Strong cohomological rigidity problem of a Hirzebruch surface bundle

Hiroaki Ishida

Kagoshima University

Toric Topology 2021 in Osaka March 24, 2020.

Bott tower

A Bott tower of height n is an iterated $\mathbb{C}P^1$ -bundle

$$B_n \to B_{n-1} \to \cdots \to B_1 \to B_0 = \{a \text{ point}\}$$

such that each fibration $B_i \rightarrow B_{i-1}$ is a projectivization of rank 2 decomposable vector bundle

$$B_j = P(\xi_j \oplus \xi_j') \to B_{j-1}.$$

The manifold in the tower is called a Bott manifold.

- **1** B_0 is a point. $B_1 = P(\mathbb{C} \oplus \mathbb{C}) = \mathbb{C}P^1$.
- **2** B_2 is a Hirzebruch surface. Depends on the choice of ξ_2, ξ_2' .

Introduction

Cohomological rigidity problem

Let B_n , B'_n be Bott manifolds of dimension n.

$$H^*(B_n,\mathbb{Z})\cong H^*(B_n',\mathbb{Z})\stackrel{?}{\Longrightarrow} B_n\cong B_n'$$

<u>Problem (Strong cohomological rigidity problem)</u>

Let B_n, B'_n be Bott manifolds of dimension n. For any isomorphism $\varphi \colon H^*(B'_n, \mathbb{Z}) \to H^*(B_n, \mathbb{Z}),$

$$\exists f: B_n \to B'_n: \text{ diffeomorphism s.t. } f^* = \varphi$$
?

Strong cohomological rigidity \Longrightarrow Cohomological rigidity.

Strong cohomological rigidity problem can be separated into

- Cohomological rigidity problem.
- **2** For any Bott manifold B_n and $\varphi \colon H^*(B_n, \mathbb{Z}) \to H^*(B_n, \mathbb{Z})$,

$$^{\exists}f:\ {\color{red}B_{n}}
ightarrow {\color{red}B_{n}}: \ {\color{gray}diffeomorphism} \ {
m s.t.} \ \ f^{*}= \varphi ?$$

 \bigcirc and \bigcirc are true \Longrightarrow Strong cohomological rigidity.

The followings are useful to show diffeomorphisms.

Proposition

For a line bundle γ , $P(\xi \oplus \xi') \cong P(\gamma \otimes (\xi \oplus \xi'))$ as bundles.

Proposition

Let B be a Bott manifold. Rank 2 decomposable vector bundles over Bare distinguished by their total Chern classes.

 γ : tautological line bundle over $\mathbb{C}P^1$.

$$\begin{split} B_2 &= P(\gamma^{\otimes a} \oplus \gamma^{\otimes b}) \\ &\cong P(\underline{\mathbb{C}} \oplus \gamma^{\otimes (b-a)}) \\ &\cong \begin{cases} P(\gamma^{\otimes (-k)} \oplus \gamma^{\otimes k}) & \text{if } b-a=2k, \\ P(\gamma^{\otimes (-k)} \oplus \gamma^{\otimes (k+1)}) & \text{if } b-a=2k+1, \end{cases} \\ &\cong \begin{cases} P(\underline{\mathbb{C}} \oplus \underline{\mathbb{C}}) & \text{if } b-a \text{ is even} \\ P(\underline{\mathbb{C}} \oplus \gamma) & \text{if } b-a \text{ is odd.} \end{cases} \end{split}$$

Proposition

Let $P=P(\underline{\mathbb{C}}\oplus\xi)\to B$ be a $\mathbb{C}P^1$ -bundle. Assume that $H^{\mathrm{odd}}(B)=0$.

- **1** $H^*(P)$ is freely generated by $x := c_1(\gamma)$ as an $H^*(B)$ -module, where γ is the tautological line bundle.
- 2 $x(-x+c_1(\xi))=0$ because $\gamma\oplus\gamma^{\perp}=\underline{\mathbb{C}}\oplus\xi$.
- **3** An automorphism $\varphi \colon H^*(P) \to H^*(P)$ as an $H^*(B)$ -algebra is either id or $\varphi(x) = -x + c_1(\xi)$. The latter one is induced by $f \colon P \to P, \ \ell \mapsto \ell^{\perp}$.

Theorem (2011)

Let B_n and B'_n be Bott manifolds. Let $\varphi \colon H^*(B'_n) \to H^*(B_n)$ be an isomorphism which is represented by an upper triangular matrix with respect to certain generators. Then φ is induced by a diffeomorphism $f \colon B_n \to B'_n$.

The purpose of this talk is the following:

Theorem

Introduction Purpose

Let B be a Bott manifold. Consider the Hirzebruch surface bundle

$$E = P(\underline{\mathbb{C}} \oplus \xi_2) \to P(\underline{\mathbb{C}} \oplus \xi_1) \to B,$$

where ξ_1 is a \mathbb{C} -line bundle over B and ξ_2 is a \mathbb{C} -line bundle over $P(\underline{\mathbb{C}} \oplus \xi_1)$. Let $\widetilde{\varphi} \colon H^*(E) \to H^*(E)$ be an automorphism as an $H^*(B)$ -algebra. Then there exists a bundle automorphism $\widetilde{f}\colon\thinspace E o E$ over B such that $\widetilde{f}^* = \widetilde{\varphi}$.

Notations

$$E = P(\underline{\mathbb{C}} \oplus \xi_2) \stackrel{\pi_2}{\to} P(\underline{\mathbb{C}} \oplus \xi_1) \stackrel{\pi_1}{\to} B,$$

where ξ_1 is a \mathbb{C} -line bundle over B and ξ_2 is a \mathbb{C} -line bundle over $P(\underline{\mathbb{C}} \oplus \xi_1)$. Let $\widetilde{\varphi} \colon H^*(E) \to H^*(E)$ be an automorphism as an $H^*(B)$ -algebras.

- π_1^*, π_2^* are injective. $H^*(B) \subset H^*(P(\underline{\mathbb{C}} \oplus \xi_1)) \subset H^*(E)$.
- Let γ_1 and γ_2 be the tautological line bundles of $P(\underline{\mathbb{C}} \oplus \xi_1)$ and $P(\underline{\mathbb{C}} \oplus \xi_2) = E$, respectively. $x_1 := c_1(\gamma_1)$ and $x_2 := c_1(\gamma_2)$ are generators of $H^*(E)$ as an $H^*(B)$ -algebra.
- $c_1(\xi_2) = ax_1 + y$ for some $a \in \mathbb{Z}$ and $y \in H^2(B)$.
- The fiber is a Hirzebruch surface $\Sigma_a = P(\underline{\mathbb{C}} \oplus \gamma^{\otimes a}) \to \mathbb{C}P^1$.
- $H^*(E)/H^{>0}(B)\cong H^*(\Sigma_a)$. $\widetilde{\varphi}$ descends to $\varphi\colon H^*(\Sigma_a)\to H^*(\Sigma_a)$.

• $H^*(E)/H^{>0}(B) \cong H^*(\Sigma_a)$. $\widetilde{\varphi} \colon H^*(E) \to H^*(E)$ descends to an automorphism $\varphi \colon H^*(\Sigma_a) \to H^*(\Sigma_a)$.

However, not every φ can lift. If φ lifts an automorphism $\widetilde{\varphi}$: $H^*(E) \to H^*(E)$, then $c_1(\xi_1)$ and $c_1(\xi_2) = ax_1 + y$ should satisfy a certain condition depending on φ .

Our plan to attack the problem is

- **1** Choose $\varphi \colon H^*(\Sigma_a) \to H^*(\Sigma_a)$.
- 2 Obtain a necessary and sufficient condition about $c_1(\xi_1)$ and $c_1(\xi_2) = ax_1 + y$.
- **3** Using the condition, construct $\widetilde{f}: E \to E$ such that $\widetilde{f}^* = \widetilde{\varphi}$.

Let $\overline{x_j} \in H^2(\Sigma_a)$ be the image of x_j by $H^*(E) \to H^*(\Sigma_a)$. $H^*(\Sigma_a)$ is generated by $\overline{x_1}, \overline{x_2}$ and represented as

$$H^*(\Sigma_a)=\mathbb{Z}[\overline{x_1},\overline{x_2}]/(\overline{x_1}^2,\overline{x_2}(\overline{x_2}-a\overline{x_1})).$$

Primitive square zero elements are

- $\pm \overline{x_1}$ and $\pm (\overline{x_2} \frac{a}{2}\overline{x_1})$ if a is even.
- $\pm \overline{x_1}$ and $\pm (2\overline{x_2} a\overline{x_1})$ if a is odd.

There are 8 automorphisms of $H^*(\Sigma_a)$. 4 of them have upper triangular representation matrices w.r.t. $\overline{x_1}, \overline{x_2}$;

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix}.$$

If the representation matrix of φ is one of above and φ lifts $\widetilde{\varphi}\colon\thinspace H^*(E)\to H^*(E)$, then there exists $\widetilde{f}\colon\thinspace E\to E$ such that $\widetilde{f}^*=\widetilde{\varphi}$.

Remaining 4 autohomorphism have different forms by the parity of a.

• In case when a is even, representation matrices are

$$\pm \begin{pmatrix} \frac{a}{2} & \frac{a^2}{4} - 1 \\ -1 & -\frac{a}{2} \end{pmatrix}, \quad \pm \begin{pmatrix} \frac{a}{2} & \frac{a^2}{4} + 1 \\ -1 & -\frac{a}{2} \end{pmatrix}.$$

In case when a is odd, representation matrices are

$$\pm \begin{pmatrix} a & \frac{a^2-1}{2} \\ -2 & -a \end{pmatrix}, \quad \pm \begin{pmatrix} a & \frac{a^2+1}{2} \\ -2 & -a \end{pmatrix}.$$

Then φ lifts $\widetilde{\varphi}$ if and only if

- $c_1(\xi_1) \pm y$ is even,
- $c_1(\xi_1)^2 = y^2$.

Case when a = 0

For x, γ^x denotes a line bundle whose first Chern class is x.

Since a = 0, E is a fiber product

$$E \longrightarrow P(\underline{\mathbb{C}} \oplus \gamma^{y})$$

$$\downarrow \qquad \qquad \downarrow$$

$$P(\underline{\mathbb{C}} \oplus \xi_{1}) \longrightarrow B$$

By the condition,

$$P(\mathbb{C} \oplus \gamma^{y}) \cong P(\gamma^{\frac{1}{2}(c_{1}(\xi_{1})-y)} \oplus \gamma^{\frac{1}{2}(c_{1}(\xi_{1})+y)}) \cong P(\mathbb{C} \oplus \gamma^{c_{1}(\xi_{1})}).$$

Case when a = 0

$$E \xrightarrow{P(\underline{\mathbb{C}} \oplus \gamma^{c_1(\xi_1)})} \bigvee_{\downarrow} P(\underline{\mathbb{C}} \oplus \gamma^{c_1(\xi_1)}) \xrightarrow{B} B$$

The automorphism $\widetilde{\varphi}$ is induced by one of

$$P(\underline{\mathbb{C}} \oplus \gamma^{c_1(\xi_1)})^2 \supset E \ni (\ell_1, \ell_2) \mapsto \begin{cases} (\ell_2, \ell_1), \\ (\ell_2^{\perp}, \ell_1), \\ (\ell_2, \ell_1^{\perp}), \\ (\ell_2^{\perp}, \ell_1^{\perp}). \end{cases}$$

- $\frac{2\pm a}{4}c_1(\xi_1)$ is integral,
- $y = -\frac{a}{2}c_1(\xi_1)$,
- $(4-a^2)c_1(\xi_1)^2=0$.

By the condition,

Case when a is nonzero even

$$P(\underline{\mathbb{C}} \oplus \xi_2) \cong P(\underline{\mathbb{C}} \oplus \gamma^{ax_1+y})$$

$$\cong P(\gamma^{-\frac{a}{2}x_1} \oplus \gamma^{\frac{a}{2}(x_1-c_1(\xi_1))})$$

$$\cong P(\underline{\mathbb{C}} \oplus \gamma^y)$$

as bundles over $P(\mathbb{C} \oplus \xi_1)$. The existence of \widetilde{f} follows from the case when a=0.

Suppose that a is odd and the representation matrix of φ is not upper triangular. Then φ lifts $\widetilde{\varphi}$ if and only if

• $c_1(\xi_1)$ is even.

Case when a is odd

- $y = -\frac{a}{2}c_1(\xi_1)$,
- $(1-a^2)c_1(\xi_1)^2=0$.

In case when $a \neq \pm 1$, $c_1(\xi_1)^2 = v^2 = 0$, by an argument similar to the even case we have $E \to B$ is trivial Σ_a -bundle. Since Σ_a is strongly cohomological rigid, $\widetilde{\varphi}$ is induced by a bundle automorphism $\widetilde{f}\colon E \to E$.

Remaining problem is the case $a = \pm 1$, and we need a different approach.

Suppose that $a = \pm 1$ and the representation matrix of $\varphi \colon H^*(\Sigma_a) \to H^*(\Sigma_a)$ is not upper triangular. Then it is one of

$$\pm \begin{pmatrix} a & 0 \\ -2 & -a \end{pmatrix}, \quad \pm \begin{pmatrix} a & 1 \\ -2 & -a \end{pmatrix}.$$

If φ lifts $\widetilde{\varphi} \colon H^*(E) \to H^*(E)$ then

- $c_1(\xi_1)$ is even,
- $y = -\frac{a}{2}c_1(\xi_1)$,
- $(1-a^2)c_1(\xi_1)^2=0$.

 $y = -\frac{a}{2}c_1(\xi_1)$ means that the structure group of $E \to B$ can be reduced to $S^1 \curvearrowright \Sigma_a$. Thus it is enough to show that

$$\exists f : \Sigma_a \to \Sigma_a \ S^1$$
-equivariant s.t. $f^* = \varphi$.

(f lifts \widetilde{f} and $\widetilde{f}^* = \widetilde{\varphi}$).

 Σ_a is diffeomorphic to $S^3 \times S^3 / \sim_{-a}$, where

$$\left(\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \right) \sim_{-a} \left(\begin{pmatrix} z_1' \\ w_1' \end{pmatrix}, \begin{pmatrix} z_2' \\ w_2' \end{pmatrix} \right)$$

Equivariant diffeomorphisms of Σ_a

if and only if

$$\exists s_1, s_2 \in S^1 \text{ s.t. } \left(\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \right) = \left(\begin{pmatrix} s_1 z_1' \\ s_1 w_1' \end{pmatrix}, \begin{pmatrix} s_2 z_2' \\ s_1^{-a} s_2 w_2' \end{pmatrix} \right).$$

The S^1 -action w.r.t. $y = -\frac{a}{2}c_1(\xi_1)$ is

$$t \cdot \begin{bmatrix} \begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \end{bmatrix}_{-a} = \begin{bmatrix} \begin{pmatrix} z_1 \\ t^2 w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ t^{-a} w_2 \end{pmatrix} \end{bmatrix}_{-a}$$

For $z \in \mathbb{C}$ and $k \in \mathbb{Z}$, we define $z^{(k)}$ to be

$$z^{(k)} := \begin{cases} z^k & \text{if } k > 0, \\ 1 & \text{if } k = 0, \\ \overline{z}^{-k} & \text{if } k < 0. \end{cases}$$

The map $f: \Sigma_a \to \Sigma_a$ given by

$$\left[\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \right]_{-a} \mapsto \left[(|z_2|^4 + |w_2|^4)^{-\frac{1}{2}} \begin{pmatrix} z_1 z_2^{(-2a)} - \overline{w_1} w_2^{(-2a)} \\ w_1 z_2^{(-2a)} + \overline{z_1} w_2^{(-2a)} \end{pmatrix}, \begin{pmatrix} \overline{z_2} \\ w_2 \end{pmatrix} \right]_{-a}$$

is well-defined and a diffeomorphism, because

$$(|z_2|^4 + |w_2|^4)^{-\frac{1}{2}} \begin{pmatrix} z_1 z_2^{(-2a)} - \overline{w_1} w_2^{(-2a)} \\ w_1 z_2^{(-2a)} + \overline{z_1} w_2^{(-2a)} \end{pmatrix}$$
 is the first column vector of the

special unitary matrix

$$\begin{pmatrix} z_1 & -\overline{w_1} \\ w_1 & \overline{z_1} \end{pmatrix} (|z_2|^4 + |w_2|^4)^{-\frac{1}{2}} \begin{pmatrix} z_2^{(-2a)} & -w_2^{(-2a)} \\ w_2^{(2a)} & z_2^{(2a)} \end{pmatrix}.$$

S1 equivariant diffeomorphisms

- By direct computation, f is S^1 -equivariant and $f^*(\overline{x_1}) = -2a\overline{x_2} + \overline{x_1}$.
- Let $g_1: \Sigma_a \to \Sigma_a$ be the equivariant diffeomorphism given by

$$\left[\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \right]_{-a} \mapsto \left[\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} -\overline{w_2} \\ \overline{z_2} \end{pmatrix} \right]_{-a}.$$

The representation matrix of g_1^* is $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$.

• Let $g_2 : \Sigma_a \to \Sigma_a$ be the equivariant diffeomorphism given by

$$\left[\begin{pmatrix} z_1 \\ w_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ w_2 \end{pmatrix} \right]_{-a} \mapsto \left[\begin{pmatrix} -\overline{w_1} \\ \overline{z_1} \end{pmatrix}, \begin{pmatrix} w_2 \\ z_2 \end{pmatrix} \right]_{-a}.$$

The representation matrix of g_2^* is either $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix}$.

• f, $f \circ g_1$, $f \circ g_2$, $f \circ g_1 \circ g_2$ are what we wanted.

One can show the following:

Theorem

Let B be a Bott manifold and $E, E' \rightarrow B$ Hirzebruch surface bundles. If $H^*(E) \cong H^*(E')$ as $H^*(B)$ -algebras, then $E \cong E'$ as bundles over B.

Thus we have

Corollary

Let B be a Bott manifold and $E, E' \rightarrow B$ Hirzebruch surface bundles. Let $\widetilde{\varphi} \colon H^*(E) \to H^*(E')$ be an isomorphism as $H^*(B)$ -algebras. Then there exists an isomorphism $\widetilde{f} \colon E' \to E$ as bundles over B such that $\widetilde{f}^* = \widetilde{\varphi}$.