Pontryagin-Thom Construction

Alastair Darby

(Xi'an Jiaotong Liverpool University)

Toric Topology 2021 in Osaka

Unstable Pontryagin Construction
Embedding $i: X^{n} \longrightarrow \underset{L}{\longrightarrow} M^{n+k}$ smooth, compact
normal bundle $\nu=\nu(X \subset M)=i^{*} T M / T X$
framing $f: v \xrightarrow{\cong} \mathbb{N}^{k} \times X$
Then space $T_{f}: T_{\nu} \xrightarrow{\cong} S^{\gamma} \wedge x_{+}=\sum^{i} x_{+}$
tubules neighbourhood $\varphi: \nu \xrightarrow{\cong} U \subseteq M$
collapse map $\quad c: M \longrightarrow M /(M, q(\lambda)) \cong{ }_{(\varphi)}^{\cong} T_{\nu} \cong S^{\wedge} \wedge X_{+} \xrightarrow{P_{i}} S^{n}$
cohondopy dar $[c]$ e $\pi^{r i}(M)=\left[M, S^{s}\right]$

$$
\begin{gathered}
\text { PT: } \Omega_{x}(M) \longrightarrow \pi^{k}(M) \\
X_{1}^{*} \sim X_{2}^{n} \Leftrightarrow \exists W^{n+1} \subset M \times I \text { st. } \partial W \subset M \times\{0,1\} \& \partial W=X_{1} \Perp X_{2}
\end{gathered}
$$

PT is a fijxrion : given $\left.[f] \in \pi^{k}(M)\right] g \in[f] d$. $0 \in S^{k}$ is a regular where of g.
Take $g^{-1}(0)$.

RESTRICT TO FIXED POUT SUBMANIFODS

Partial 7ramings
7ix G-rep V.
PV-froming $f: \gamma \xrightarrow{\text { surj. }} V \times X \Leftrightarrow \nu=\nu_{V} \oplus \nu_{W}$ where ν_{V} is V-framed
NOTE $\operatorname{dim} V \leq k$
Suppse $X=X^{G} \subset M^{G} \subset M$
$\Omega_{P Y}^{s i x}(M)$ bordism classes of $P T$-framed fixed point submaniffets of M
$X_{1}^{n} \sim X_{2}^{n} \subset M^{a} \subset M \Leftrightarrow \exists W^{n+1} \subset M^{a} x[0,1]$ dt. $\partial W=X_{1} 川 X_{2}$

Let $X^{n} \subset M^{G}$ be a fixad point submaniffice where $n=\operatorname{dim} M^{G}-\operatorname{dim} V^{G}$
$\varphi: \nu \xrightarrow{\cong} U \subset M \quad G$-inva. tub. nfhed. of X^{ϵ} 的 M suppoe V has a $P Y$-framing

$$
\begin{aligned}
f: \nu & V x x \\
M \longrightarrow M /(M, \varphi(\nu)) & \cong T \nu
\end{aligned}
$$

hontpy between G-fixed pt. submflds. can be exterded to a G-eqciva. hantiy [Wargermen' '69]

So we get a well-defined map

$$
P T_{\text {fix }}: \Omega_{P V}^{\text {fix }}(M) \longrightarrow \pi_{G}^{V}(M)
$$

Theorem $P T_{\text {fix }}$ is an isomorphism.
sketch Prof Let $f: M \rightarrow S^{v}$ \& restrict $\left.f\right|_{M^{a}}: M^{G} \rightarrow\left(S^{v}\right)^{G}$ Standard transvorsality arguments $\left.\Rightarrow \exists g \sim f\right|_{\text {wit }}$ with $0 \in\left(S^{\prime}\right)^{r a}$ a regular value Extend this harpy to G-equiva hmbpy $H: \tilde{g} \sim f$ or. $\left.\tilde{g}\right|_{M^{G}}=g$ Let $X=\tilde{g}^{-1}(0)$ a fixed pt. submifled

Equave. hutpy gives hatpy on M^{6} by redricion
so $H^{-1}(0)=W C M^{f} \times[0,1]$ gives a fixed p. bordism betreen fixed pr. mfods
Fix G-ima. tub nohad of $X \quad \varphi: v \cong U C M$
then $\left.f\right|_{\nu}: \nu \longrightarrow V \subset S^{V}$ gives a $P V$-framing

Theorem when G is abelian, $\Omega_{P V}^{f i x}(M)=\Omega_{V}^{a}(M) \cong \pi_{G}^{v}(M)$ [Wassermon' 69] or finite.

Quotient Orifolds
Suppose GQM with finite G_{x}. Then M / G is an ortififd.
Every subatififel is of the form X / H with $H \leqslant G$
2 semen. and $X H$-iva. submplo.
x_{1}^{n} / H bordent to $X_{2}^{n} / H \Leftrightarrow \exists H$-invar. $W^{k+1} C M \times I$ st

$$
\partial(w / H)=\left(X_{1} \Perp X_{2}\right) / H
$$

An abr bundle oven M / G is equiv to a G-bun oven M
Define a V-framing as a V-framing of the G-ben
$\Omega_{V}^{a r b}(M / G)$ bordsisn of V-fromed shombifolds of M / G
Thenen $\left.\Omega_{v}^{\text {neb }}(M / G) \cong \oplus{ }^{(}\right) \Omega_{v}^{H}(M)$
whee H rues Unrach
conjusacy clares of closed sub groups of G
Slexteh Proof $\forall H \leqslant G, \exists$ conmical map $\Omega_{V}^{n}(M) \rightarrow \Omega_{V}^{o r}(M / G)$
unch any depards on the cminges class of H .
This induces a map $\underset{D P \leqslant G}{ } \Omega_{V}^{H}(M) \longrightarrow \Omega_{v}^{\sigma(M / G)}$

Which is an iso since evary suborbiffed is a quatient by an H-acion for some H. a

Cordlany $\Omega_{V}^{a b}(M / G) \cong \bigoplus_{[H] \leqslant G} \pi_{H}^{V}(M)$ for G abdion or finite.

