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Let

T = (S1)r a compact torus.

X a finite T -CW complex (e.g. a compact, smooth
T -manifold).

H∗T (X ) := H∗(ET ×T X ;C) the equivariant cohomology ring.

A := H∗T (point).

GKM theory is a collection of techniques for calculating H∗T (X )
and related invariants.
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For a large class of T -manifolds with isolated fixed points, Goresky,
Kottwitz and MacPherson showed that H∗T (X ) can be encoded
combinatorially in a finite graph: the GKM graph.

The vertices
correspond to fixed points of the action and the edges are labelled
by non-trivial characters α ∈ Hom(T ,S1).

GKM-theory subsequently developed in several directions:

combinatorially by Guillemin and Zara,

to a broader range of spaces by Guillemin and Holm,

to equivariant intersection cohomology by Braden and
MacPherson who introduced the notion of Γ-sheaves on a
GKM-graph.

GKM-sheaves provide a unified framework for these constructions.
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Given a T -space X , consider the filtration

XT = X0 ⊆ X1 ⊆ ... ⊆ Xr = X

where Xk is the union of orbits of dimension ≤ k .

Theorem (The Chang-Skjelbred Theorem)

If H∗T (X ) is a free A-module, then there is a natural exact sequence

0→ H∗T (X )
i∗−→ H∗T (X0)

δ−→ H∗+1
T (X1,X0) (1)

where i∗ is induced by inclusion X0 ⊆ X and δ is the coboundary
map for the pair (X1,X0).

By work of Allday-Franz-Puppe, (1) is exact if and only if H∗T (X )
is a 2-syzygy, meaning that there exists an exact sequence

0→ F0 → F1 → H∗T (X )

where F0,F1 are free A-modules.
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To a finite T -CW complex X , we associate a certain sheaf of
A-modules FX , which packages cohomological and combinatorial
information about (X1,X0).

Theorem (Al-Jabea, B)

If H∗T (X ) is a 2-syzygy, then there is a natural isomorphism

H0(FX ) ∼= H∗T (X ).

Furthermore, there is a natural exact sequence

0→ H0(FX )→ H∗T (X0)
δ−→ H∗+1

T (X1,X0)→ H1(FX )→ 0

and Hn(FX ) = 0 for n ≥ 2.

The sheaf FX is called a GKM-sheaf and is defined on a
GKM-hypergraph ΓX .
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T ∼= (S1)r a compact torus.

Λ := Hom(T ,U(1)) ⊂ t∗ the weight lattice.

P(Λ) := (Λ− {0})/scalars is the set of projective weights.

α ∈ P(Λ)↔ ker(α) ∈ {codimension one subtori of T}

A GKM-hypergraph Γ = (V,∼) consists of

1 A finite set V called the vertices

2 An equivalence relation ∼α on V for every α ∈ P(Λ).
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A GKM-hypergraph Γ = (V,∼) consists of,

A finite set V called the vertices

An equivalence relation ∼α on V for every α ∈ P(Λ).

A morphism of GKM-hypergraphs

φ : (V,∼) 7→ (V ′,∼′)

is a map φ : V → V ′ such that

v ∼α w ⇒ φ(v) ∼′α φ(w)

for all α ∈ P(Λ).
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To any finite T -CW complex X , we associate a GKM-hypergraph
ΓX = (VX ,∼) by

VX := the set of path components of XT = π0(XT )

For α ∈ P(Λ) and V ,W ∈ VX ,

V ∼α W ⇔ they lie in the same component of X ker(α).

This determines a functor

Γ : finite T -CW complexes 7→ GKM-hypergraphs
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The set of hyperedges of Γ = (V,∼) is

E := {(α,S) ∈ P(Λ)× ℘(V)| S is an ∼α equiv. class}

We have forgetful maps,

α : E → P(Λ) (the axial function),

I : E → ℘(V) (the incidence map).

Define the topological space Top(Γ) with underlying set V ∪ E and
basic open sets

Uv := {v}
Ue := {e} ∪ I (e)

GKM-morphisms induce continuous maps in this topology.
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Denote
A := S(t∗C)

∼= H∗T (point;C) ∼= C[u1, ..., ur ]

with deg(ui ) = 2.

Definition

A GKM-sheaf F over Γ is a sheaf of finitely generated, Z-graded
A-modules over Top(Γ), such that

1 F is locally free over A .

2 The restriction F(Ue)→ F(I (e)) is an isomorphism modulo
α(e)−1 for all e ∈ E .

3 F(Ue) ∼= F(I (e)) for all but finitely many e ∈ E .
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Denote by GKM(Γ) the category of GKM-sheaves on Γ.

Pushforwards: Given φ : Γ1 → Γ2, define a functor

φ∗ : GKM(Γ1) 7→ GKM(Γ2), F → φ∗(F)

Invariants: If G acts by automorphisms on Γ, then may consider
the category of equivariant GKM-sheaves GKMG (Γ).We obtain
functor

Ivt : GKMG (Γ) 7→ GKM(Γ/G ), F 7→ (φ∗(F))G

by pushing forward and taking invariants.
Products: Define an external tensor product

� : GKM(Γ1)× GKM(Γ2) 7→ GKM(Γ1 × Γ2)

F1 � F2 := π∗1(F1)⊗ π∗2(F2)

where πi : Γ1 × Γ2 → Γi is the projection morphism.
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For a finite T -CW complex X , we construct a GKM-sheaf FX over
ΓX ,

with stalks:

FX (UV ) := H∗T (V ) ∼= H∗(V )⊗C A

and
FX (UE ) := H∗T (E )/TorA(H∗T (E ))

where we identify vertices V with connected components of XT

and hyperedges E with connected components of X ker(αE ).

Theorem

There is a canonical morphism of graded A-algebras

H∗T (X )→ H0(FX )

which is an isomorphism X if and only if H∗T (X ) is 2-syzygy.
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Idea of the proof:

By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact
sequence

0→ H∗T (X )
i∗−→ H∗T (X0)

δ−→ H∗+1
T (X1,X0)

By construction V ⊂ Top(ΓX ) is an open set and

FX (V) = H∗T (XT ).

We show that a section in FM(V) extends to Top(Γ) if and only if
it lies in the kernel of δ.
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Thank you!
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