The Gromov width of symplectic toric manifolds associated with graphs

Taekgyu Hwang (joint with Suyoung Choi)

March 24, 2021 Toric Topology 2021 in Osaka Symplectic toric manifold

Nestohedron

3 Computation of Gromov width

Hamiltonian torus action

- (M^{2n}, ω) : symplectic manifold of dimension 2n
- $T^k \cong (\mathbb{R}/\mathbb{Z})^k$: k-dimensional torus acting on M
- ullet $\mathfrak{t}\cong\mathbb{R}^k$: Lie algebra of \mathcal{T}^k with dual Lie algebra \mathfrak{t}^*
- X: fundamental vector field on M for given $X \in \mathfrak{t}$

Definition

 T^k -action on (M, ω) is called Hamiltonian if for each $X \in \mathfrak{t}$ there exists $\mu \colon M \to \mathfrak{t}^*$ such that

$$\omega(-,\underline{X})=d\langle\mu,X\rangle.$$

Such μ is called a moment map.

Hamiltonian torus action

- (M^{2n}, ω) : symplectic manifold of dimension 2n
- $T^k \cong (\mathbb{R}/\mathbb{Z})^k$: k-dimensional torus acting on M
- $\mathfrak{t} \cong \mathbb{R}^k$: Lie algebra of T^k with dual Lie algebra \mathfrak{t}^*
- X: fundamental vector field on M for given $X \in \mathfrak{t}$

Definition

 T^k -action on (M, ω) is called Hamiltonian if for each $X \in \mathfrak{t}$ there exists $\mu \colon M \to \mathfrak{t}^*$ such that

$$\omega(-,\underline{X}) = d\langle \mu, X \rangle.$$

Such μ is called a moment map.

Fix basis X_1, \ldots, X_k of $\mathfrak{t}_{\mathbb{Z}}$. This identifies $(\mathfrak{t}^*, \mathfrak{t}_{\mathbb{Z}}^*)$ with $(\mathbb{R}^n, \mathbb{Z}^n)$.

Any quantity should be measured with respect to the lattice.

Examples of moment maps

• T^2 acts on $(\mathbb{R}^4, dx_1 \wedge dy_1 + dx_2 \wedge dy_2)$ by $(t_1, t_2) \cdot (z_1, z_2) := (e^{2\pi i t_1} z_1, e^{2\pi i t_2} z_2).$

$$\mu(z_1, z_2) = (\pi |z_1|^2, \pi |z_2|^2).$$

image is the first quadrant

when restricted to open ball $B^4(r)$

② σ : volume form on S^2 so that $\int_{S^2} \sigma = 1$. T^2 acts on $(S^2 \times S^2, a\sigma + b\sigma)$ diagonally.

Delzant theorem

- A symplectic manifold (M^{2n}, ω) equipped with an effective Hamiltonian T^n -action is called toric.
- In toric case, the image of a moment map $\mu \colon M \to \mathbb{R}^n$ is a polytope satisfying the following conditions:
- **1** There are n edges at each vertex p.
- ② The edges at p has the form $p + tu_i$ for some basis vectors $u_1, \ldots, u_n \in \mathbb{Z}^n$. Such polytopes are called Delzant polytopes.

Theorem (Delzant)

There is a 1-1 correspondence

 $\{closed\ symplectic\ toric\ manifolds\} \leftrightarrow \{Delzant\ polytopes\}.$

Want: recover geometric data from Delzant polytopes

Gromov width

Theorem (Gromov nonsqueezing)

$$B^{2n}(r) \hookrightarrow B^2(R) \times \mathbb{R}^{2n-2}$$
 symplectically if and only if $r \leq R$.

(Caution: this picture is far from a proof.)

Definition (Gromov width)

$$w_G(M^{2n}, \omega) := \sup\{\pi r^2 \mid B^{2n}(r) \hookrightarrow (M, \omega) \text{ symplectically}\}.$$

$$S^2 \times S^2$$

Hirzebruch surface \mathcal{H}_2

These two are different as symplectic toric manifolds, but they are isomorphic as symplectic manifolds.

- Delzant polytope = symplectic structure + torus action
 symplectic data should be independent of the action.
- In these examples, the Gromov width is the height.

Nestohedron

- A building set \mathcal{B} on [n+1] is a collection of subsets in [n+1] satisfying the following conditions:
 - **1** Each singleton is an element of \mathcal{B} .
- For $I \in \mathcal{B}$, let $\Delta_I := conv\{e_i \mid i \in I\}$.
- The nestohedron $P_{\mathcal{B}}$ is defined to be the Minkowski sum

$$P_{\mathcal{B}} := \sum_{I \in \mathcal{B}} \Delta_I.$$

Example $(n = 2, \mathcal{B} = \{1, 2, 3, 12, 13, 23, 123\})$ $P_{\mathcal{B}} = e_1 + e_2 + e_3$ $+ conv\{e_1, e_2\} + conv\{e_1, e_3\} + conv\{e_2, e_3\}$ $+ conv\{e_1, e_2, e_3\}$ (4.2.1) (4.2.1) (4.2.1) (4.2.1)

Nestohedron

- A building set \mathcal{B} on [n+1] is a collection of subsets in [n+1] satisfying the following conditions:
 - **1** Each singleton is an element of \mathcal{B} .
- For $I \in \mathcal{B}$, let $\Delta_I := conv\{e_i \mid i \in I\}$.
- The nestohedron P_B is defined to be the Minkowski sum

$$P_{\mathcal{B}} := \sum_{I \in \mathcal{B}} \Delta_I.$$

Example $(n = 2, \mathcal{B} = \{1, 2, 3, 12, 13, 23, 123\})$ $P_{\mathcal{B}} = e_1 + e_2 + e_3 \qquad (1.4.2) \qquad (2.4.1)$ $+ conv\{e_1, e_2\} + conv\{e_1, e_3\} + conv\{e_2, e_3\} \qquad (4.2.1)$ $+ conv\{e_1, e_2, e_3\}$

Properties

- $P_{\mathcal{B}} \subset \{\sum_{i=1}^{n+1} x_i = |\mathcal{B}|\}.$
- $P_{\mathcal{B}}$ is a Delzant polytope.
- If $[n+1] \in \mathcal{B}$, then $P_{\mathcal{B}}$ is *n*-dimensional. $([n+1] \notin \mathcal{B}$, then $P_{\mathcal{B}}$ is a product of smaller nestohedra.)
- $I \subsetneq [n+1]$ defines a facet of $P_{\mathcal{B}}$:

$$F_I \subset \left\{ \sum_{i \in I} x_i = |\mathcal{B}|_I | \right\}, \text{ where } \mathcal{B}|_I = \{ J \in \mathcal{B} \mid J \subset I \}.$$

Graph associahedron

Building set from a simple graph

- G: simple graph with vertex set [n+1].
- $\mathcal{B}(G) := \{I \subset [n+1] \mid \text{ the subgraph } G|_I \text{ induced by } I \text{ is connected}\}.$

 $P_{\mathcal{B}(G)}$ is called a graph associahedron.

$$G = \begin{pmatrix} 1 & & & \\ 2 & & & \\ & & & \\ 3 & & & \\ G = \begin{pmatrix} 1 & \\ \\ 2 & & \\ & &$$

Main theorem

Theorem

Let G be a simple graph with the vertex set [n+1]. The Gromov width of the symplectic toric manifold for $P_{\mathcal{B}(G)}$ is

$$\min \{k_i > 1 \mid i = 1, \dots, n+1\} - 1,$$

where k_i is the number of connected induced subgraphs of G containing i.

For $I \in \mathcal{B}$, F_I has a parallel facet if and only if $[n+1] \setminus I \in \mathcal{B}$.

When ${\cal B}$ is obtained from a graph,

- **1** Such $I \in \mathcal{B}$ always exists.
- Minimal distance between such facets are attained when I or its complement is a singleton.
- **3** $k_i 1$ is the distance between $F_{\{i\}}$ and $F_{[n+1]\setminus\{i\}}$.

For $I \in \mathcal{B}$, F_I has a parallel facet if and only if $[n+1] \setminus I \in \mathcal{B}$.

When \mathcal{B} is obtained from a graph,

- **1** Such $I \in \mathcal{B}$ always exists.
- Minimal distance between such facets are attained when I or its complement is a singleton.
- **3** $k_i 1$ is the distance between $F_{\{i\}}$ and $F_{[n+1]\setminus\{i\}}$.

Distance between parallel facets bounds the Gromov width.

Stabilized embedding

- Gromov nonsqueezing: $w_G(S^2(\pi r^2) \times \mathbb{R}^2) = \pi r^2$.
- On the other hand, $w_G(\Sigma_g(\pi r^2) \times \mathbb{R}^2) = \infty$ for $g \geq 1$.

Let M_1 , M_2 be symplectic toric manifolds. Is it true that

$$w_G(M_1 \times M_2) = \min \{w_G(M_1), w_G(M_2)\}$$
?

Stabilized embedding

- Gromov nonsqueezing: $w_G(S^2(\pi r^2) \times \mathbb{R}^2) = \pi r^2$.
- On the other hand, $w_G(\Sigma_g(\pi r^2) \times \mathbb{R}^2) = \infty$ for $g \geq 1$.

Let M_1 , M_2 be symplectic toric manifolds. Is it true that

$$w_G(M_1 \times M_2) = \min \{w_G(M_1), w_G(M_2)\}$$
?

For M_G constructed from graph G, $w_G(M_G \times \mathbb{R}^2) = w_G(M_G)$.

Corollary

Let H be a subgraph of G. Suppose k = |G| - |H| > 0. Then

$$M_G \times \mathbb{R}^{2m} \hookrightarrow M_H \times \mathbb{R}^{2k+2m}$$

can never be symplectic for any $m \ge 0$.

Is there a topological obstruction to this embedding?

Idea of proof

Theorem

Let G be a simple graph with the vertex set [n+1]. The Gromov width of the symplectic toric manifold for $P_{\mathcal{B}(G)}$ is

$$\lambda := \min \{k_i > 1 \mid i = 1, \dots, n+1\} - 1,$$

where k_i is the number of connected induced subgraphs of G containing i.

- (Lower bound) To show $w_G \ge \lambda$,
 - 1 Use global action-angle coordinates given by moment map.
 - ② Find some shape (corresponding to a ball) of "size" λ inside P.
- (Upper bound) To show $w_G \leq \lambda$,
 - **1** Find *J*-holomorphic sphere with symplectic area $\leq \lambda$.
 - ② Use McDuff-Tolman computation on Seidel representation to find suitable nonvanishing Gromov-Witten invariant.
 - 3 Use semifree circle action with codimension 2 extrema.

Lower bound

Find L_1, \ldots, L_n satisfying

- $L_1 \cap \cdots \cap L_n$ is a point.
- Primitive vectors parallel to L_i form a basis for \mathbb{Z}^n .
- L_i has affine length ρ .

$$\lozenge^n(\rho) := conv(L_1, \ldots, L_n).$$

Let *P* be the moment map image of a symplectic toric manifold.

Theorem (Mandini–Pabiniak, Latschev–McDuff–Schlenk)

$$\lozenge^n(\rho) \subset P \implies w_G \geq \rho.$$

Lower bound

Find L_1, \ldots, L_n satisfying

- $L_1 \cap \cdots \cap L_n$ is a point.
- Primitive vectors parallel to L_i form a basis for \mathbb{Z}^n .
- L_i has affine length ρ .

$$\Diamond^n(\rho) := conv(L_1, \ldots, L_n).$$

Let *P* be the moment map image of a symplectic toric manifold.

Theorem (Mandini–Pabiniak, Latschev–McDuff–Schlenk)

$$\lozenge^n(\rho)\subset P\implies w_G\geq \rho.$$

- $w_G \ge 3$.
- p = (2,2)if 3rd coordinate is ignored.

Finding \Diamond inside P

- G: connected simple graph with the vertex set [n+1].
- \mathcal{B} : building set constructed from G.
- k_i : number of connected induced subgraphs of G containing i.

Assume k_{n+1} is minimal among k_i .

Regard $P_{\mathcal{B}}$ as a subset in \mathbb{R}^n by forgetting last coordinate.

Goal: find
$$\lozenge^n(k_{n+1}-1)$$
 in $P_{\mathcal{B}}$

Take
$$L_i = \{(a, ..., a, x, a, ..., a) | 1 \le x \le k_{n+1}\}$$
, where

$$a:=\frac{|\mathcal{B}|-k_{n+1}-1}{n-1}.$$

Checking $L_i \subset P_B$ and $1 \le a \le k_{n+1}$ reduces to the following.

Lemma

$$n \cdot k_i \ge |\mathcal{B}| - 1$$
 for any $i = 1, \dots, n + 1$.

Gromov-Witten invariants

(Upper bound) To show $w_G \leq \lambda$,

- **1** Find *J*-holomorphic sphere with symplectic area $\leq \lambda$.
- Use Seidel representation to find nonzero GW-invariant.
- 3 Use semifree circle action with codimension 2 extrema.

The (genus zero) Gromov-Witten invariant

$$\mathrm{GW}_{A,k}^M(\alpha_1,\ldots,\alpha_k)\in\mathbb{Q}$$

counts number of *J*-holomorphic spheres in class $A \in H_2(M, \mathbb{Z})$, passing through cycles $\alpha_i \in H^*(M)$.

Theorem (Gromov)

If $GW_{A,k}^{M}([pt], \alpha_2, ..., \alpha_k) \neq 0$ for some $A \in H_2(M, \mathbb{Z})$, $\alpha_i \in H^*(M)$, then the Gromov width of (M, ω) is at most $\omega(A) > 0$.

Seidel representation

Goal: find
$$A$$
, α_i such that $GW_{A,k}^M([pt], \ldots, \alpha_k) \neq 0$, $\omega(A) = \lambda$.

• The Seidel morphism is a group homomorphism

$$S: \pi_1(\operatorname{Ham}(M,\omega)) \to (QH^0(M;\Lambda)^{\times},*).$$

- $QH^{\bullet}(M; \Lambda) = H^{\bullet}(M) \otimes \Lambda$ with quantum product *.
- $\Lambda = \{ \sum a_i q^{\mu_i} t^{\kappa_i} \mid \deg q = 2, \deg t = 0, \text{ some condition} \}.$
- $a*b = \sum_{A \in H_2(M,\mathbb{Z})} (a*b)_A \otimes q^{c_1(A)} t^{\omega(A)}$, where for all c,

$$\int_{M}(a*b)_{A}\cup c=\mathrm{GW}_{A,3}^{M}(a,b,c).$$

We obtain information on GW invariants by studying S.

Upper bound

- $u \in \pi_1(\operatorname{Ham}(M, \omega))$ is represented by Hamiltonian S^1 -action. $\Longrightarrow -u$ is represented by the opposite S^1 -action.
- $S: \pi_1(\operatorname{Ham}(M,\omega)) \to QH^0(M;\Lambda)^{\times}$ is a homomorphism.

$$S(u) * S(-u) = S(u + (-u)) = 1.$$

Therefore, at least one term on the LHS survives.

- McDuff-Tolman developed a way to compute S(u).
 In general S(u) has infinitely many terms.
 ⇒ It is hard to see which term will survive on the LHS.
- If u is a semifree action whose maximum has codimension 2, some unwanted terms in S(u) vanish.

We can find A, α_i such that $GW_{A,k}^M([pt],\ldots,\alpha_k)\neq 0$, $\omega(A)=\lambda$.

 $\implies w_G \le \lambda$ by Gromov's theorem.

Remarks

Let (M, ω) be a symplectic toric manifold whose moment polytope is $P \subset \mathbb{R}^n$. Suppose that there exists a primitive vector $u \in \mathbb{Z}^n$ satisfying the following two conditions.

- **①** $\langle u, \eta \rangle \in \{0, \pm 1\}$ for any primitive η parallel to an edge of P.
- ② P has supporting hyperplanes of the form $\{x \in \mathbb{R}^n \mid \langle x, u \rangle \leq \lambda\}$ and $\{x \in \mathbb{R}^n \mid \langle x, u \rangle \geq \mu\}$.

Then the Gromov width of (M, ω) is at most $\lambda - \mu$.

For general nestohedra,

- (1) is true but (2) is not.
- Even when (2) is true, the minimal distance might not be obtained from a singleton, so the formula will be different.