GKM-Sheaves and Equivariant Cohomology

Tom Baird - Memorial University of Newfoundland

25 March 2021
Outline

1. GKM theory
2. The Chang-Skjelbred Theorem
3. Our main result
4. GKM-hypergraphs
5. GKM-sheaves
Let

- $T = (S^1)^r$ a compact torus.
Let

- $T = (S^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
Let

- $T = (S^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H_T^*(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.
Let

- $T = (S^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H^*_T(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.
- $A := H^*_T(point)$.

GKM theory is a collection of techniques for calculating $H^*_T(X)$ and related invariants.
Let

- $T = (S^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H^*_T(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.
- $A := H^*_T(point)$.

GKM theory is a collection of techniques for calculating $H^*_T(X)$ and related invariants.
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph.
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action.
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, S^1)$.
For a large class of T-manifolds with isolated fixed points, Goersky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, S^1)$.

GKM-theory subsequently developed in several directions:
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, S^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, S^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H^*_T(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, S^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,
- to equivariant intersection cohomology by Braden and MacPherson who introduced the notion of Γ-sheaves on a GKM-graph.
For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in \text{Hom}(T, \mathbb{S}^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,
- to equivariant intersection cohomology by Braden and MacPherson who introduced the notion of Γ-sheaves on a GKM-graph.

GKM-sheaves provide a unified framework for these constructions.
Given a T-space X, consider the filtration

$$X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^\ast_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H^\ast_T(X) \xrightarrow{i^\ast} H^\ast_T(X_0) \xrightarrow{\delta} H^{\ast+1}_T(X_1, X_0)$$

where i^\ast is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0).

By work of Allday-Franz-Puppe, (1) is exact if and only if $H^\ast_T(X)$ is a 2-syzygy, meaning that there exists an exact sequence

$$0 \to F_0 \to F_1 \to H^\ast_T(X)$$

where F_0, F_1 are free A-modules.
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^*_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \rightarrow H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^{*+1}_T(X_1, X_0)$$

(1)
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^*_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0)$$

where i^* is induced by inclusion $X_0 \subseteq X$.

By work of Allday-Franz-Puppe, (1) is exact if and only if $H^*_T(X)$ is a 2-syzygy, meaning that there exists an exact sequence

$$0 \to F_0 \to F_1 \to H^*_T(X)$$

where F_0, F_1 are free A-modules.
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^*_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0)$$

(1)

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0).
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^*_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0)$$

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0).

By work of Allday-Franz-Puppe, (1) is exact if and only if $H^*_T(X)$ is a 2-syzygy,
Given a T-space X, consider the filtration

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H^*_T(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0)$$

(1)

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0).

By work of Allday-Franz-Puppe, (1) is exact if and only if $H^*_T(X)$ is a **2-syzygy**, meaning that there exists an exact sequence

$$0 \to F_0 \to F_1 \to H^*_T(X)$$

where F_0, F_1 are free A-modules.
To a finite T-CW complex X, we associate a certain sheaf of A-modules \mathcal{F}_X, which packages cohomological and combinatorial information about (X_1, X_0).
To a finite T-CW complex X, we associate a certain sheaf of \mathbb{A}-modules \mathcal{F}_X, which packages cohomological and combinatorial information about (X_1, X_0).

Theorem (Al-Jabea, B)

*If $H^*_T(X)$ is a 2-syzygy, then there is a natural isomorphism*

$$H^0(\mathcal{F}_X) \cong H^*_T(X).$$
To a finite T-CW complex X, we associate a certain sheaf of A-modules \mathcal{F}_X, which packages cohomological and combinatorial information about (X_1, X_0).

Theorem (Al-Jabea, B)

If $H^*_T(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X) \cong H^*_T(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0) \to H^1(\mathcal{F}_X) \to 0$$
To a finite T-CW complex X, we associate a certain sheaf of A-modules \mathcal{F}_X, which packages cohomological and combinatorial information about (X_1, X_0).

Theorem (Al-Jabea, B)

If $H^*_T(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X) \cong H^*_T(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0) \to H^1(\mathcal{F}_X) \to 0$$

and $H^n(\mathcal{F}_X) = 0$ for $n \geq 2$.
To a finite T-CW complex X, we associate a certain sheaf of A-modules \mathcal{F}_X, which packages cohomological and combinatorial information about (X_1, X_0).

Theorem (Al-Jabea, B)

If $H^*_T(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X) \cong H^*_T(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_T(X_0) \xrightarrow{\delta} H^*_T(X_1, X_0) \to H^1(\mathcal{F}_X) \to 0$$

and $H^n(\mathcal{F}_X) = 0$ for $n \geq 2$.

The sheaf \mathcal{F}_X is called a *GKM-sheaf* and is defined on a *GKM-hypergraph* Γ_X.
\[T \cong (\mathbb{S}^1)^r \] a compact torus.
• $T \cong (\mathbb{S}^1)^r$ a compact torus.

• $\Lambda := \text{Hom}(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
• $T \cong (S^1)^r$ a compact torus.

• $\Lambda := \text{Hom}(T, U(1)) \subset t^*$ the weight lattice.

• $\mathbb{P}(\Lambda) := (\Lambda - \{0\})/\text{scalars}$ is the set of projective weights.
• $T \cong (\mathbb{S}^1)^r$ a compact torus.

• $\Lambda := \text{Hom}(T, U(1)) \subset t^*$ the weight lattice.

• $\mathbb{P}(\Lambda) := (\Lambda - \{0\})/\text{scalars}$ is the set of projective weights.

 $\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}$
- \(T \cong (\mathbb{S}^1)^r \) a compact torus.
- \(\Lambda := \text{Hom}(T, U(1)) \subset \mathfrak{t}^* \) the weight lattice.
- \(\mathbb{P}(\Lambda) := (\Lambda - \{0\})/\text{scalars} \) is the set of projective weights.
- \(\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\} \)

A **GKM-hypergraph** \(\Gamma = (\mathcal{V}, \sim) \) consists of
- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := \text{Hom}(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda - \{0\})/\text{scalars}$ is the set of projective weights.
 \[
 \alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}
 \]

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of
- A finite set \mathcal{V} called the *vertices*
• $T \cong (S^1)^r$ a compact torus.
• $\Lambda := \text{Hom}(T, U(1)) \subset t^*$ the weight lattice.
• $\mathbb{P}(\Lambda) := (\Lambda - \{0\})/\text{scalars}$ is the set of projective weights.

$$\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}$$

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of

1. A finite set \mathcal{V} called the **vertices**
2. An equivalence relation \sim_α on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.
A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set \mathcal{V} called the **vertices**
- An equivalence relation \sim_α on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.
A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set \mathcal{V} called the **vertices**
- An equivalence relation \sim_α on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A **morphism** of GKM-hypergraphs

$$\phi : (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$
A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set \mathcal{V} called the **vertices**
- An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A **morphism** of GKM-hypergraphs

$$\phi : (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$

is a map $\phi : \mathcal{V} \to \mathcal{V}'$ such that
A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set \mathcal{V} called the **vertices**
- An equivalence relation \sim_α on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A **morphism** of GKM-hypergraphs

$$\phi : (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$

is a map $\phi : \mathcal{V} \to \mathcal{V}'$ such that

$$v \sim_\alpha w \implies \phi(v) \sim'_\alpha \phi(w)$$

for all $\alpha \in \mathbb{P}(\Lambda)$.
To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by
To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by

- \mathcal{V}_X := the set of path components of $X^T = \pi_0(X^T)$
To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by

- $\mathcal{V}_X :=$ the set of path components of $X^T = \pi_0(X^T)$
- For $\alpha \in \mathbb{P}(\Lambda)$ and $V, W \in \mathcal{V}_X$,

$$V \sim_\alpha W \iff \text{they lie in the same component of } X^{\ker(\alpha)}.$$
To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by

- $\mathcal{V}_X :=$ the set of path components of $X^T = \pi_0(X^T)$
- For $\alpha \in \mathbb{P}(\Lambda)$ and $V, W \in \mathcal{V}_X$,

\[V \sim_\alpha W \iff \text{they lie in the same component of } X^{\ker(\alpha)}. \]

This determines a functor

\[\Gamma : \text{finite } T\text{-CW complexes} \mapsto \text{GKM-hypergraphs} \]
The set of hyperedges of $\Gamma = (V, \sim)$ is
The set of \textbf{hyperedges} of $\Gamma = (\mathcal{V}, \sim)$ is

$$E := \{ (\alpha, S) \in \mathcal{P}(\Lambda) \times \wp(\mathcal{V}) \mid S \text{ is an } \sim_\alpha \text{ equiv. class} \}$$
The set of hyperedges of $\Gamma = (\mathcal{V}, \sim)$ is

$$\mathcal{E} := \{ (\alpha, S) \in \mathcal{P}(\Lambda) \times \wp(\mathcal{V}) \mid S \text{ is an } \sim_\alpha \text{ equiv. class} \}$$

We have forgetful maps,

- $\alpha : \mathcal{E} \rightarrow \mathcal{P}(\Lambda)$ (the axial function),
The set of hyperedges of $\Gamma = (\mathcal{V}, \sim)$ is

$$\mathcal{E} := \{(\alpha, S) \in \mathcal{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_\alpha \text{ equiv. class}\}$$

We have forgetful maps,

- $\alpha : \mathcal{E} \to \mathcal{P}(\Lambda)$ (the axial function),
- $I : \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).
The set of hyperedges of $\Gamma = (\mathcal{V}, \sim)$ is

$$\mathcal{E} := \{ (\alpha, S) \in \mathcal{P}(\Lambda) \times \wp(\mathcal{V}) \mid S \text{ is an } \sim_\alpha \text{ equiv. class} \}$$

We have forgetful maps,

- $\alpha : \mathcal{E} \to \mathcal{P}(\Lambda)$ (the axial function),
- $I : \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

Define the topological space $\text{Top}(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$
The set of hyperedges of $\Gamma = (\mathcal{V}, \sim)$ is

$$\mathcal{E} := \{ (\alpha, S) \in \mathcal{P}(\Lambda) \times \wp(\mathcal{V}) \mid S \text{ is an } \sim_\alpha \text{ equiv. class} \}$$

We have forgetful maps,

- $\alpha : \mathcal{E} \to \mathcal{P}(\Lambda)$ (the axial function),
- $I : \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

Define the topological space $\text{Top}(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$ and basic open sets

- $U_v := \{ v \}$
- $U_e := \{ e \} \cup I(e)$
The set of **hyperedges** of $\Gamma = (\mathcal{V}, \sim)$ is

$$\mathcal{E} := \{ (\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) \mid S \text{ is an } \sim_\alpha \text{ equiv. class} \}$$

We have forgetful maps,

- $\alpha : \mathcal{E} \to \mathbb{P}(\Lambda)$ (the **axial function**),
- $I : \mathcal{E} \to \wp(\mathcal{V})$ (the **incidence map**).

Define the topological space $\text{Top}(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$ and basic open sets

- $U_v := \{v\}$
- $U_e := \{e\} \cup I(e)$

GKM-morphisms induce continuous maps in this topology.
Denote

\[A := S(t^*_C) \]
Denote

\[A := S(t^*_C) \cong H^*_T(point; \mathbb{C}) \]
Denote

\[A := S(t^*_C) \cong H^*_T(point; \mathbb{C}) \cong \mathbb{C}[u_1, \ldots, u_r] \]

with \(\deg(u_i) = 2 \).
Denote

\[A := S(t_C^*) \cong H_T^*(\text{point}; \mathbb{C}) \cong \mathbb{C}[u_1, ..., u_r] \]

with \(\deg(u_i) = 2 \).

Definition

A **GKM-sheaf** \(\mathcal{F} \) over \(\Gamma \) is a sheaf of finitely generated, \(\mathbb{Z} \)-graded \(A \)-modules over \(\text{Top}(\Gamma) \), such that
Denote

\[A := S(t_C^*) \cong H^*_T(\text{point}; \mathbb{C}) \cong \mathbb{C}[u_1, \ldots, u_r] \]

with \(\deg(u_i) = 2 \).

Definition

A **GKM-sheaf** \(\mathcal{F} \) over \(\Gamma \) is a sheaf of finitely generated, \(\mathbb{Z} \)-graded \(A \)-modules over \(\text{Top}(\Gamma) \), such that

1. \(\mathcal{F} \) is locally free over \(A \).
Denote

\[A := S(t_{C}^{*}) \cong H_{T}^{*}(\text{point}; \mathbb{C}) \cong \mathbb{C}[u_{1}, \ldots, u_{r}] \]

with \(\text{deg}(u_{i}) = 2 \).

Definition

A **GKM-sheaf** \(\mathcal{F} \) over \(\Gamma \) is a sheaf of finitely generated, \(\mathbb{Z} \)-graded \(A \)-modules over \(\text{Top}(\Gamma) \), such that

1. \(\mathcal{F} \) is locally free over \(A \).
2. The restriction \(\mathcal{F}(U_{e}) \to \mathcal{F}(I(e)) \) is an isomorphism modulo \(\alpha(e)^{-1} \) for all \(e \in \mathcal{E} \).
Denote
\[A := S(t_C^*) \cong H^*_T(point; \mathbb{C}) \cong \mathbb{C}[u_1, \ldots, u_r] \]
with \(\deg(u_i) = 2 \).

Definition

A **GKM-sheaf** \(\mathcal{F} \) over \(\Gamma \) is a sheaf of finitely generated, \(\mathbb{Z} \)-graded \(A \)-modules over \(\text{Top}(\Gamma) \), such that

1. \(\mathcal{F} \) is locally free over \(A \).
2. The restriction \(\mathcal{F}(U_e) \to \mathcal{F}(I(e)) \) is an isomorphism modulo \(\alpha(e)^{-1} \) for all \(e \in \mathcal{E} \).
3. \(\mathcal{F}(U_e) \cong \mathcal{F}(I(e)) \) for all but finitely many \(e \in \mathcal{E} \).
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.

Pushforwards: Given $\phi : \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_* : GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \quad \mathcal{F} \to \phi_*(\mathcal{F})$$
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.

Pushforwards: Given $\phi : \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_* : GKM(\Gamma_1) \to GKM(\Gamma_2), \quad \mathcal{F} \mapsto \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ, then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$.
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.

Pushforwards: Given $\phi : \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_* : GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \quad F \mapsto \phi_*(F)$$

Invariants: If G acts by automorphisms on Γ, then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain functor

$$lvt : GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \quad F \mapsto (\phi_*(F))^G$$

by pushing forward and taking invariants.
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.

Pushforwards: Given $\phi : \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_* : GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \quad \mathcal{F} \mapsto \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ, then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain functor

$$lvt : GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \quad \mathcal{F} \mapsto (\phi_*(\mathcal{F}))^G$$

by pushing forward and taking invariants.

Products: Define an external tensor product

$$\boxtimes : GKM(\Gamma_1) \times GKM(\Gamma_2) \mapsto GKM(\Gamma_1 \times \Gamma_2)$$
Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ.

Pushforwards: Given $\phi : \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_* : GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \quad \mathcal{F} \mapsto \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ, then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain a functor

$$lvt : GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \quad \mathcal{F} \mapsto (\phi_*(\mathcal{F}))^G$$

by pushing forward and taking invariants.

Products: Define an external tensor product

$$\boxtimes : GKM(\Gamma_1) \times GKM(\Gamma_2) \mapsto GKM(\Gamma_1 \times \Gamma_2)$$

$$\mathcal{F}_1 \boxtimes \mathcal{F}_2 := \pi_1^*(\mathcal{F}_1) \otimes \pi_2^*(\mathcal{F}_2)$$

where $\pi_i : \Gamma_1 \times \Gamma_2 \to \Gamma_i$ is the projection morphism.
For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X.
For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X, with stalks:

$$\mathcal{F}_X(U_V) := H^*_T(V) \cong H^*(V) \otimes_{\mathbb{C}} A$$

where we identify vertices V with connected components of X^T.
For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X, with stalks:

$$\mathcal{F}_X(U_V) := H_T^*(V) \cong H^*(V) \otimes_{\mathbb{C}} A$$

and

$$\mathcal{F}_X(U_E) := H_T^*(E) / Tor_A(H_T^*(E))$$

where we identify vertices V with connected components of X^T and hyperedges E with connected components of $X^{\ker(\alpha_E)}$.
For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X, with stalks:

$$\mathcal{F}_X(U_V) := H^*_T(V) \cong H^*(V) \otimes_C A$$

and

$$\mathcal{F}_X(U_E) := H^*_T(E) / \text{Tor}_A(H^*_T(E))$$

where we identify vertices V with connected components of X^T and hyperedges E with connected components of $X^{\ker(\alpha_E)}$.

Theorem

There is a canonical morphism of graded A-algebras

$$H^*_T(X) \rightarrow H^0(\mathcal{F}_X)$$

*which is an isomorphism X if and only if $H^*_T(X)$ is 2-syzygy.*
Idea of the proof:
Idea of the proof:
By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_T(X_1, X_0)$$
Idea of the proof:
By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \rightarrow H^*_T (X) \xrightarrow{i^*} H^*_T (X_0) \xrightarrow{\delta} H^*_T (X_1, X_0)$$

By construction $\mathcal{V} \subset \text{Top}(\Gamma_X)$ is an open set and

$$\mathcal{F}_X (\mathcal{V}) = H^*_T (X^T).$$
Idea of the proof:
By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \rightarrow H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^*_{T+1}(X_1, X_0)$$

By construction $\mathcal{V} \subset \text{Top}(\Gamma_X)$ is an open set and

$$\mathcal{F}_X(\mathcal{V}) = H^*_T(X^T).$$

We show that a section in $\mathcal{F}_M(\mathcal{V})$ extends to $\text{Top}(\Gamma)$ if and only if it lies in the kernel of δ.
Thank you!