Clique complexes of multigraphs

Anton Ayzenberg ayzenberga@gmail.com based on joint work with Alexey Rukhovich

Higher School of Economics and Steklov Mathematical Institute, Moscow

March 25, 2021 Toric Topology in Osaka 2021 Osaka/Zoom

・ロト ・ 同ト ・ ヨト ・

- **1** Iterative constructions of simplicial complexes: substitutions, vertex inflations.
- Ournaments in digraphs, cliques in multigraphs, edge inflations of simplicial complexes.
- **③** Generalizations and open questions.

・ロト ・ 同ト ・ ヨト ・

K : a simplicial complex on vertices [m] = {1,...,m};
(j₁,...,j_m) : an array of positive integers.
Define iterated wedge construction K(j₁,...,j_m) with
Vertex set J₁ ⊔ · · · ⊔ J_m (with |J_i| = j_i).
A₁ ⊔ · · · ⊔ A_m is a simplex iff {i | A_i = J_i} ∈ K.

Construction has nice properties.

K : a simplicial complex on vertices [m] = {1,...,m};
(j₁,...,j_m) : an array of positive integers.
Define iterated wedge construction K(j₁,...,j_m) with
Vertex set J₁ ⊔ · · · ⊔ J_m (with |J_i| = j_i).
A₁ ⊔ · · · ⊔ A_m is a simplex iff {i | A_i = J_i} ∈ K.

Construction has nice properties.

• If K is a sphere then so is $K(j_1, \ldots, j_m)$.

K : a simplicial complex on vertices [m] = {1,...,m};
(j₁,...,j_m) : an array of positive integers.
Define iterated wedge construction K(j₁,...,j_m) with
Vertex set J₁ □ ··· □ J_m (with |J_i| = j_i).

• $A_1 \sqcup \cdots \sqcup A_m$ is a simplex iff $\{i \mid A_i = J_i\} \in K$.

Construction has nice properties.

- If K is a sphere then so is $K(j_1, \ldots, j_m)$.
- If K is a boundary of simplicial polytope then so is $K(j_1, \ldots, j_m)$.

K : a simplicial complex on vertices [m] = {1,...,m};
(j₁,...,j_m) : an array of positive integers.
Define iterated wedge construction K(j₁,...,j_m) with
Vertex set J₁ ⊔ … ⊔ J_m (with |J_i| = j_i).

• $A_1 \sqcup \cdots \sqcup A_m$ is a simplex iff $\{i \mid A_i = J_i\} \in K$.

Construction has nice properties.

- If K is a sphere then so is $K(j_1, \ldots, j_m)$.
- If K is a boundary of simplicial polytope then so is $K(j_1, \ldots, j_m)$.

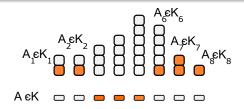
•
$$\mathcal{Z}_{\mathcal{K}(\underline{j_i})}(D^1, S^0) = \mathcal{Z}_{\mathcal{K}}(\underline{(D^{j_i}, S^{j_i-1})})$$
, etc.

Construction of thick substitution

- K: a simplicial complex on vertices $[m] = \{1, \dots, m\};$
- (K_1, \ldots, K_m) : an array of simplicial complexes on vertex sets J_1, \ldots, J_m resp..

Define new complex $K(K_1, \ldots, K_m)$ with

- Vertex set $J_1 \sqcup \cdots \sqcup J_m$.
- $A_1 \sqcup \cdots \sqcup A_m$ is a simplex iff $\{i \mid A_i \notin K_i\} \in K$.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Remark: thick substitution generalizes iterated wedges:

$$K(j_1,\ldots,j_m)=K(\partial\Delta^{j_1-1},\ldots,\partial\Delta^{j_m-1}).$$

*ロ * * 日 * * 日 * *

Remark: thick substitution generalizes iterated wedges:

$$K(j_1,\ldots,j_m)=K(\partial\Delta^{j_1-1},\ldots,\partial\Delta^{j_m-1}).$$

Theorem (A.'13)

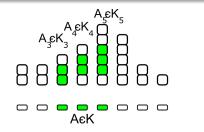
- Thick substitution defines an operad structure on the set of all finite simplicial complexes.
- There is a natural homotopy equivalence $|K(K_1, \ldots, K_m)| \simeq |K| * |K_1| * \cdots * |K_m|.$
- An operation of substitution of polytopes (by Agnarsson'13) corresponds to thick substitution of simplicial complexes.

Construction of thin substitution

• K: a simplicial complex on vertices $[m] = \{1, \dots, m\};$

• (K_1, \ldots, K_m) : an array of simplicial complexes on vertex sets J_1, \ldots, J_m resp. Define new complex $K[K_1, \ldots, K_m]$ with

- Vertex set $J_1 \sqcup \cdots \sqcup J_m$.
- $A_1 \sqcup \cdots \sqcup A_m$ is a simplex iff $A_i \in K_i$ and $\{i \mid A_i \neq \emptyset\} \in K$.



< ロ > < 同 > < 回 > <

Remark: thin substitution was used by Abramyan–Panov'19 to construct nontrivial iterated higher Whitehead products in moment angle complexes.

No general good homotopy properties of $K[K_1, \ldots, K_m]$ are known.

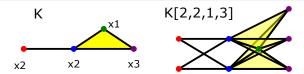
・ロト ・ 一下・ ・ ヨト ・ ヨ

Remark: thin substitution was used by Abramyan–Panov'19 to construct nontrivial iterated higher Whitehead products in moment angle complexes.

No general good homotopy properties of $K[K_1, \ldots, K_m]$ are known.

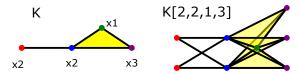
Vertex inflations

Let *n* pt be a simplicial complex of *n* disjoint points. A particular case of thin substitution was studied by Björner, Wachs, and Welker. The complex $K[j_1 \text{ pt}, \ldots, j_m \text{ pt}]$ is called a vertex inflation of *K*.



イロト イヨト イヨト イ

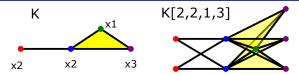
Vertex inflation



Let $\mathcal{J} = (j_1, \ldots, j_m)$ denote the multiplicities.

*ロト *部ト * ヨト * ヨ

Vertex inflation



Let $\mathcal{J} = (j_1, \ldots, j_m)$ denote the multiplicities.

Theorem (Björner, Wachs, and Welker'05)

- If Δ^k is a simplex, then Δ^k[J] is homotopy equivalent to a wedge of N(J) = ∏_i(j_i − 1) many spheres S^k.
- ② For connected K there is a wedge decomposition

$$|\mathcal{K}[\mathcal{J}]| \simeq |\mathcal{K}| \lor \bigvee_{I \in \mathcal{K}} (\Sigma^{|I|} | \operatorname{link}_{\mathcal{K}} I|)^{\lor N(\mathcal{J}|_{I})}.$$

If K is Cohen–Macaulay, then $K[\mathcal{J}]$ is also Cohen–Macaulay.

Item 1 follows easily from two observations $\Delta^{k}[K_{1}, \ldots, K_{m}] = K_{1} * \cdots * K_{m}$, and $j \text{ pt} = \bigvee_{j=1} S^{0}$.

Poset fiber theorem

Wedge decomposition (item 2) follows from Poset Fiber Theorem.

Poset fiber theorem of Björner, Wachs, and Welker

Let $f: P \to Q$ be a morphism of posets such that for all $q \in Q$ the fiber $|f^{-1}(Q_{\leq q})|$ is dim $|f^{-1}(Q_{< q})|$ -connected. If |Q| is connected, then there is a homotopy equivalence

$$|P| \simeq |Q| \vee \bigvee_{q \in Q} |f^{-1}(Q_{\leq q})| * |Q_{>q}|.$$

$$\tag{1}$$

The proof is based on homotopy colimits.

Poset fiber theorem

Wedge decomposition (item 2) follows from Poset Fiber Theorem.

Poset fiber theorem of Björner, Wachs, and Welker

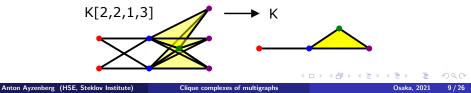
Let $f: P \to Q$ be a morphism of posets such that for all $q \in Q$ the fiber $|f^{-1}(Q_{\leq q})|$ is dim $|f^{-1}(Q_{< q})|$ -connected. If |Q| is connected, then there is a homotopy equivalence

$$|P| \simeq |Q| \vee \bigvee_{q \in Q} |f^{-1}(Q_{\leq q})| * |Q_{>q}|.$$

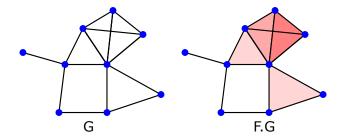
$$\tag{1}$$

The proof is based on homotopy colimits.

The application idea: notice that there is a "blow down" map which satisfies assumptions of PFT:

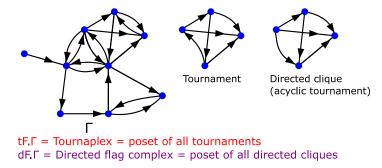


Clique (or flag) complex of a graph



<ロト <回 > < 回 > <

Tournaplex of a digraph



Both dF. Γ and tF. Γ are simplicial posets.

Tournaplex of a digraph

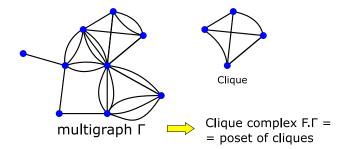


Both $dF.\Gamma$ and $tF.\Gamma$ are simplicial posets.

Introduced and studied in BlueBrain project (Kathryn Hess, Ran Levi, and others).

Used to construct numerical characteristics of brain functional networks.

Clique complex of a multigraph



- Multigraph : multiple edges, no loops.
- A clique : a sub(multi)graph isomorphic to K_n .
- $F.\Gamma$: the simplicial poset of all cliques in Γ .

We want to study topology of $F.\Gamma$.

- K : a simplicial complex (or simplicial poset).
- E(K) : the edge set of K.
- $\mu \colon E(K) \to \mathbb{Z}_+$: multiplicity function.
- $I \in K$: a simplex, E(I): its edges.

< □ > < 同 > < 回 > <</p>

- K : a simplicial complex (or simplicial poset).
- E(K) : the edge set of K.
- $\mu \colon E(K) \to \mathbb{Z}_+$: multiplicity function.
- $I \in K$: a simplex, E(I): its edges.

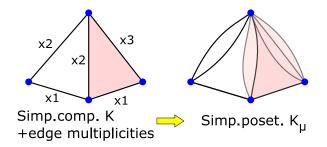
Construction

For each simplex $I \in K$ we take $\prod_{e \in E(I)} \mu(e)$ many copies of it. Formally, let K_{μ} be a poset, whose elements have the form (I, c_I) , where $I \in K$ and $c_I : E(I) \to \mathbb{Z}_+$ maps each edge $e \in E(I)$ to one of the labels $\{1, \ldots, \mu(e)\}$. The order is given by

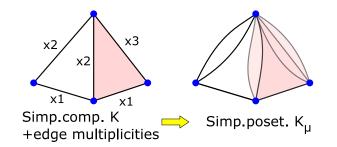
$$(I, c_I) \leq (J, c_J)$$
 iff $I \subseteq J$ and $c_J|_{E(I)} = c_I$.

 K_{μ} is a simplicial poset. We call it the edge inflation of K.

・ロト ・ 同ト ・ ヨト ・



• • • • • • • •



Remark

If Γ is a multigraph, and G is its underlying simple graph (i.e. $\Gamma = G_{\mu}$), then

$$F.\Gamma = (F.G)_{\mu}$$

Edge inflations generalize clique complexes of multigraphs.

Homotopy type of edge inflations

Let Δ_V be a simplex on a vertex set V.

イロト イヨト イヨト

Homotopy type of edge inflations

Let Δ_V be a simplex on a vertex set V.

Theorem (A.–Rukhovich'20)

For each multiplicity function the following hold for edge inflated complexes:

- $(\Delta_V)_{\mu}$ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.
- **2** If K is connected then

$$|\mathcal{K}_{\mu}| \simeq |\mathcal{K}| \lor \bigvee_{I \in \mathcal{K}, \dim I \geqslant 1} (\Sigma^{|I|} | \operatorname{link}_{\mathcal{K}} I|)^{\lor n(\mu|_{I}, I)}.$$

• If K is Cohen–Macaulay, then so is K_{μ} .

< □ > < 同 > < 三 >

Homotopy type of edge inflations

Let Δ_V be a simplex on a vertex set V.

Theorem (A.–Rukhovich'20)

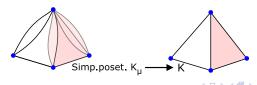
For each multiplicity function the following hold for edge inflated complexes:

- $(\Delta_V)_{\mu}$ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.
- **2** If K is connected then

$$|\mathcal{K}_{\mu}| \simeq |\mathcal{K}| \lor \bigvee_{I \in \mathcal{K}, \dim I \geqslant 1} (\Sigma^{|I|} | \operatorname{link}_{\mathcal{K}} I|)^{\lor n(\mu|_{I}, I)}.$$

() If K is Cohen–Macaulay, then so is K_{μ} .

Item 2 follows from Poset Fiber Theorem, since there is the blow-down map:



For each multiplicity function the following hold for edge inflated complexes: (Δ_V)_µ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.

The number $n(\mu, V)$ can be computed from Euler characteristic (n = |V|):

$$n(\mu, V) = \sum_{J \subseteq V, |J| \ge 2} (-1)^{n-|J|} \prod_{e \in \binom{J}{2}} \mu(e) + (-1)^{n-1} (n-1).$$

・ロト ・ 同ト ・ ヨト ・

For each multiplicity function the following hold for edge inflated complexes: • $(\Delta_V)_{\mu}$ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.

Item 1 is a bit more complicated than for vertex inflations studied by Björner, Wachs, and Welker.

(二)、

For each multiplicity function the following hold for edge inflated complexes: • $(\Delta_V)_{\mu}$ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.

Item 1 is a bit more complicated than for vertex inflations studied by Björner, Wachs, and Welker. It can be derived from

Lemma

Let $Y = X_1 \cup_A X_2$. Assume that X_1, X_2 are (homotopy equivalent to) wedges of *n*-dimensional spheres, and *A* is a wedge of (n-1)-dimensional spheres. Then *Y* is a wedge of *n*-dimensional spheres.

・ロト ・ 同ト ・ ヨト ・

For each multiplicity function the following hold for edge inflated complexes: • $(\Delta_V)_{\mu}$ is homotopy equivalent to a wedge of $n(\mu, V)$ many $S^{|V|-1}$.

Item 1 is a bit more complicated than for vertex inflations studied by Björner, Wachs, and Welker. It can be derived from

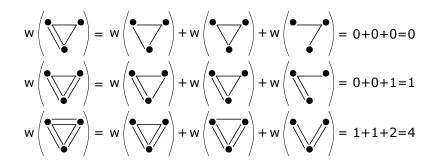
Lemma

Let $Y = X_1 \cup_A X_2$. Assume that X_1, X_2 are (homotopy equivalent to) wedges of *n*-dimensional spheres, and *A* is a wedge of (n-1)-dimensional spheres. Then *Y* is a wedge of *n*-dimensional spheres.

If w(Z) denotes the number of spheres in a wedge Z, then we have $w(Y) = w(X_1) + w(X_2) + w(A)$.

<ロト < 同ト < ヨト < ヨト

Calculation examples



Osaka, 2021 18 / 26

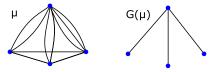
イロト イポト イヨト イヨト

Since $(\Delta_V)_{\mu}$ is always a wedge of spheres, we can ask

natural questions

- For which μ the complex (Δ_V)_μ is contractible (= the wedge of zero many spheres)?
- For which μ the complex $(\Delta_V)_{\mu}$ is a single sphere?
- Etc.

Let $\mu: E(\Delta_V) = {V \choose 2} \to \mathbb{Z}_+$ be a multiplicity function. Consider the simple graph $G(\mu)$ on V which has an edge $\{i, j\}$ iff $\mu(\{i, j\}) \ge 2$.



Proposition 0

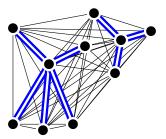
 $(\Delta_V)_{\mu}$ is contractible iff $G(\mu)$ has an isolated vertex.

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲

Characterizations

We say that μ is a starry sky function if

- $\mu(e) \in \{1,2\}$ for each $e \in E(\Delta_V)$.
- **2** All connected components of $G(\mu)$ are star graphs with at least 2 vertices.



Proposition 1

 $(\Delta_V)_{\mu}$ is homotopy equiv. to a single sphere iff μ is a starry sky function.

So far we have

- Vertex inflations by Björner, Wachs, Welker.
- Edge inflations, which allow to describe clique complexes of multigraphs.

・ロト ・ 一下・ ・ ヨト

So far we have

- Vertex inflations by Björner, Wachs, Welker.
- Edge inflations, which allow to describe clique complexes of multigraphs.

Why not go further and inflate anything?

・ロト ・ 一下・ ・ ヨト

So far we have

- Vertex inflations by Björner, Wachs, Welker.
- Edge inflations, which allow to describe clique complexes of multigraphs.

Why not go further and inflate anything?

Construction

Let K be a simplicial complex (or simplicial poset), and $M: K \to \mathbb{Z}_+$ be a multiplicity function. Then we define generalized simplex inflation by

- First, inflate all maximal simplices I, by making M(I) copies of them.
- Next, inflate all simplices below maximal (this produces lots of additional copies of maximal simplices as well).
- Proceed below until you reach vertices.

So far we have

- Vertex inflations by Björner, Wachs, Welker.
- Edge inflations, which allow to describe clique complexes of multigraphs.

Why not go further and inflate anything?

Construction

Let K be a simplicial complex (or simplicial poset), and $M: K \to \mathbb{Z}_+$ be a multiplicity function. Then we define generalized simplex inflation by

- First, inflate all maximal simplices I, by making M(I) copies of them.
- Next, inflate all simplices below maximal (this produces lots of additional copies of maximal simplices as well).
- Proceed below until you reach vertices.

We get the same results: (1) Inflation of a simplex produces a wedge of spheres; (2) Homotopy wedge decomposition in general; (3) Cohen–Macaulayness is inherited by inflations.

< □ > < □ > < □ > < □ > < □ > < □ >

Let K be a simplicial complex. As a poset, it defines a category cat(K), where

 $I \rightarrow J$ iff $I \supseteq J$.

Consider a functor \mathcal{M} : cat(\mathcal{K}) \rightarrow FSet to finite sets. We inflate \mathcal{K} using \mathcal{M} .

Let K be a simplicial complex. As a poset, it defines a category cat(K), where

 $I \rightarrow J$ iff $I \supseteq J$.

Consider a functor \mathcal{M} : cat(\mathcal{K}) \rightarrow FSet to finite sets. We inflate \mathcal{K} using \mathcal{M} .

Construction

For each simplex $I \in K$ initialize $|\mathcal{M}(I)|$ its copies. Glue them all together according to the maps $\mathcal{M}(I \supseteq J)$. The resulting space

 $\mathsf{hocolim}\,\mathcal{M}$

is called the inflation of K by the functor \mathcal{M} .

All previous inflations are particular cases of this construction.

・ロト ・ 同ト ・ ヨト ・

- Consider K as a finite topological space, open sets are simplicial subcomplexes.
- \mathcal{M} can be treated as a sheaf on K.

- Consider K as a finite topological space, open sets are simplicial subcomplexes.
- \mathcal{M} can be treated as a sheaf on K.

Conjecture

If \mathcal{M} is a flasque sheaf on K, then

- For $K = \Delta_V$, hocolim \mathcal{M} is a wedge of (|V| 1)-dimensional spheres;
- ${f 0}$ In general, there is a homotopy wedge decomposition for hocolim ${\cal M}.$

・ロト ・ 戸 ト ・ ヨ ト ・

Thank you for listening!

- A. Ayzenberg, A. Rukhovich, *Clique complexes of multigraphs, edge inflations, and tournaplexes*, preprint arXiv:2012.07600
- A. Björner, M. L. Wachs, V. Welker, *Poset fiber theorems*, Trans. Amer. Math. Soc. 357:5 (2005), 1877–1899.
- D. Govc, R. Levi, J. P. Smith, *Complexes of tournaments, directionality filtrations and persistent homology*, preprint arXiv:2003.00324