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Let

o T = (S!)" a compact torus.

e X a finite T-CW complex (e.g. a compact, smooth
T-manifold).

o H3(X) := H*(ET x1 X;C) the equivariant cohomology ring.
o A := H%(point).

GKM theory is a collection of techniques for calculating H3(X)
and related invariants.
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For a large class of T-manifolds with isolated fixed points, Goresky,
Kottwitz and MacPherson showed that H%(X) can be encoded
combinatorially in a finite graph: the GKM graph. The vertices
correspond to fixed points of the action and the edges are labelled
by non-trivial characters a € Hom(T,S?!).

GKM-theory subsequently developed in several directions:

@ combinatorially by Guillemin and Zara,
@ to a broader range of spaces by Guillemin and Holm,

@ to equivariant intersection cohomology by Braden and
MacPherson who introduced the notion of [-sheaves on a
GKM-graph.

GKM-sheaves provide a unified framework for these constructions.
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The Chang-Skjelbred Theorem

Given a T-space X, consider the filtration
XT=XCXiC..CX, =X
where Xj is the union of orbits of dimension < k.

Theorem (The Chang-Skjelbred Theorem)

If H3(X) is a free A-module, then there is a natural exact sequence

* i * 1 *
0 = H#(X) = H#(Xo) = HE (X1, Xo) (1)

where i* is induced by inclusion Xy C X and § is the coboundary
map for the pair (X1, Xo).

By work of Allday-Franz-Puppe, (1) is exact if and only if H3(X)
is a 2-syzygy, meaning that there exists an exact sequence

0— Fp — L — HF(X)

where Fg, F1 are free A-modules.
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Our main result

To a finite T-CW complex X, we associate a certain sheaf of
A-modules Fx, which packages cohomological and combinatorial
information about (X1, Xp).

Theorem (Al-Jabea, B)
If H3(X) is a 2-syzygy, then there is a natural isomorphism
HO(Fx) = HH(X).
Furthermore, there is a natural exact sequence
0 — HY(Fx) = HE:(Xo) > HE (X1, Xo) — HY(Fx) — 0

and H"(Fx) =0 for n > 2.

The sheaf Fx is called a GKM-sheaf and is defined on a
GKM-hypergraph T x.
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A GKM-hypergraph I' = (V, ~) consists of,
@ A finite set V called the vertices

@ An equivalence relation ~, on V for every a € P(A).

A morphism of GKM-hypergraphs
¢:(V,~) = (V',~)
isa map ¢:V — V' such that
Vi W= §(v) ~ o(w)

for all o € P(A).
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To any finite T-CW complex X, we associate a GKM-hypergraph
Mx =(Vx,~) by

@ Vx := the set of path components of X7 = mo(XT)

e For a € P(A) and V, W € Vx,

V ~o W & they lie in the same component of Xker(a)
This determines a functor

I finite T-CW complexes — GKM-hypergraphs
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The set of hyperedges of [ = (V, ~) is

€ :={(a,S) € P(N\) x p(V)| S is an ~, equiv. class}
We have forgetful maps,
o a: & — P(N) (the axial function),
o /:&— p(V) (theincidence map).

Define the topological space Top(I') with underlying set VU € and
basic open sets

o U, ={v}
o U.:={e}Ul(e)

GKM-morphisms induce continuous maps in this topology.
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Denote
A= S(t¢) = H7(point; C) = Cluy, ..., u/]

with deg(u;) = 2.
Definition
A GKM-sheaf F over I is a sheaf of finitely generated, Z-graded
A-modules over Top(I), such that
@ F is locally free over A .

@ The restriction F(U.) — F(I(e)) is an isomorphism modulo
a(e)"Lforallec €.

@ F(U.) = F(I(e)) for all but finitely many e € £.
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Denote by GKM(T') the category of GKM-sheaves on T.
Pushforwards: Given ¢ : ;1 — ['5, define a functor

by - GKM(T1) — GKM(T>), F = ¢«(F)

Invariants: If G acts by automorphisms on I', then may consider
the category of equivariant GKM-sheaves GKM¢(I').We obtain
functor

Ivt : GKMg(T) — GKM(I'/G), F e (¢:(F))C

by pushing forward and taking invariants.
Products: Define an external tensor product

X : GKM(I'1) x GKM(T2) — GKM(T'y x T3)

F1lRFp =y (F1) © mp(F2)

where 7; : 1 X ', — [; is the projection morphism,
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For a finite T-CW complex X, we construct a GKM-sheaf Fx over
I"x, with stalks:

Fx(Uv) = Hr(V) = H' (V) &c A

and
Fx(Ue) := HT(E)/ Tora(HT(E))

where we identify vertices V with connected components of X
and hyperedges E with connected components of Xker(e)

Theorem
There is a canonical morphism of graded A-algebras

H%(X) — H°(Fx)

which is an isomorphism X if and only if H3(X) is 2-syzygy.
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Idea of the proof:
By Chang-Skjelbred and Allday-Franz-Puppe, we have an exact
sequence

0 — H3(X) 55 Hi(Xo) & HE (X, Xo)

By construction V C Top(l'x) is an open set and

Fx(V) = Hy(XT).

We show that a section in Fp (V) extends to Top(l') if and only if
it lies in the kernel of 4.
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Thank you!
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