GKM-Sheaves and Equivariant Cohomology

Tom Baird - Memorial University of Newfoundland

25 March 2021

Outline

- GKM theory
- 2 The Chang-Skjelbred Theorem
- Our main result
- 4 GKM-hypergraphs
- 6 GKM-sheaves

• $T = (\mathbb{S}^1)^r$ a compact torus.

- $T = (\mathbb{S}^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).

- $T = (\mathbb{S}^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H_T^*(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.

- $T = (\mathbb{S}^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H_T^*(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.
- $A := H_T^*(point)$.

- $T = (\mathbb{S}^1)^r$ a compact torus.
- X a finite T-CW complex (e.g. a compact, smooth T-manifold).
- $H_T^*(X) := H^*(ET \times_T X; \mathbb{C})$ the equivariant cohomology ring.
- $A := H_T^*(point)$.

GKM theory is a collection of techniques for calculating $H_T^*(X)$ and related invariants.

GKM-sheaves

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph.

Our main result

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, \mathbb{S}^1)$.

GKM-sheaves

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, \mathbb{S}^1)$.

GKM-theory subsequently developed in several directions:

GKM-sheaves

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, \mathbb{S}^1)$.

GKM-theory subsequently developed in several directions:

• combinatorially by Guillemin and Zara,

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, \mathbb{S}^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,

For a large class of T-manifolds with isolated fixed points, Goresky, Kottwitz and MacPherson showed that $H_T^*(X)$ can be encoded combinatorially in a finite graph: the GKM graph. The vertices correspond to fixed points of the action and the edges are labelled by non-trivial characters $\alpha \in Hom(T, \mathbb{S}^1)$.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,
- to equivariant intersection cohomology by Braden and MacPherson who introduced the notion of Γ-sheaves on a GKM-graph.

GKM-theory subsequently developed in several directions:

- combinatorially by Guillemin and Zara,
- to a broader range of spaces by Guillemin and Holm,
- to equivariant intersection cohomology by Braden and MacPherson who introduced the notion of Γ-sheaves on a GKM-graph.

GKM-sheaves provide a unified framework for these constructions.

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H_T^*(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$
 (1)

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H_T^*(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$
 (1)

where i^* is induced by inclusion $X_0 \subseteq X$

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H_T^*(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$
 (1)

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0) .

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H_T^*(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$
 (1)

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0) .

By work of Allday-Franz-Puppe, (1) is exact if and only if $H_T^*(X)$ is a **2-syzygy**,

$$X^T = X_0 \subseteq X_1 \subseteq ... \subseteq X_r = X$$

where X_k is the union of orbits of dimension $\leq k$.

Theorem (The Chang-Skjelbred Theorem)

If $H_T^*(X)$ is a free A-module, then there is a natural exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$
 (1)

where i^* is induced by inclusion $X_0 \subseteq X$ and δ is the coboundary map for the pair (X_1, X_0) .

By work of Allday-Franz-Puppe, (1) is exact if and only if $H_T^*(X)$ is a **2-syzygy**, meaning that there exists an exact sequence

$$0 \to F_0 \to F_1 \to H_T^*(X)$$

where F_0 , F_1 are free A-modules.

Theorem (Al-Jabea, B)

If $H_T^*(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X) \cong H_T^*(X).$$

Theorem (Al-Jabea, B)

If $H_T^*(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X)\cong H_T^*(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_T(X_0) \xrightarrow{\delta} H^{*+1}_T(X_1,X_0) \to H^1(\mathcal{F}_X) \to 0$$

Theorem (Al-Jabea, B)

If $H_T^*(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X)\cong H_T^*(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_{\mathcal{T}}(X_0) \xrightarrow{\delta} H^{*+1}_{\mathcal{T}}(X_1, X_0) \to H^1(\mathcal{F}_X) \to 0$$

and $H^n(\mathcal{F}_X) = 0$ for $n \geq 2$.

Theorem (Al-Jabea, B)

If $H_T^*(X)$ is a 2-syzygy, then there is a natural isomorphism

$$H^0(\mathcal{F}_X)\cong H_T^*(X).$$

Furthermore, there is a natural exact sequence

$$0 \to H^0(\mathcal{F}_X) \to H^*_{\mathcal{T}}(X_0) \xrightarrow{\delta} H^{*+1}_{\mathcal{T}}(X_1, X_0) \to H^1(\mathcal{F}_X) \to 0$$

and
$$H^n(\mathcal{F}_X) = 0$$
 for $n \geq 2$.

The sheaf \mathcal{F}_X is called a *GKM-sheaf* and is defined on a *GKM-hypergraph* Γ_X .

• $T \cong (\mathbb{S}^1)^r$ a compact torus.

- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := \textit{Hom}(T, \textit{U}(1)) \subset \mathfrak{t}^*$ the weight lattice.

- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := Hom(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda \{0\})/scalars$ is the set of projective weights.

- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := Hom(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda \{0\})/scalars$ is the set of projective weights.
 - $\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}$

- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := Hom(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda \{0\})/s$ calars is the set of projective weights.

$$\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}$$

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of

- $T \cong (\mathbb{S}^1)^r$ a compact torus.
- $\Lambda := Hom(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda \{0\})/scalars$ is the set of projective weights. $\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \ker(\alpha) \in \{\text{codimension one subtori of } T\}$

A **GKM-hypergraph**
$$\Gamma = (\mathcal{V}, \sim)$$
 consists of

lacktriangle A finite set \mathcal{V} called the **vertices**.

- $\Lambda := Hom(T, U(1)) \subset \mathfrak{t}^*$ the weight lattice.
- $\mathbb{P}(\Lambda) := (\Lambda \{0\})/scalars$ is the set of projective weights.

$$\alpha \in \mathbb{P}(\Lambda) \leftrightarrow \mathit{ker}(\alpha) \in \{ \text{codimension one subtori of } \mathcal{T} \}$$

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of

- lacktriangle A finite set $\mathcal V$ called the **vertices**
- ② An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

- ullet A finite set ${\cal V}$ called the **vertices**
- An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

- ullet A finite set ${\cal V}$ called the **vertices**
- An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A morphism of GKM-hypergraphs

$$\phi: (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set V called the vertices
- An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A morphism of GKM-hypergraphs

$$\phi: (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$

is a map $\phi: \mathcal{V} \to \mathcal{V}'$ such that

A **GKM-hypergraph** $\Gamma = (\mathcal{V}, \sim)$ consists of,

- A finite set V called the vertices
- An equivalence relation \sim_{α} on \mathcal{V} for every $\alpha \in \mathbb{P}(\Lambda)$.

A morphism of GKM-hypergraphs

$$\phi: (\mathcal{V}, \sim) \mapsto (\mathcal{V}', \sim')$$

is a map $\phi: \mathcal{V} \to \mathcal{V}'$ such that

$$v \sim_{\alpha} w \Rightarrow \phi(v) \sim_{\alpha}' \phi(w)$$

for all $\alpha \in \mathbb{P}(\Lambda)$.

GKM-hypergraphs

To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by

• \mathcal{V}_X := the set of path components of $X^T = \pi_0(X^T)$

To any finite T-CW complex X, we associate a GKM-hypergraph $\Gamma_X = (\mathcal{V}_X, \sim)$ by

- V_X := the set of path components of $X^T = \pi_0(X^T)$
- For $\alpha \in \mathbb{P}(\Lambda)$ and $V, W \in \mathcal{V}_X$,

 $V \sim_{\alpha} W \Leftrightarrow \text{they lie in the same component of } X^{\ker(\alpha)}.$

- \mathcal{V}_X := the set of path components of $X^T = \pi_0(X^T)$
- For $\alpha \in \mathbb{P}(\Lambda)$ and $V, W \in \mathcal{V}_X$,

 $V \sim_{\alpha} W \Leftrightarrow \text{they lie in the same component of } X^{\ker(\alpha)}.$

This determines a functor

 Γ : finite T-CW complexes \mapsto GKM-hypergraphs

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class}\}$$

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class} \}$$

We have forgetful maps,

• $\alpha: \mathcal{E} \to \mathbb{P}(\Lambda)$ (the axial function),

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class}\}$$

We have forgetful maps,

- $\alpha: \mathcal{E} \to \mathbb{P}(\Lambda)$ (the axial function),
- $I: \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class} \}$$

We have forgetful maps,

- $\alpha: \mathcal{E} \to \mathbb{P}(\Lambda)$ (the axial function),
- $I: \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

Define the topological space $Top(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class}\}$$

We have forgetful maps,

- $\alpha: \mathcal{E} \to \mathbb{P}(\Lambda)$ (the axial function),
- $I: \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

Define the topological space $\mathit{Top}(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$ and basic open sets

- $U_v := \{v\}$
- $U_e := \{e\} \cup I(e)$

$$\mathcal{E} := \{(\alpha, S) \in \mathbb{P}(\Lambda) \times \wp(\mathcal{V}) | S \text{ is an } \sim_{\alpha} \text{ equiv. class}\}$$

We have forgetful maps,

- $\alpha: \mathcal{E} \to \mathbb{P}(\Lambda)$ (the axial function),
- $I: \mathcal{E} \to \wp(\mathcal{V})$ (the incidence map).

Define the topological space $\mathit{Top}(\Gamma)$ with underlying set $\mathcal{V} \cup \mathcal{E}$ and basic open sets

- $U_v := \{v\}$
- $U_e := \{e\} \cup I(e)$

GKM-morphisms induce continuous maps in this topology.

$$A := S(\mathfrak{t}^*_{\mathbb{C}})$$

Denote

$$A := S(\mathfrak{t}^*_{\mathbb{C}}) \cong H^*_T(point; \mathbb{C})$$

Denote

$$A:=S(\mathfrak{t}_{\mathbb{C}}^*)\cong H_T^*(\textit{point};\mathbb{C})\cong \mathbb{C}[\textit{u}_1,...,\textit{u}_r]$$

with $deg(u_i) = 2$.

$$A := S(\mathfrak{t}^*_{\mathbb{C}}) \cong H^*_T(point; \mathbb{C}) \cong \mathbb{C}[u_1, ..., u_r]$$

with $deg(u_i) = 2$.

Definition

A **GKM-sheaf** \mathcal{F} over Γ is a sheaf of finitely generated, \mathbb{Z} -graded A-modules over $Top(\Gamma)$, such that

Denote

$$A := S(\mathfrak{t}_{\mathbb{C}}^*) \cong H_T^*(point; \mathbb{C}) \cong \mathbb{C}[u_1, ..., u_r]$$

with $deg(u_i) = 2$.

Definition

A **GKM-sheaf** $\mathcal F$ over Γ is a sheaf of finitely generated, $\mathbb Z$ -graded A-modules over $Top(\Gamma)$, such that

 $oldsymbol{\circ}$ \mathcal{F} is locally free over A .

Denote

$$A := S(\mathfrak{t}_{\mathbb{C}}^*) \cong H_T^*(point; \mathbb{C}) \cong \mathbb{C}[u_1, ..., u_r]$$

with $deg(u_i) = 2$.

Definition

A **GKM-sheaf** $\mathcal F$ over Γ is a sheaf of finitely generated, $\mathbb Z$ -graded A-modules over $Top(\Gamma)$, such that

- $oldsymbol{0}$ \mathcal{F} is locally free over A .
- ② The restriction $\mathcal{F}(U_e) \to \mathcal{F}(I(e))$ is an isomorphism modulo $\alpha(e)^{-1}$ for all $e \in \mathcal{E}$.

$$A := S(\mathfrak{t}_{\mathbb{C}}^*) \cong H_T^*(point; \mathbb{C}) \cong \mathbb{C}[u_1, ..., u_r]$$

with $deg(u_i) = 2$.

Definition

A **GKM**-sheaf $\mathcal F$ over Γ is a sheaf of finitely generated, $\mathbb Z$ -graded A-modules over $Top(\Gamma)$, such that

- $lacktriangledown \mathcal{F}$ is locally free over A .
- ② The restriction $\mathcal{F}(U_e) \to \mathcal{F}(I(e))$ is an isomorphism modulo $\alpha(e)^{-1}$ for all $e \in \mathcal{E}$.

Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ. **Pushforwards:** Given $\phi: \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_*: GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \qquad \mathcal{F} \to \phi_*(\mathcal{F})$$

Pushforwards: Given $\phi: \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_*: \mathit{GKM}(\Gamma_1) \mapsto \mathit{GKM}(\Gamma_2), \qquad \mathcal{F} \to \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ , then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$.

Pushforwards: Given $\phi: \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_*: GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \qquad \mathcal{F} \to \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ , then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain functor

$$Ivt: GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \qquad \mathcal{F} \mapsto (\phi_*(\mathcal{F}))^G$$

by pushing forward and taking invariants.

Pushforwards: Given $\phi: \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_*: GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \qquad \mathcal{F} \to \phi_*(\mathcal{F})$$

Invariants: If G acts by automorphisms on Γ , then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain functor

$$Ivt: GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \qquad \mathcal{F} \mapsto (\phi_*(\mathcal{F}))^G$$

by pushing forward and taking invariants.

Products: Define an external tensor product

$$\boxtimes : \mathit{GKM}(\Gamma_1) \times \mathit{GKM}(\Gamma_2) \mapsto \mathit{GKM}(\Gamma_1 \times \Gamma_2)$$

GKM theory

Denote by $GKM(\Gamma)$ the category of GKM-sheaves on Γ . **Pushforwards:** Given $\phi: \Gamma_1 \to \Gamma_2$, define a functor

$$\phi_*: GKM(\Gamma_1) \mapsto GKM(\Gamma_2), \qquad \mathcal{F} \to \phi_*(\mathcal{F})$$

Our main result

Invariants: If G acts by automorphisms on Γ , then may consider the category of equivariant GKM-sheaves $GKM_G(\Gamma)$. We obtain functor

$$Ivt: GKM_G(\Gamma) \mapsto GKM(\Gamma/G), \qquad \mathcal{F} \mapsto (\phi_*(\mathcal{F}))^G$$

by pushing forward and taking invariants.

Products: Define an external tensor product

$$\boxtimes : \mathit{GKM}(\Gamma_1) \times \mathit{GKM}(\Gamma_2) \mapsto \mathit{GKM}(\Gamma_1 \times \Gamma_2)$$

$$\mathcal{F}_1 \boxtimes \mathcal{F}_2 := \pi_1^*(\mathcal{F}_1) \otimes \pi_2^*(\mathcal{F}_2)$$

where $\pi_i: \Gamma_1 \times \Gamma_2 \to \Gamma_i$ is the projection morphism,

For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X ,

For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X , with stalks:

$$\mathcal{F}_X(U_V) := H_T^*(V) \cong H^*(V) \otimes_{\mathbb{C}} A$$

where we identify vertices V with connected components of X^T

For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X , with stalks:

$$\mathcal{F}_X(U_V) := H_T^*(V) \cong H^*(V) \otimes_{\mathbb{C}} A$$

and

$$\mathcal{F}_X(U_E) := H_T^*(E)/Tor_A(H_T^*(E))$$

where we identify vertices V with connected components of X^T and hyperedges E with connected components of $X^{\ker(\alpha_E)}$.

For a finite T-CW complex X, we construct a GKM-sheaf \mathcal{F}_X over Γ_X , with stalks:

$$\mathcal{F}_X(U_V) := H_T^*(V) \cong H^*(V) \otimes_{\mathbb{C}} A$$

and

$$\mathcal{F}_X(U_E) := H_T^*(E)/Tor_A(H_T^*(E))$$

where we identify vertices V with connected components of X^T and hyperedges E with connected components of $X^{\ker(\alpha_E)}$.

Theorem

There is a canonical morphism of graded A-algebras

$$H_T^*(X) \to H^0(\mathcal{F}_X)$$

which is an isomorphism X if and only if $H_T^*(X)$ is 2-syzygy.

Idea of the proof:

Idea of the proof:

By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \to H_T^*(X) \xrightarrow{i^*} H_T^*(X_0) \xrightarrow{\delta} H_T^{*+1}(X_1, X_0)$$

By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^{*+1}_T(X_1, X_0)$$

By construction $\mathcal{V} \subset Top(\Gamma_X)$ is an open set and

$$\mathcal{F}_X(\mathcal{V}) = H_T^*(X^T).$$

By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact sequence

$$0 \to H^*_T(X) \xrightarrow{i^*} H^*_T(X_0) \xrightarrow{\delta} H^{*+1}_T(X_1, X_0)$$

By construction $\mathcal{V} \subset Top(\Gamma_X)$ is an open set and

$$\mathcal{F}_X(\mathcal{V}) = H_T^*(X^T).$$

We show that a section in $\mathcal{F}_M(\mathcal{V})$ extends to $Top(\Gamma)$ if and only if it lies in the kernel of δ .

- Al-Jabea, Ibrahem, and Thomas John Baird. "Cohomology of GKM-sheaves." arXiv preprint arXiv:1806.01761 (2018).
- C. Allday, M. Franz, V. Puppe, Equivariant cohomology, syzygies and orbit structure, Trans. Amer. Math. Soc. Volume 366, Number 12, December 2014, Pages 6567-6589.
- T. Baird, GKM-sheaves and nonorientable surface group representations, Journal of Symplectic Geometry, Volume 12, Number 4 (2014), 867-921.
- T. Braden and R. MacPherson, From moment graphs to intersection cohomology, Mathematische Annalen 321 (2001), no. 3, 533551.
- M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Inventiones Mathematicae 131 (1997), no. 1, 2583.
- V. Guillemin, T. S. Holm. "GKM theory for torus actions with nonisolated fixed points." International Mathematics Research Notices 2004.40: 2105-2124, 2004
- V. Guillemin and C. Zara, 1-skeleta, Betti numbers, and a musica mia mata a a la mana da mana Dudan Mathamaa ti a a la Tariuma a la 107

Thank you!