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Hamiltonian torus action

(M2n, ω): symplectic manifold of dimension 2n

T k ∼= (R/Z)k : k-dimensional torus acting on M

t ∼= Rk : Lie algebra of T k with dual Lie algebra t∗

X : fundamental vector field on M for given X ∈ t

Definition

T k -action on (M, ω) is called Hamiltonian if for each X ∈ t
there exists µ : M → t∗ such that

ω(−,X ) = d〈µ,X 〉.
Such µ is called a moment map.

Fix basis X1, . . . ,Xk of tZ. This identifies (t∗, t∗Z) with (Rn,Zn).

Any quantity should be measured with respect to the lattice.
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Examples of moment maps

1 T 2 acts on (R4, dx1 ∧ dy1 + dx2 ∧ dy2) by
(t1, t2) · (z1, z2) := (e2πit1z1, e

2πit2z2).

µ(z1, z2) = (π|z1|2, π|z2|2).

x

y

image is the first quadrant
πr2

πr2

x

y

when restricted to open ball B4(r)

2 σ: volume form on S2 so that
∫
S2 σ = 1.

T 2 acts on (S2 × S2, aσ + bσ) diagonally.

x

y

a

b

image is a polytope
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Delzant theorem

A symplectic manifold (M2n, ω) equipped with
an effective Hamiltonian T n-action is called toric.

In toric case, the image of a moment map µ : M → Rn is a
polytope satisfying the following conditions:

1 There are n edges at each vertex p.

2 The edges at p has the form p + tui
for some basis vectors u1, . . . , un ∈ Zn.

p

Such polytopes are called Delzant polytopes.

Theorem (Delzant)

There is a 1-1 correspondence

{closed symplectic toric manifolds} ↔ {Delzant polytopes}.

Want: recover geometric data from Delzant polytopes
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Gromov width

Theorem (Gromov nonsqueezing)

B2n(r) ↪→ B2(R)× R2n−2 symplectically if and only if r ≤ R.

πr2

πr2

x

y

B4(r)

x

y

πR2

B2(R)× R2

(Caution: this picture is far from a proof.)

Definition (Gromov width)

wG (M2n, ω) := sup{πr2 | B2n(r) ↪→ (M, ω) symplectically}.
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S2 × S2 Hirzebruch surface H2

These two are different as symplectic toric manifolds,
but they are isomorphic as symplectic manifolds.

Delzant polytope = symplectic structure + torus action
=⇒ symplectic data should be independent of the action.

In these examples, the Gromov width is the height.
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Nestohedron

A building set B on [n + 1] is a collection of subsets in [n + 1]
satisfying the following conditions:

1 Each singleton is an element of B.
2 I , J ∈ B with I ∩ J 6= ∅ =⇒ I ∪ J ∈ B.

For I ∈ B, let ∆I := conv{ei | i ∈ I}.
The nestohedron PB is defined to be the Minkowski sum

PB :=
∑
I∈B

∆I .

Example (n = 2,B = {1, 2, 3, 12, 13, 23, 123})

PB = e1 + e2 + e3

+ conv{e1, e2}+ conv{e1, e3}+ conv{e2, e3}
+ conv{e1, e2, e3} (2,1,4)

(4,1,2)

(4,2,1)

(2,4,1)(1,4,2)

(1,2,4)
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Properties

PB ⊂ {
∑n+1

i=1 xi = |B|}.
PB is a Delzant polytope.

If [n + 1] ∈ B, then PB is n-dimensional.
([n + 1] /∈ B, then PB is a product of smaller nestohedra.)

I ( [n + 1] defines a facet of PB:

FI ⊂

{∑
i∈I

xi = |B|I |

}
, where B|I = {J ∈ B | J ⊂ I}.

(2,1,4) 2
(4,1,2)
23

(4,2,1)

3

(2,4,1)
13

(1,4,2)

1

(1,2,4)

12
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Graph associahedron

Building set from a simple graph

G : simple graph with vertex set [n + 1].

B(G ) := {I ⊂ [n + 1] | the subgraph G |I induced by I
is connected}.

PB(G) is called a graph associahedron.

1

2
3

G = B(G ) = {1, 2, 3, 12, 13, 23, 123}.

1

2
3

G = B(G ) = {1, 2, 3, 12, 23, 123}.

(2,1,4) 2
(4,1,2)
23

(4,2,1)

3

(2,4,1)
13

(1,4,2)

1

(1,2,4)

12

(2,1,3) 2
(3,1,2)
23

(3,2,1)

3

(1,4,1)

1

(1,2,3)

12
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Main theorem

Theorem

Let G be a simple graph with the vertex set [n + 1].
The Gromov width of the symplectic toric manifold for PB(G) is

min {ki > 1 | i = 1, . . . , n + 1} − 1,

where ki is the number of connected induced subgraphs of G
containing i .

1

2
3

G =
k1 = k2 = k3 = 4.

=⇒ wG = 3.

1

2
3

G =
k1 = k3 = 3, k2 = 4.

=⇒ wG = 2.

(2,1,4) 2
(4,1,2)
23

(4,2,1)

3

(2,4,1)
13

(1,4,2)

1

(1,2,4)

12

(2,1,3) 2
(3,1,2)
23

(3,2,1)

3

(1,4,1)

1

(1,2,3)

12
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For I ∈ B, FI has a parallel facet if and only if [n + 1] \ I ∈ B.

When B is obtained from a graph,

1 Such I ∈ B always exists.

2 Minimal distance between such facets are attained
when I or its complement is a singleton.

3 ki − 1 is the distance between F{i} and F[n+1]\{i}.

πr2

πr2

x

y

B4(r)

x

y

πR2

S2(πR2)× R2

Distance between parallel facets bounds the Gromov width.
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Stabilized embedding

Gromov nonsqueezing: wG (S2(πr2)× R2) = πr2.

On the other hand, wG (Σg (πr2)× R2) =∞ for g ≥ 1.

Let M1, M2 be symplectic toric manifolds. Is it true that

wG (M1 ×M2) = min {wG (M1),wG (M2)}?

For MG constructed from graph G , wG (MG × R2) = wG (MG ).

Corollary

Let H be a subgraph of G. Suppose k = |G | − |H| > 0. Then

MG × R2m ↪→ MH × R2k+2m

can never be symplectic for any m ≥ 0.

Is there a topological obstruction to this embedding?
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Idea of proof

Theorem

Let G be a simple graph with the vertex set [n + 1].
The Gromov width of the symplectic toric manifold for PB(G) is

λ := min {ki > 1 | i = 1, . . . , n + 1} − 1,

where ki is the number of connected induced subgraphs of G
containing i .

(Lower bound) To show wG ≥ λ,
1 Use global action-angle coordinates given by moment map.
2 Find some shape (corresponding to a ball) of “size” λ inside P.

(Upper bound) To show wG ≤ λ,
1 Find J-holomorphic sphere with symplectic area ≤ λ.
2 Use McDuff–Tolman computation on Seidel representation

to find suitable nonvanishing Gromov–Witten invariant.
3 Use semifree circle action with codimension 2 extrema.
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Lower bound

πr2

πr2

x

y

L1

L2

B4(r)

x

y

L1

L2

♦2(πr2)

Find L1, . . . , Ln satisfying

L1 ∩ · · · ∩ Ln is a point.

Primitive vectors parallel
to Li form a basis for Zn.

Li has affine length ρ.

♦n(ρ) := conv(L1, . . . , Ln).

Let P be the moment map image
of a symplectic toric manifold.

Theorem (Mandini–Pabiniak,
Latschev–McDuff–Schlenk)

♦n(ρ) ⊂ P =⇒ wG ≥ ρ.

(2,1,4) 2
(4,1,2)
23

(4,2,1)

3

(2,4,1)
13

(1,4,2)

1

(1,2,4)

12

p

wG ≥ 3.

p = (2, 2)
if 3rd coordinate is ignored.
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Finding ♦ inside P

G : connected simple graph with the vertex set [n + 1].

B: building set constructed from G .

ki : number of connected induced subgraphs of G containing i.

Assume kn+1 is minimal among ki .
Regard PB as a subset in Rn by forgetting last coordinate.

Goal: find ♦n(kn+1 − 1) in PB

Take Li = {(a, . . . , a, x , a, . . . , a) | 1 ≤ x ≤ kn+1}, where

a :=
|B| − kn+1 − 1

n − 1
.

Checking Li ⊂ PB and 1 ≤ a ≤ kn+1 reduces to the following.

Lemma

n · ki ≥ |B| − 1 for any i = 1, . . . , n + 1.
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Gromov–Witten invariants

(Upper bound) To show wG ≤ λ,

1 Find J-holomorphic sphere with symplectic area ≤ λ.

2 Use Seidel representation to find nonzero GW-invariant.

3 Use semifree circle action with codimension 2 extrema.

The (genus zero) Gromov–Witten invariant

GWM
A,k(α1, . . . , αk) ∈ Q

counts number of J-holomorphic spheres in class A ∈ H2(M,Z),
passing through cycles αi ∈ H∗(M).

Theorem (Gromov)

If GWM
A,k([pt], α2, . . . , αk) 6= 0 for some A ∈ H2(M,Z),

αi ∈ H∗(M), then the Gromov width of (M, ω) is at most
ω(A) > 0.
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Seidel representation

Goal: find A, αi such that GWM
A,k([pt], . . . , αk) 6= 0, ω(A) = λ.

The Seidel morphism is a group homomorphism

S : π1(Ham(M, ω))→ (QH0(M; Λ)×, ∗).

QH•(M; Λ) = H•(M)⊗ Λ with quantum product ∗.
Λ = {

∑
aiq

µi tκi | deg q = 2, deg t = 0, some condition}.
a ∗ b =

∑
A∈H2(M,Z)(a ∗ b)A ⊗ qc1(A)tω(A), where for all c ,∫

M
(a ∗ b)A ∪ c = GWM

A,3(a, b, c).

We obtain information on GW invariants by studying S .
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Upper bound

u ∈ π1(Ham(M, ω)) is represented by Hamiltonian S1-action.
=⇒ −u is represented by the opposite S1-action.

S : π1(Ham(M, ω))→ QH0(M; Λ)× is a homomorphism.

S(u) ∗ S(−u) = S(u + (−u)) = 1.
Therefore, at least one term on the LHS survives.

McDuff–Tolman developed a way to compute S(u).
In general S(u) has infinitely many terms.
=⇒ It is hard to see which term will survive on the LHS.

If u is a semifree action whose maximum has codimension 2,
some unwanted terms in S(u) vanish.

We can find A, αi such that GWM
A,k([pt], . . . , αk) 6= 0, ω(A) = λ.

=⇒ wG ≤ λ by Gromov’s theorem.
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Remarks

Let (M, ω) be a symplectic toric manifold whose moment polytope
is P ⊂ Rn. Suppose that there exists a primitive vector u ∈ Zn

satisfying the following two conditions.

1 〈u, η〉 ∈ {0,±1} for any primitive η parallel to an edge of P.

2 P has supporting hyperplanes of the form
{x ∈ Rn | 〈x , u〉 ≤ λ} and {x ∈ Rn | 〈x , u〉 ≥ µ}.

Then the Gromov width of (M, ω) is at most λ− µ.

For general nestohedra,

(1) is true but (2) is not.

Even when (2) is true, the minimal distance might not be
obtained from a singleton, so the formula will be different.
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