On the presentations of the commutator subgroup of a right-angled Coxeter group

Li Cai

Xi'an Jiaotong-Liverpool University

Toric Topology 2021 in Osaka, March 25

Abstract

- 1 Main Theorem
- 2 Approach
- 3 On relations
- 4 Further

Right-Angled Coxeter groups

Let Γ be a simplicial graph with $Vert\Gamma = \{1, 2, \dots, m\}$.

- We denote by W_{Γ} right-angled Coxeter group generated by s_1, \ldots, s_m with order 2, where $s_i s_j = s_j s_i$ iff $\{i, j\} \in \text{Edge}\Gamma$.
- Let K_{Γ} be the flag complex associated with Γ : $K \subset 2^{\operatorname{Vert}\Gamma}$, for $\sigma \subset \operatorname{Vert}\Gamma$, we have $\sigma \in K_{\Gamma}$ iff σ spans a complete subgraph of Γ .
- For $I \subset \text{Vert}\Gamma$, let $K_{\Gamma,I}$ be the full subcomplex

$$K_{\Gamma,I} = \{ \sigma \in K_{\Gamma} \mid \sigma \subset I \}.$$

A Theorem of Panov and Veryovkin

Let $(a,b) = a^{-1}b^{-1}ab$ be the commutator of the words a and b.

Theorem (Panov-Veryovkin, 2016)

For each

$$I = \{i_k\}_{k=1}^n \subset \text{Vert}\Gamma,$$

suppose that we have the splitting

$$K_{\Gamma,I} = \sqcup_{k=1}^r K_{\Gamma,I_k}$$

into a disjoint of connected components with $j_k \in I_k$ the smallest index for $k=1,\ldots,r$. Let $S_I' \subset W_\Gamma$ be the set given by

$$S_I' = \{(s_{i_1}, (s_{i_2}, (s_{i_3}, \dots, (s_{i_n}, s_{j_k})))\}_{k=1}^{r-1},$$

then $[W_{\Gamma}, W_{\Gamma}]$ is generated by $S' = \bigcup_{I \subset \mathrm{Vert}\Gamma} S'_I$.

Main Theorem

Let $s_I = s_{i_1} s_{i_2} \cdots s_{i_n}$ where $I = \{i_k\}_{k=1}^n$ with $i_k < i_{k+1}$ for $k = 1, \ldots, n-1$.

Theorem

For each

$$I = \{i_k\}_{k=1}^n \subset \text{Vert}\Gamma,$$

suppose that we have the splitting

$$K_{\Gamma,I} = \sqcup_{k=1}^r K_{\Gamma,I_k}$$

into a disjoint of connected components with $j_k \in I_k$ the smallest index for $k = 1, \dots, r$. Let $S_I \subset W_\Gamma$ be the set given by

$$S_I = \{s_I s_{j_k} (s_{I \setminus \{j_k\}})^{-1}\}_{k=1}^{r-1}$$

then $[W_{\Gamma}, W_{\Gamma}]$ is generated by $S = \bigcup_{I \subset \text{Vert}\Gamma} S_I$.

Example

Let Γ be the boundary of a pentagon, namely

Edge
$$\Gamma = \{\{i, i+1\} \mid i = 1, \dots, 5 \mod 5\}.$$

In order that $S_I \neq \emptyset$, $K_{\Gamma,I}$ shall have at least two connected components. That is $I=\{i,i+2\}$ and $I'=\{i,i+1,i+3\}$ for mod 5 integers i, hence $S_I=\{s_is_{i+2}s_is_{i+2}\}$ and $S_{I'}=\{s_is_{i+1}s_{i+3}s_is_{i+3}s_{i+1}\}$, therefore

$$S = \{s_1s_3s_1s_3, s_2s_4s_2s_4, s_3s_5s_3s_5, s_4s_1s_4s_1, s_5s_2s_5s_2, s_1s_2s_4s_1s_4s_2, s_2s_3s_5s_2s_5s_3, s_3s_4s_1s_3s_1s_4, s_4s_5s_2s_4s_2s_5, s_5s_1s_3s_5s_3s_1\}.$$

The relation

It can be checked directly that

$$1 = (s_1s_2s_4s_1s_4s_2)(s_2s_5s_2s_5)(s_5s_2s_4s_2s_5s_4)(s_4s_1s_4s_1)$$

$$(s_5s_1s_3s_5s_3s_1)(s_1s_4s_1s_4)(s_4s_1s_3s_1s_4s_3)(s_3s_5s_3s_5)$$

$$(s_4s_5s_2s_4s_2s_5)(s_5s_3s_5s_3)(s_3s_5s_2s_5s_3s_2)(s_2s_4s_2s_4)$$

$$(s_3s_4s_1s_3s_1s_4)(s_4s_2s_4s_2)(s_2s_4s_1s_4s_2s_1)(s_1s_3s_1s_3)$$

$$(s_2s_3s_5s_2s_5s_3)(s_3s_1s_3s_1)(s_1s_3s_5s_3s_1s_5)(s_5s_2s_5s_2)$$

in which inside each bracket is a generator or its inverse.

General facts

Let G be a discrete group and Σ be a CW complex with a cellular G-action, namely each element of g maps each cell homeomorphically onto a cell. The following is well known.

Lemma

Suppose that G acts on Σ preserving the orientation of each cell, where Σ is connected and G acts on the 0-skeleton Σ^0 freely and transitively. Let $v_0 \in \Sigma^0$ be a fixed vertex and $E_+ \subset \Sigma^1$ be the set of positively oriented edges. Then G is generated by

$$S = \{1 \neq g \in G \mid v_0 \stackrel{e_+}{\to} g(v_0)\},\$$

where the notation above means that v_0 and $g(v_0)$ are connected by an edge $e_+ \in E_+$ starting from v_0 and ending with $g(v_0)$.

Main Theorem

Let $p: \Sigma \to \Sigma/G$ be the quotient map.

Theorem (S from T)

Let $E_+ \subset \Sigma^1$ be the set of positively oriented edges, and suppose the following:

- Σ is simply connected with G acting freely;
- 2 $T \subset \Sigma/G$ is a contractible subcomplex containing all vertices of Σ/G , and that T admits a section $T\subset \Sigma$ so that $p \colon T \to T$ is a homeomorphim of CW complexes.

Then G is generated by the set

$$S = \{1 \neq g \in G \mid \widetilde{T} \stackrel{e_+}{\to} g(\widetilde{T})\},\$$

where the notation above means that \widetilde{T} and $g(\widetilde{T})$ are connected by an edge $e_+ \in E_+$ starting from a vertex in T and ending with a vertex in g(T).

The Davis complex

Recall that the Davis complex Σ_{Γ} associated with the Coxeter group W_{Γ} is a cube complex with the following properties:

- $\bullet \ \Sigma_{\Gamma}^0 \cong W_{\Gamma}$
- ullet Σ^1_Γ coincides with the Cayley graph of W_Γ
- n-cubes are in one-to-one correspondence with the left cosets W_{Γ}/W_{σ} with σ running simplices of K_{Γ} such that $\operatorname{card} \sigma = n$. Here $W_{\sigma} = \langle s_i \mid i \in \sigma \rangle \cong (\mathbb{Z}/2)^n$.
- the cube gW_{σ} is contained in another cube $g'W_{\sigma'}$ if and only if $gW_{\sigma}\subset g'W_{\sigma'}$ as a set.

Examples

Figure: The Davis Complex Σ_{Γ}

Facts on Davis complexes

- Topologically $\Sigma_{\Gamma} = W_{\Gamma} \times P / \sim$, where $P = Cone|K'_{\Gamma}|$ with faces $F_i = |\operatorname{Star}(\{i\}, K'_{\Gamma})|, i = 1, \dots, m$.
- Σ_{Γ} is contractible (Gromov, Davis, Moussong,...)
- ullet $[W_{\Gamma},W_{\Gamma}]$ acts freely on Σ_{Γ} and

$$\Sigma_{\Gamma}/[W_{\Gamma},W_{\Gamma}] \cong \mathbb{R}\mathcal{Z}_{K_{\Gamma}}.$$

Contractible subcomplex containing all vertices

Now we define a subcomplex $T \subset \Sigma_{\Gamma}/[W_{\Gamma}, W_{\Gamma}]$.

- $T^0 = \{[s_I] \mid I \subset \text{Vert}\Gamma\} = W_{\Gamma}/[W_{\Gamma}, W_{\Gamma}].$
- ullet An edge $[s_I]W_i$ is collected in T if and only if $i=\max I$.

As a CW subcomplex of dimension 1, T is contractible. Moreover, a lifting $\widetilde{T} \subset \Sigma_{\Gamma}$ of T is given by $\widetilde{T}^0 = \{s_I \mid I \subset \mathrm{Vert}\Gamma\}$ and $\mathrm{Edge}\widetilde{T} = \{s_IW_i \mid I \subset \mathrm{Vert}\Gamma, \ i = \max I\}.$

Orientation of Edges

- A general edge connecting $[s_I]$ and $[s_J]$ is positively oriented if it starts from $[s_I]$ and ends with $[s_J]$, where $J \subsetneq I$.
- Since $[W_{\Gamma},W_{\Gamma}]$ acts on Σ_{Γ} preserving the orientations, we lift the orientations of edges from $\Sigma_{\Gamma}/[W_{\Gamma},W_{\Gamma}]$ to Σ_{Γ} .
- ullet Now we apply Theorem S from T as follows: $s_I \in \widetilde{T}$ is connected to $s_I s_j \in g(\widetilde{T})$ by a positively oriented edge iff $j \in I$. We have

$$s_I s_j = g \cdot s_{I \setminus \{j\}},$$
 namely $g = s_I s_j (s_{I \setminus \{j\}})^{-1}.$

ullet Finally we refine these generators by taking only one j from each connected component of $K_{\Gamma,I}$, and drop those trivial elements.

Where do relations come from?

- Recall that $\mathbb{R}\mathcal{Z}_{K_{\Gamma}} = (\mathbb{Z}/2) \times P/\sim$, where $P = Cone|K'_{\Gamma}|$ with faces $F_i = |\mathrm{Star}(\{i\}, K'_{\Gamma})|, \ i = 1, \ldots, m.$
- Let $X = \mathbb{R}\mathcal{Z}_{K_{\Gamma}}$ be filtrated that

$$X_n = \bigcup_{\text{Cart}I \le n} [s_I]P.$$

A new "handle" $[s_I]P \subset X_n$ is attached to X_{n-1} along the union of faces $\bigcup_{i \in I} F_i \subset \partial P$.

Observation

• When adding a "handle" $[s_I]P$ to X_{n-1} along $\bigcup_{i\in I}F_i\subset\partial P$, if the union $\bigcup_{i\in I}F_i$ is contractible, then up to homotopy,

$$X'_{n-1} = [s_I]P \bigcup_{\bigcup_{i \in I} F_i} X_{n-1} \simeq X_{n-1}.$$

- If $\bigcup_{i \in I} F_i$ is a disjoint union of contractible spaces, then up to homotopy, X'_{n-1} is the union of X_{n-1} with 1-cells.
- If $\bigcup_{i \in I} F_i$ contains a loop, then a relation appear after adding $[s_I]P$.

 Main Theorem
 Approach
 On relations
 Further

 00000
 00000
 0000
 00

Example

Figure: Homotopy types

Example

Something left

- Davis complex Σ_{Γ} can be defined in the language of \square -set (cubical set without degeneracy). Maybe there is a way to find the relations using cubical sets parallel to the description of homotopy groups using simplicial sets.
- Relations to moment-angle complexes.
- Relations to Bass-Serre Theory.

Thank You!

Thank you very much for your attention.