The Gromov width of symplectic toric manifolds associated with graphs

Taekgyu Hwang
(joint with Suyoung Choi)

March 24, 2021
Toric Topology 2021 in Osaka
(1) Symplectic toric manifold
(2) Nestohedron
(3) Computation of Gromov width

Hamiltonian torus action

- ($M^{2 n}, \omega$): symplectic manifold of dimension $2 n$
- $T^{k} \cong(\mathbb{R} / \mathbb{Z})^{k}$: k-dimensional torus acting on M
- $\mathfrak{t} \cong \mathbb{R}^{k}$: Lie algebra of T^{k} with dual Lie algebra \mathfrak{t}^{*}
- \underline{X} : fundamental vector field on M for given $X \in \mathfrak{t}$

Definition

T^{k}-action on (M, ω) is called Hamiltonian if for each $X \in \mathfrak{t}$ there exists $\mu: M \rightarrow \mathfrak{t}^{*}$ such that

$$
\omega(-, \underline{X})=d\langle\mu, X\rangle .
$$

Such μ is called a moment map.

Hamiltonian torus action

- ($M^{2 n}, \omega$): symplectic manifold of dimension $2 n$
- $T^{k} \cong(\mathbb{R} / \mathbb{Z})^{k}$: k-dimensional torus acting on M
- $\mathfrak{t} \cong \mathbb{R}^{k}$: Lie algebra of T^{k} with dual Lie algebra \mathfrak{t}^{*}
- \underline{X} : fundamental vector field on M for given $X \in \mathfrak{t}$

Definition

T^{k}-action on (M, ω) is called Hamiltonian if for each $X \in \mathfrak{t}$ there exists $\mu: M \rightarrow \mathfrak{t}^{*}$ such that

$$
\omega(-, \underline{X})=d\langle\mu, X\rangle
$$

Such μ is called a moment map.
Fix basis X_{1}, \ldots, X_{k} of $\mathfrak{t}_{\mathbb{Z}}$. This identifies $\left(\mathfrak{t}^{*}, \mathfrak{t}_{\mathbb{Z}}^{*}\right)$ with $\left(\mathbb{R}^{n}, \mathbb{Z}^{n}\right)$.
Any quantity should be measured with respect to the lattice.

Examples of moment maps

(1) T^{2} acts on $\left(\mathbb{R}^{4}, d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}\right)$ by $\left(t_{1}, t_{2}\right) \cdot\left(z_{1}, z_{2}\right):=\left(e^{2 \pi i t_{1}} z_{1}, e^{2 \pi i t_{2}} z_{2}\right)$.

$$
\mu\left(z_{1}, z_{2}\right)=\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right) .
$$

image is the first quadrant

(2) σ : volume form on S^{2} so that $\int_{S^{2}} \sigma=1$. T^{2} acts on ($S^{2} \times S^{2}, a \sigma+b \sigma$) diagonally.

Delzant theorem

- A symplectic manifold $\left(M^{2 n}, \omega\right)$ equipped with an effective Hamiltonian T^{n}-action is called toric.
- In toric case, the image of a moment map $\mu: M \rightarrow \mathbb{R}^{n}$ is a polytope satisfying the following conditions:
(1) There are n edges at each vertex p.
(2) The edges at p has the form $p+t u_{i}$
 for some basis vectors $u_{1}, \ldots, u_{n} \in \mathbb{Z}^{n}$.

Such polytopes are called Delzant polytopes.

Theorem (Delzant)

There is a 1-1 correspondence
\{closed symplectic toric manifolds\} $\leftrightarrow\{$ Delzant polytopes $\}$.

Want: recover geometric data from Delzant polytopes

Gromov width

Theorem (Gromov nonsqueezing)

$B^{2 n}(r) \hookrightarrow B^{2}(R) \times \mathbb{R}^{2 n-2}$ symplectically if and only if $r \leq R$.

$$
B^{4}(r)
$$

(Caution: this picture is far from a proof.)

Definition (Gromov width)

$$
w_{G}\left(M^{2 n}, \omega\right):=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \hookrightarrow(M, \omega) \text { symplectically }\right\} .
$$

$S^{2} \times S^{2}$

Hirzebruch surface \mathcal{H}_{2}

These two are different as symplectic toric manifolds, but they are isomorphic as symplectic manifolds.

- Delzant polytope $=$ symplectic structure + torus action \Longrightarrow symplectic data should be independent of the action.
- In these examples, the Gromov width is the height.

Nestohedron

- A building set \mathcal{B} on $[n+1]$ is a collection of subsets in $[n+1]$ satisfying the following conditions:
(1) Each singleton is an element of \mathcal{B}.
(2) $I, J \in \mathcal{B}$ with $I \cap J \neq \emptyset \Longrightarrow I \cup J \in \mathcal{B}$.
- For $I \in \mathcal{B}$, let $\Delta_{I}:=\operatorname{conv}\left\{e_{i} \mid i \in I\right\}$.
- The nestohedron $P_{\mathcal{B}}$ is defined to be the Minkowski sum

$$
P_{\mathcal{B}}:=\sum_{I \in \mathcal{B}} \Delta_{l} .
$$

Example $(n=2, \mathcal{B}=\{1,2,3,12,13,23,123\})$

$$
\begin{aligned}
P_{\mathcal{B}} & =e_{1}+e_{2}+e_{3} \\
& +\operatorname{conv}\left\{e_{1}, e_{2}\right\}+\operatorname{conv}\left\{e_{1}, e_{3}\right\}+\operatorname{conv}\left\{e_{2}, e_{3}\right\} \\
& +\operatorname{conv}\left\{e_{1}, e_{2}, e_{3}\right\}
\end{aligned}
$$

Nestohedron

- A building set \mathcal{B} on $[n+1]$ is a collection of subsets in $[n+1]$ satisfying the following conditions:
(1) Each singleton is an element of \mathcal{B}.
(2) $I, J \in \mathcal{B}$ with $I \cap J \neq \emptyset \Longrightarrow I \cup J \in \mathcal{B}$.
- For $I \in \mathcal{B}$, let $\Delta_{I}:=\operatorname{conv}\left\{e_{i} \mid i \in I\right\}$.
- The nestohedron $P_{\mathcal{B}}$ is defined to be the Minkowski sum

$$
P_{\mathcal{B}}:=\sum_{I \in \mathcal{B}} \Delta_{l} .
$$

Example $(n=2, \mathcal{B}=\{1,2,3,12,13,23,123\})$

$$
\begin{aligned}
P_{\mathcal{B}} & =e_{1}+e_{2}+e_{3} \\
& +\operatorname{conv}\left\{e_{1}, e_{2}\right\}+\operatorname{conv}\left\{e_{1}, e_{3}\right\}+\operatorname{conv}\left\{e_{2}, e_{3}\right\} \\
& +\operatorname{conv}\left\{e_{1}, e_{2}, e_{3}\right\}
\end{aligned}
$$

Properties

- $P_{\mathcal{B}} \subset\left\{\sum_{i=1}^{n+1} x_{i}=|\mathcal{B}|\right\}$.
- $P_{\mathcal{B}}$ is a Delzant polytope.
- If $[n+1] \in \mathcal{B}$, then $P_{\mathcal{B}}$ is n-dimensional.
($[n+1] \notin \mathcal{B}$, then $P_{\mathcal{B}}$ is a product of smaller nestohedra.)
- $I \subsetneq[n+1]$ defines a facet of $P_{\mathcal{B}}$:

$$
F_{I} \subset\left\{\sum_{i \in I} x_{i}=|\mathcal{B}|, I\right\}, \quad \text { where }\left.\mathcal{B}\right|_{I}=\{J \in \mathcal{B} \mid J \subset I\}
$$

Graph associahedron

Building set from a simple graph

- G : simple graph with vertex set $[n+1]$.
- $\mathcal{B}(G):=\left\{I \subset[n+1] \mid\right.$ the subgraph $\left.G\right|_{\text {I }}$ induced by $/$ is connected\}.
$P_{\mathcal{B}(G)}$ is called a graph associahedron.

$$
\mathcal{B}(G)=\{1,2,3,12,13,23,123\} .
$$

$G=\begin{aligned} & 1 \bullet \\ & 2 \bullet \\ & 3\end{aligned}$

$$
\mathcal{B}(G)=\{1,2,3,12,23,123\} .
$$

Main theorem

Theorem

Let G be a simple graph with the vertex set $[n+1]$.
The Gromov width of the symplectic toric manifold for $P_{\mathcal{B}(G)}$ is

$$
\min \left\{k_{i}>1 \mid i=1, \ldots, n+1\right\}-1
$$

where k_{i} is the number of connected induced subgraphs of G containing i.

$$
G=\overbrace{2} \quad \begin{aligned}
& k_{1}=k_{2}=k_{3}=4 . \\
&
\end{aligned}
$$

$$
G=\begin{array}{ll}
1 \\
2 \bullet \quad & \\
3
\end{array} \quad \not \quad k_{1}=k_{3}=3, k_{2}=4 .
$$

For $I \in \mathcal{B}, F_{I}$ has a parallel facet if and only if $[n+1] \backslash I \in \mathcal{B}$.
When \mathcal{B} is obtained from a graph,
(1) Such $I \in \mathcal{B}$ always exists.
(2) Minimal distance between such facets are attained when I or its complement is a singleton.
(3) $k_{i}-1$ is the distance between $F_{\{i\}}$ and $F_{[n+1] \backslash i j}$.

For $I \in \mathcal{B}, F_{I}$ has a parallel facet if and only if $[n+1] \backslash I \in \mathcal{B}$.
When \mathcal{B} is obtained from a graph,
(1) Such $I \in \mathcal{B}$ always exists.
(2) Minimal distance between such facets are attained when I or its complement is a singleton.
(3) $k_{i}-1$ is the distance between $F_{\{i\}}$ and $F_{[n+1] \backslash i j}$.

$S^{2}\left(\pi R^{2}\right) \times \mathbb{R}^{2}$

Distance between parallel facets bounds the Gromov width.

Stabilized embedding

- Gromov nonsqueezing: $w_{G}\left(S^{2}\left(\pi r^{2}\right) \times \mathbb{R}^{2}\right)=\pi r^{2}$.
- On the other hand, $w_{G}\left(\Sigma_{g}\left(\pi r^{2}\right) \times \mathbb{R}^{2}\right)=\infty$ for $g \geq 1$.

Let M_{1}, M_{2} be symplectic toric manifolds. Is it true that

$$
w_{G}\left(M_{1} \times M_{2}\right)=\min \left\{w_{G}\left(M_{1}\right), w_{G}\left(M_{2}\right)\right\} ?
$$

Stabilized embedding

- Gromov nonsqueezing: $w_{G}\left(S^{2}\left(\pi r^{2}\right) \times \mathbb{R}^{2}\right)=\pi r^{2}$.
- On the other hand, $w_{G}\left(\Sigma_{g}\left(\pi r^{2}\right) \times \mathbb{R}^{2}\right)=\infty$ for $g \geq 1$.

Let M_{1}, M_{2} be symplectic toric manifolds. Is it true that

$$
w_{G}\left(M_{1} \times M_{2}\right)=\min \left\{w_{G}\left(M_{1}\right), w_{G}\left(M_{2}\right)\right\} ?
$$

For M_{G} constructed from graph $G, w_{G}\left(M_{G} \times \mathbb{R}^{2}\right)=w_{G}\left(M_{G}\right)$.

Corollary

Let H be a subgraph of G. Suppose $k=|G|-|H|>0$. Then

$$
M_{G} \times \mathbb{R}^{2 m} \hookrightarrow M_{H} \times \mathbb{R}^{2 k+2 m}
$$

can never be symplectic for any $m \geq 0$.
Is there a topological obstruction to this embedding?

Idea of proof

Theorem

Let G be a simple graph with the vertex set $[n+1]$.
The Gromov width of the symplectic toric manifold for $P_{\mathcal{B}(G)}$ is

$$
\lambda:=\min \left\{k_{i}>1 \mid i=1, \ldots, n+1\right\}-1,
$$

where k_{i} is the number of connected induced subgraphs of G containing i.

- (Lower bound) To show $w_{G} \geq \lambda$,
(1) Use global action-angle coordinates given by moment map.
(2) Find some shape (corresponding to a ball) of "size" λ inside P.
- (Upper bound) To show $w_{G} \leq \lambda$,
(1) Find J-holomorphic sphere with symplectic area $\leq \lambda$.
(2) Use McDuff-Tolman computation on Seidel representation to find suitable nonvanishing Gromov-Witten invariant.
(3) Use semifree circle action with codimension 2 extrema.

Lower bound

Find L_{1}, \ldots, L_{n} satisfying

- $L_{1} \cap \cdots \cap L_{n}$ is a point.
- Primitive vectors parallel to L_{i} form a basis for \mathbb{Z}^{n}.
- L_{i} has affine length ρ.

Let P be the moment map image of a symplectic toric manifold.

Theorem (Mandini-Pabiniak, Latschev-McDuff-Schlenk)

$\diamond^{n}(\rho) \subset P \Longrightarrow w_{G} \geq \rho$.

$$
\diamond^{n}(\rho):=\operatorname{conv}\left(L_{1}, \ldots, L_{n}\right) .
$$

Lower bound

Let P be the moment map image of a symplectic toric manifold.

$$
\begin{aligned}
& \text { Theorem (Mandini-Pabiniak, } \\
& \text { Latschev-McDuff-Schlenk) } \\
& \diamond^{n}(\rho) \subset P \Longrightarrow w_{G} \geq \rho
\end{aligned}
$$

$$
\nabla^{n}(\rho):=\operatorname{conv}\left(L_{1}, \ldots, L_{n}\right) .
$$

- $w_{G} \geq 3$.
- $p=(2,2)$
if 3 rd coordinate is ignored.

Finding \diamond inside P

- G : connected simple graph with the vertex set $[n+1]$.
- \mathcal{B} : building set constructed from G.
- k_{i} : number of connected induced subgraphs of G containing i .

Assume k_{n+1} is minimal among k_{i}.
Regard $P_{\mathcal{B}}$ as a subset in \mathbb{R}^{n} by forgetting last coordinate.
Goal: find $\diamond^{n}\left(k_{n+1}-1\right)$ in $P_{\mathcal{B}}$
Take $L_{i}=\left\{(a, \ldots, a, x, a, \ldots, a) \mid 1 \leq x \leq k_{n+1}\right\}$, where

$$
a:=\frac{|\mathcal{B}|-k_{n+1}-1}{n-1}
$$

Checking $L_{i} \subset P_{\mathcal{B}}$ and $1 \leq a \leq k_{n+1}$ reduces to the following.

Lemma

$$
n \cdot k_{i} \geq|\mathcal{B}|-1 \quad \text { for any } i=1, \ldots, n+1
$$

Gromov-Witten invariants

(Upper bound) To show $w_{G} \leq \lambda$,
(1) Find J-holomorphic sphere with symplectic area $\leq \lambda$.
(2) Use Seidel representation to find nonzero GW-invariant.
(3) Use semifree circle action with codimension 2 extrema.

The (genus zero) Gromov-Witten invariant

$$
\mathrm{GW}_{A, k}^{M}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{Q}
$$

counts number of J-holomorphic spheres in class $A \in H_{2}(M, \mathbb{Z})$, passing through cycles $\alpha_{i} \in H^{*}(M)$.

Theorem (Gromov)

If $\mathrm{GW}_{A, k}^{M}\left([p t], \alpha_{2}, \ldots, \alpha_{k}\right) \neq 0$ for some $A \in H_{2}(M, \mathbb{Z})$, $\alpha_{i} \in H^{*}(M)$, then the Gromov width of (M, ω) is at most $\omega(A)>0$.

Seidel representation

Goal: find A, α_{i} such that $\mathrm{GW}_{A, k}^{M}\left([p t], \ldots, \alpha_{k}\right) \neq 0, \omega(A)=\lambda$.

- The Seidel morphism is a group homomorphism

$$
S: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow\left(Q H^{0}(M ; \Lambda)^{\times}, *\right)
$$

- $Q H^{\bullet}(M ; \Lambda)=H^{\bullet}(M) \otimes \Lambda$ with quantum product $*$.
- $\Lambda=\left\{\sum a_{i} q^{\mu_{i}} t^{\kappa_{i}} \mid \operatorname{deg} q=2, \operatorname{deg} t=0\right.$, some condition $\}$.
- $a * b=\sum_{A \in H_{2}(M, \mathbb{Z})}(a * b)_{A} \otimes q^{c_{1}(A)} t^{\omega(A)}$, where for all c,

$$
\int_{M}(a * b)_{A} \cup c=\operatorname{GW}_{A, 3}^{M}(a, b, c)
$$

We obtain information on GW invariants by studying S.

Upper bound

- $u \in \pi_{1}(\operatorname{Ham}(M, \omega))$ is represented by Hamiltonian S^{1}-action. $\Longrightarrow-u$ is represented by the opposite S^{1}-action.
- $S: \pi_{1}(\operatorname{Ham}(M, \omega)) \rightarrow Q H^{0}(M ; \Lambda)^{\times}$is a homomorphism.
$S(u) * S(-u)=S(u+(-u))=1$.
Therefore, at least one term on the LHS survives.
- McDuff-Tolman developed a way to compute $S(u)$. In general $S(u)$ has infinitely many terms.
\Longrightarrow It is hard to see which term will survive on the LHS.
- If u is a semifree action whose maximum has codimension 2 , some unwanted terms in $S(u)$ vanish.

We can find A, α_{i} such that $\mathrm{GW}_{A, k}^{M}\left([p t], \ldots, \alpha_{k}\right) \neq 0, \omega(A)=\lambda$.
$\Longrightarrow w_{G} \leq \lambda$ by Gromov's theorem.

Remarks

Let (M, ω) be a symplectic toric manifold whose moment polytope is $P \subset \mathbb{R}^{n}$. Suppose that there exists a primitive vector $u \in \mathbb{Z}^{n}$ satisfying the following two conditions.
(1) $\langle u, \eta\rangle \in\{0, \pm 1\}$ for any primitive η parallel to an edge of P.
(2) P has supporting hyperplanes of the form $\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle \leq \lambda\right\}$ and $\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle \geq \mu\right\}$.
Then the Gromov width of (M, ω) is at most $\lambda-\mu$.
For general nestohedra,

- (1) is true but (2) is not.
- Even when (2) is true, the minimal distance might not be obtained from a singleton, so the formula will be different.

