On the presentations of the commutator subgroup of a right-angled Coxeter group

Li Cai

Xi'an Jiaotong-Liverpool University
Toric Topology 2021 in Osaka, March 25

Abstract

(1) Main Theorem
(2) Approach
(3) On relations
(4) Further

Right-Angled Coxeter groups

Let Γ be a simplicial graph with Vert $\Gamma=\{1,2, \ldots, m\}$.

- We denote by W_{Γ} right-angled Coxeter group generated by s_{1}, \ldots, s_{m} with order 2 , where $s_{i} s_{j}=s_{j} s_{i}$ iff $\{i, j\} \in$ Edge Γ.
- Let K_{Γ} be the flag complex associated with $\Gamma: K \subset 2^{\text {Vert } \Gamma \text {, }}$ for $\sigma \subset$ Vert Γ, we have $\sigma \in K_{\Gamma}$ iff σ spans a complete subgraph of Γ.
- For $I \subset \operatorname{Vert} \Gamma$, let $K_{\Gamma, I}$ be the full subcomplex

$$
K_{\Gamma, I}=\left\{\sigma \in K_{\Gamma} \mid \sigma \subset I\right\} .
$$

A Theorem of Panov and Veryovkin

Let $(a, b)=a^{-1} b^{-1} a b$ be the commutator of the words a and b.

Theorem (Panov-Veryovkin, 2016)

For each

$$
I=\left\{i_{k}\right\}_{k=1}^{n} \subset \operatorname{Vert} \Gamma,
$$

suppose that we have the splitting

$$
K_{\Gamma, I}=\sqcup_{k=1}^{r} K_{\Gamma, I_{k}}
$$

into a disjoint of connected components with $j_{k} \in I_{k}$ the smallest index for $k=1, \ldots, r$. Let $S_{I}^{\prime} \subset W_{\Gamma}$ be the set given by

$$
S_{I}^{\prime}=\left\{\left(s_{i_{1}},\left(s_{i_{2}},\left(s_{i_{3}}, \ldots,\left(s_{i_{n}}, s_{j_{k}}\right)\right)\right\}_{k=1}^{r-1},\right.\right.
$$

then $\left[W_{\Gamma}, W_{\Gamma}\right]$ is generated by $S^{\prime}=\cup_{I \subset \operatorname{Vert\Gamma }} S_{I}^{\prime}$.

Main Theorem

Let $s_{I}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ where $I=\left\{i_{k}\right\}_{k=1}^{n}$ with $i_{k}<i_{k+1}$ for $k=1, \ldots, n-1$.

Theorem

For each

$$
I=\left\{i_{k}\right\}_{k=1}^{n} \subset \operatorname{Vert} \Gamma,
$$

suppose that we have the splitting

$$
K_{\Gamma, I}=\sqcup_{k=1}^{r} K_{\Gamma, I_{k}}
$$

into a disjoint of connected components with $j_{k} \in I_{k}$ the smallest index for $k=1, \ldots, r$. Let $S_{I} \subset W_{\Gamma}$ be the set given by

$$
S_{I}=\left\{s_{I} s_{j_{k}}\left(s_{I \backslash\left\{j_{k}\right\}}\right)^{-1}\right\}_{k=1}^{r-1}
$$

then $\left[W_{\Gamma}, W_{\Gamma}\right]$ is generated by $S=\cup_{I \subset \operatorname{Vert} \Gamma} S_{I}$.

Example

Let Γ be the boundary of a pentagon, namely

$$
\text { Edge } \Gamma=\{\{i, i+1\} \mid i=1, \ldots, 5 \bmod 5\} .
$$

In order that $S_{I} \neq \emptyset, K_{\Gamma, I}$ shall have at least two connected components. That is $I=\{i, i+2\}$ and $I^{\prime}=\{i, i+1, i+3\}$ for $\bmod 5$ integers i, hence $S_{I}=\left\{s_{i} s_{i+2} s_{i} s_{i+2}\right\}$ and $S_{I^{\prime}}=\left\{s_{i} s_{i+1} s_{i+3} s_{i} s_{i+3} s_{i+1}\right\}$, therefore

$$
\begin{aligned}
S=\{ & s_{1} s_{3} s_{1} s_{3}, s_{2} s_{4} s_{2} s_{4}, s_{3} s_{5} s_{3} s_{5}, s_{4} s_{1} s_{4} s_{1}, s_{5} s_{2} s_{5} s_{2} \\
& s_{1} s_{2} s_{4} s_{1} s_{4} s_{2}, s_{2} s_{3} s_{5} s_{2} s_{5} s_{3}, s_{3} s_{4} s_{1} s_{3} s_{1} s_{4}, s_{4} s_{5} s_{2} s_{4} s_{2} s_{5} \\
& \left.s_{5} s_{1} s_{3} s_{5} s_{3} s_{1}\right\}
\end{aligned}
$$

The relation

It can be checked directly that

$$
\begin{aligned}
1= & \left(s_{1} s_{2} s_{4} s_{1} s_{4} s_{2}\right)\left(s_{2} s_{5} s_{2} s_{5}\right)\left(s_{5} s_{2} s_{4} s_{2} s_{5} s_{4}\right)\left(s_{4} s_{1} s_{4} s_{1}\right) \\
& \left(s_{5} s_{1} s_{3} s_{5} s_{3} s_{1}\right)\left(s_{1} s_{4} s_{1} s_{4}\right)\left(s_{4} s_{1} s_{3} s_{1} s_{4} s_{3}\right)\left(s_{3} s_{5} s_{3} s_{5}\right) \\
& \left(s_{4} s_{5} s_{2} s_{4} s_{2} s_{5}\right)\left(s_{5} s_{3} s_{5} s_{3}\right)\left(s_{3} s_{5} s_{2} s_{5} s_{3} s_{2}\right)\left(s_{2} s_{4} s_{2} s_{4}\right) \\
& \left(s_{3} s_{4} s_{1} s_{3} s_{1} s_{4}\right)\left(s_{4} s_{2} s_{4} s_{2}\right)\left(s_{2} s_{4} s_{1} s_{4} s_{2} s_{1}\right)\left(s_{1} s_{3} s_{1} s_{3}\right) \\
& \left(s_{2} s_{3} s_{5} s_{2} s_{5} s_{3}\right)\left(s_{3} s_{1} s_{3} s_{1}\right)\left(s_{1} s_{3} s_{5} s_{3} s_{1} s_{5}\right)\left(s_{5} s_{2} s_{5} s_{2}\right)
\end{aligned}
$$

in which inside each bracket is a generator or its inverse.

General facts

Let G be a discrete group and Σ be a $C W$ complex with a cellular G-action, namely each element of g maps each cell homeomorphically onto a cell. The following is well known.

Lemma

Suppose that G acts on Σ preserving the orientation of each cell, where Σ is connected and G acts on the 0 -skeleton Σ^{0} freely and transitively. Let $v_{0} \in \Sigma^{0}$ be a fixed vertex and $E_{+} \subset \Sigma^{1}$ be the set of positively oriented edges. Then G is generated by

$$
S=\left\{1 \neq g \in G \mid v_{0} \xrightarrow{e_{+}} g\left(v_{0}\right)\right\},
$$

where the notation above means that v_{0} and $g\left(v_{0}\right)$ are connected by an edge $e_{+} \in E_{+}$starting from v_{0} and ending with $g\left(v_{0}\right)$.

Generators

Let $p: \Sigma \rightarrow \Sigma / G$ be the quotient map.

Theorem (S from T)

Let $E_{+} \subset \Sigma^{1}$ be the set of positively oriented edges, and suppose the following:
(1) Σ is simply connected with G acting freely;
(2) $T \subset \Sigma / G$ is a contractible subcomplex containing all vertices of Σ / G, and that T admits a section $\widetilde{T} \subset \Sigma$ so that $p: \widetilde{T} \rightarrow T$ is a homeomorphim of $C W$ complexes.
Then G is generated by the set

$$
S=\left\{1 \neq g \in G \mid \widetilde{T} \xrightarrow{e_{十}} g(\widetilde{T})\right\}
$$

where the notation above means that \widetilde{T} and $g(\widetilde{T})$ are connected by an edge $e_{+} \in E_{+}$starting from a vertex in T and ending with a vertex in $g(\widetilde{T})$.

The Davis complex

Recall that the Davis complex Σ_{Γ} associated with the Coxeter group W_{Γ} is a cube complex with the following properties:

- $\Sigma_{\Gamma}^{0} \cong W_{\Gamma}$
- Σ_{Γ}^{1} coincides with the Cayley graph of W_{Γ}
- n-cubes are in one-to-one correspondence with the left cosets W_{Γ} / W_{σ} with σ running simplices of K_{Γ} such that card $\sigma=n$. Here $W_{\sigma}=\left\langle s_{i} \mid i \in \sigma\right\rangle \cong(\mathbb{Z} / 2)^{n}$.
- the cube $g W_{\sigma}$ is contained in another cube $g^{\prime} W_{\sigma^{\prime}}$ if and only if $g W_{\sigma} \subset g^{\prime} W_{\sigma^{\prime}}$ as a set.

Examples

Figure: The Davis Complex Σ_{Γ}

Facts on Davis complexes

- Topologically $\Sigma_{\Gamma}=W_{\Gamma} \times P / \sim$, where $P=$ Cone $\left|K_{\Gamma}^{\prime}\right|$ with faces $F_{i}=\left|\operatorname{Star}\left(\{i\}, K_{\Gamma}^{\prime}\right)\right|, i=1, \ldots, m$.
- Σ_{Γ} is contractible (Gromov, Davis, Moussong, ...)
- $\left[W_{\Gamma}, W_{\Gamma}\right]$ acts freely on Σ_{Γ} and

$$
\Sigma_{\Gamma} /\left[W_{\Gamma}, W_{\Gamma}\right] \cong \mathbb{R} \mathcal{Z}_{K_{\Gamma}} .
$$

Contractible subcomplex containing all vertices

Now we define a subcomplex $T \subset \Sigma_{\Gamma} /\left[W_{\Gamma}, W_{\Gamma}\right]$.

- $T^{0}=\left\{\left[s_{I}\right] \mid I \subset \operatorname{Vert} \Gamma\right\}=W_{\Gamma} /\left[W_{\Gamma}, W_{\Gamma}\right]$.
- An edge $\left[s_{I}\right] W_{i}$ is collected in T if and only if $i=\max I$.

As a $C W$ subcomplex of dimension $1, T$ is contractible. Moreover, a lifting $\widetilde{T} \subset \Sigma_{\Gamma}$ of T is given by $\widetilde{T}^{0}=\left\{s_{I} \mid I \subset \operatorname{Vert} \Gamma\right\}$ and Edge $\widetilde{T}=\left\{s_{I} W_{i} \mid I \subset \operatorname{Vert} \Gamma, i=\max I\right\}$.

Orientation of Edges

- A general edge connecting $\left[s_{I}\right]$ and $\left[s_{J}\right]$ is positively oriented if it starts from $\left[s_{I}\right]$ and ends with $\left[s_{J}\right]$, where $J \subsetneq I$.
- Since $\left[W_{\Gamma}, W_{\Gamma}\right]$ acts on Σ_{Γ} preserving the orientations, we lift the orientations of edges from $\Sigma_{\Gamma} /\left[W_{\Gamma}, W_{\Gamma}\right]$ to Σ_{Γ}.
- Now we apply Theorem S from T as follows: $s_{I} \in \widetilde{T}$ is connected to $s_{I} s_{j} \in g(\widetilde{T})$ by a positively oriented edge iff $j \in I$. We have

$$
s_{I} s_{j}=g \cdot s_{I \backslash\{j\}},
$$

namely $g=s_{I} s_{j}\left(s_{I \backslash\{j\}}\right)^{-1}$.

- Finally we refine these generators by taking only one j from each connected component of $K_{\Gamma, I}$, and drop those trivial elements.

Where do relations come from?

- Recall that $\mathbb{R} \mathcal{Z}_{K_{\Gamma}}=(\mathbb{Z} / 2) \times P / \sim$, where $P=$ Cone $\left|K_{\Gamma}^{\prime}\right|$ with faces $F_{i}=\left|\operatorname{Star}\left(\{i\}, K_{\Gamma}^{\prime}\right)\right|, i=1, \ldots, m$.
- Let $X=\mathbb{R} \mathcal{Z}_{K_{\Gamma}}$ be filtrated that

$$
X_{n}=\bigcup_{\operatorname{Cart} I \leq n}\left[s_{I}\right] P .
$$

A new "handle" $\left[s_{I}\right] P \subset X_{n}$ is attached to X_{n-1} along the union of faces $\cup_{i \in I} F_{i} \subset \partial P$.

Observation

- When adding a "handle" $\left[s_{I}\right] P$ to X_{n-1} along $\cup_{i \in I} F_{i} \subset \partial P$, if the union $\cup_{i \in I} F_{i}$ is contractible, then up to homotopy,

$$
X_{n-1}^{\prime}=\left[s_{I}\right] P \bigcup_{\cup_{i \in I} F_{i}} X_{n-1} \simeq X_{n-1}
$$

- If $\cup_{i \in I} F_{i}$ is a disjoint union of contractible spaces, then up to homotopy, X_{n-1}^{\prime} is the union of X_{n-1} with 1-cells.
- If $\cup_{i \in I} F_{i}$ contains a loop, then a relation appear after adding $\left[s_{I}\right] P$.

Figure: Homotopy types

Example

Figure: Looking for relations

Something left

- Davis complex Σ_{Γ} can be defined in the language of \square-set (cubical set without degeneracy). Maybe there is a way to find the relations using cubical sets parallel to the description of homotopy groups using simplicial sets.
- Relations to moment-angle complexes.
- Relations to Bass-Serre Theory.

Thank You!

Thank you very much for your attention.

