in Theorem 2, then the conclusion is valid for $n \ge 4$, but not for n = 2, 3, in which $P(\partial)u$ may contain additional terms, for example $h(\Delta)$ rot u if n = 3.

3 L-harmonic vector fields and L-harmonics

Denote by \mathcal{P}_m the vector space of all *n*-vector homogeneous polynomials in $x = (x_1, \ldots, x_n)$ of degree *m*. We define subspaces \mathcal{H}_m and \mathcal{H}_m^L of \mathcal{P}_m by

$$\mathcal{H}_m = ig\{ oldsymbol{u} \in \mathcal{P}_m \mid \Delta oldsymbol{u} = oldsymbol{0} ig\}, \quad \mathcal{H}_m^L = ig\{ oldsymbol{u} \in \mathcal{P}_m \mid \mathcal{L}oldsymbol{u} = oldsymbol{0} ig\}.$$

Elements of \mathcal{H}_m^L are called *L*-harmonic polynomials of degree *m*. Vector functions on \mathbb{S}^{n-1} obtained by restricting *L*-harmonic polynomials are called *spherical* L-harmonics. We represent the vector spaces of such vector functions (vector fields) as

$$\mathring{\mathcal{H}}_m = ig\{ oldsymbol{u}|_{\mathbb{S}^{n-1}} ig| oldsymbol{u} \in \mathcal{H}_m ig\}, \quad \mathring{\mathcal{H}}_m^L = ig\{ oldsymbol{u}|_{\mathbb{S}^{n-1}} ig| oldsymbol{u} \in \mathcal{H}_m^L ig\}$$

Corresponding to Theorem 1 for spherical harmonics, the following theorem for spherical Lharmonics has been established through joint research with Prof. Honda and Prof. Jimbo.

Theorem 3 ([1]). The space $\mathring{\mathcal{H}}_m^L$ ($m \in \mathbb{N}_0$) has the following properties.

- (i) The dimension of $\hat{\mathcal{H}}_m^L$ is given by $\dim \hat{\mathcal{H}}_m^L = \dim \mathcal{H}_m^L = n(d_m d_{m-2})$, where $d_{-1} = d_{-2} = 0$.
- (ii) For each $m \in \mathbb{N}$, the sum $\mathring{\mathcal{H}}_0^L + \mathring{\mathcal{H}}_1^L + \cdots + \mathring{\mathcal{H}}_m^L$ is a direct sum.
- (iii) The linear span of $\bigcup_{m=0}^{\infty} \mathring{\mathcal{H}}_m^L$ is dense in $L^2(\mathbb{S}^{n-1})$ with the L^2 -norm.

4 **Case** n = 2

In this section we consider the case n = 2. The spaces \mathcal{H}_m , \mathcal{H}_m^L , $\mathring{\mathcal{H}}_m$, $\mathring{\mathcal{H}}_m^L$ are defined not only for nonnegative integer m but also negative integer m. For example, $\boldsymbol{u} \in \mathring{\mathcal{H}}_m^L$ for m < 0 implies that \boldsymbol{u} is a vector field solution of (1) in $\mathbb{R}^2 \setminus \{0\}$ which is homogeneous in $\boldsymbol{x} = (x_1, x_2)$ of degree m.

Let $\boldsymbol{u} = (u_1, u_2)$ be a real vector field solution of $\mathcal{L}\boldsymbol{u} = \boldsymbol{0}$ in $\mathbb{R}^2 \setminus \{0\}$. Then the complex function $U(z) := u_1(x_1, x_2) + iu_2(x_1, x_2)$ $(z := x_1 + ix_2)$ satisfies

$$\frac{\partial}{\partial \overline{z}} \Big(\frac{\partial U}{\partial z} + \gamma \overline{\frac{\partial U}{\partial z}} \Big) = 0 \quad \text{ in } \mathbb{C} \setminus \{0\},$$

which is solved as

$$U = \varphi(z) - \gamma z \overline{\varphi'(z)} + \overline{\psi(z)} + 2c \log|z| - \gamma \overline{c} \left(\frac{z}{|z|}\right)^2$$

where $\varphi(z), \psi(z)$ are holomorphic functions in $\mathbb{C} \setminus \{0\}$, and $c \in \mathbb{C}$ is a constant ([3]). Using this fact, we have the following assertions.

Theorem 4. The spaces \mathcal{H}_m^L and $\mathring{\mathcal{H}}_m^L$ have the following bases.

(i)
$$\mathcal{H}_{0}^{L} = \mathbb{R}^{2}$$
. For $m \neq 0$, the space \mathcal{H}_{m}^{L} has a basis

$$\begin{cases} \begin{bmatrix} \operatorname{Re}[z^{m} - \gamma m z \overline{z^{m-1}}] \\ \operatorname{Im}[z^{m} - \gamma m z \overline{z^{m-1}}] \end{bmatrix}, \begin{bmatrix} -\operatorname{Im}[z^{m} + \gamma m z \overline{z^{m-1}}] \\ \operatorname{Re}[z^{m} + \gamma m z \overline{z^{m-1}}] \end{bmatrix}, \begin{bmatrix} \operatorname{Re}[z^{m}] \\ -\operatorname{Im}[z^{m}] \end{bmatrix}, \begin{bmatrix} \operatorname{Im}[z^{m}] \\ \operatorname{Re}[z^{m}] \end{bmatrix} \end{cases}$$

(ii)
$$\mathring{\mathcal{H}}_{0}^{L} = \mathbb{R}^{2}$$
. For $m \neq 0$, the space $\mathring{\mathcal{H}}_{m}^{L}$ has a basis $\left\{ \begin{bmatrix} \cos m\theta - \gamma m \cos (m-2)\theta \\ \sin m\theta + \gamma m \sin (m-2)\theta \end{bmatrix}, \begin{bmatrix} -\sin m\theta + \gamma m \sin (m-2)\theta \\ \cos m\theta + \gamma m \cos (m-2)\theta \end{bmatrix}, \begin{bmatrix} \cos m\theta \\ -\sin m\theta \end{bmatrix}, \begin{bmatrix} \sin m\theta \\ \cos m\theta \end{bmatrix} \right\}$

Corollary 5.

(i)
$$\mathring{\mathcal{H}}_0^L + \mathring{\mathcal{H}}_1^L + \dots + \mathring{\mathcal{H}}_m^L = \mathring{\mathcal{H}}_0 + \mathring{\mathcal{H}}_1 + \dots + \mathring{\mathcal{H}}_m \text{ for } m \ge 1.$$

(ii) The sum $\mathring{\mathcal{H}}_{0}^{L} + \mathring{\mathcal{H}}_{-1}^{L} + \dots + \mathring{\mathcal{H}}_{-m}^{L}$ $(m \ge 1)$ is a direct sum, and satisfies $\mathring{\mathcal{H}}_{0} + \mathring{\mathcal{H}}_{1} + \dots + \mathring{\mathcal{H}}_{m-2} \subset \mathring{\mathcal{H}}_{0}^{L} + \mathring{\mathcal{H}}_{-1}^{L} + \dots + \mathring{\mathcal{H}}_{-m}^{L} \subset \mathring{\mathcal{H}}_{0} + \mathring{\mathcal{H}}_{1} + \dots + \mathring{\mathcal{H}}_{m+2}$ for $m \ge 2$.

References

- [1] N. Honda, H. Ito and S. Jimbo, Spherical vector functions associated with the Lamé and Stokes systems, *preprint*.
- [2] T. Nomura, Spherical Harmonics and Group Represensations (Japanese), NipponHyoronsha (2018).
- [3] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 2nd ed., Noordhoff N.V., 1953.
- [4] N. Shimakura, Partial Differential Operators of Elliptic Type, AMS, Providence, RI, 1992.
- [5] B. Simon, Harmonic analysis, A Comprehensive Course in Analysis, Part 3. AMS, Providence, RI, 2015.