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Bott tower

A Bott tower of height n is an iterated CP1-bundle

Bn → Bn−1 → · · · → B1 → B0 = {a point}

such that each fibration Bj → Bj−1 is a projectivization of rank 2

decomposable vector bundle

Bj = P(ξj ⊕ ξ′j ) → Bj−1.

The manifold in the tower is called a Bott manifold.

1 B0 is a point. B1 = P(C⊕ C) = CP1.

2 B2 is a Hirzebruch surface. Depends on the choice of ξ2, ξ
′
2.
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Cohomological rigidity problem

Problem (Cohomological rigidity problem)

Let Bn,B
′
n be Bott manifolds of dimension n.

H∗(Bn,Z) ∼= H∗(B ′
n,Z)

?
=⇒ Bn

∼= B ′
n

Problem (Strong cohomological rigidity problem)

Let Bn,B
′
n be Bott manifolds of dimension n. For any isomorphism

φ : H∗(B ′
n,Z) → H∗(Bn,Z),

∃f : Bn → B ′
n : diffeomorphism s.t. f ∗ = φ?

Strong cohomological rigidity =⇒ Cohomological rigidity.
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Difference between Cohomological rigidity and Strong cohomological rigidity

Strong cohomological rigidity problem can be separated into

1 Cohomological rigidity problem.

2 For any Bott manifold Bn and φ : H∗(Bn,Z) → H∗(Bn,Z),

∃f : Bn → Bn : diffeomorphism s.t. f ∗ = φ?

1 and 2 are true =⇒ Strong cohomological rigidity.
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How to attack Cohmological rigidity problem

The followings are useful to show diffeomorphisms.

Proposition

For a line bundle γ, P(ξ ⊕ ξ′) ∼= P(γ ⊗ (ξ ⊕ ξ′)) as bundles.

Proposition

Let B be a Bott manifold. Rank 2 decomposable vector bundles over B

are distinguished by their total Chern classes.

γ : tautological line bundle over CP1.

B2 = P(γ⊗a ⊕ γ⊗b)

∼= P(C⊕ γ⊗(b−a))

∼=

{
P(γ⊗(−k) ⊕ γ⊗k) if b − a = 2k ,

P(γ⊗(−k) ⊕ γ⊗(k+1)) if b − a = 2k + 1,

∼=

{
P(C⊕ C) if b − a is even

P(C⊕ γ) if b − a is odd.
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How to attack Strong cohomological rigidity

Proposition

Let P = P(C⊕ ξ) → B be a CP1-bundle. Assume that Hodd(B) = 0.

1 H∗(P) is freely generated by x := c1(γ) as an H∗(B)-module, where

γ is the tautological line bundle.

2 x(−x + c1(ξ)) = 0 because γ ⊕ γ⊥ = C⊕ ξ.

3 An automorphism φ : H∗(P) → H∗(P) as an H∗(B)-algebra is

either id or φ(x) = −x + c1(ξ). The latter one is induced by

f : P → P, ℓ 7→ ℓ⊥.

Theorem (2011)

Let Bn and B ′
n be Bott manifolds. Let φ : H∗(B ′

n) → H∗(Bn) be an

isomorphism which is represented by an upper triangular matrix with

respect to certain generators. Then φ is induced by a diffeomorphism

f : Bn → B ′
n.
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Purpose

The purpose of this talk is the following:

Theorem

Let B be a Bott manifold. Consider the Hirzebruch surface bundle

E = P(C⊕ ξ2) → P(C⊕ ξ1) → B,

where ξ1 is a C-line bundle over B and ξ2 is a C-line bundle over

P(C⊕ ξ1). Let φ̃ : H∗(E ) → H∗(E ) be an automorphism as an

H∗(B)-algebra. Then there exists a bundle automorphism f̃ : E → E

over B such that f̃ ∗ = φ̃.
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Notations

Let B be a Bott manifold. Consider the Hirzebruch surface bundle

E = P(C⊕ ξ2)
π2→ P(C⊕ ξ1)

π1→ B,

where ξ1 is a C-line bundle over B and ξ2 is a C-line bundle over

P(C⊕ ξ1). Let φ̃ : H∗(E ) → H∗(E ) be an automorphism as an

H∗(B)-algebras.

• π∗
1 , π

∗
2 are injective. H∗(B) ⊂ H∗(P(C⊕ ξ1)) ⊂ H∗(E ).

• Let γ1 and γ2 be the tautological line bundles of P(C⊕ ξ1) and

P(C⊕ ξ2) = E , respectively. x1 := c1(γ1) and x2 := c1(γ2) are

generators of H∗(E ) as an H∗(B)-algebra.

• c1(ξ2) = ax1 + y for some a ∈ Z and y ∈ H2(B).

• The fiber is a Hirzebruch surface Σa = P(C⊕ γ⊗a) → CP1.

• H∗(E )/H>0(B) ∼= H∗(Σa). φ̃ descends to φ : H∗(Σa) → H∗(Σa).
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Cohomology of the Hirzebruch surface Σa

• H∗(E )/H>0(B) ∼= H∗(Σa). φ̃ : H∗(E ) → H∗(E ) descends to an

automorphism φ : H∗(Σa) → H∗(Σa).

However, not every φ can lift. If φ lifts an automorphism

φ̃ : H∗(E ) → H∗(E ), then c1(ξ1) and c1(ξ2) = ax1 + y should satisfy a

certain condition depending on φ.

Our plan to attack the problem is

1 Choose φ : H∗(Σa) → H∗(Σa).

2 Obtain a necessary and sufficient condition about c1(ξ1) and

c1(ξ2) = ax1 + y .

3 Using the condition, construct f̃ : E → E such that f̃ ∗ = φ̃.



Introduction Algebra automorphisms Equivariant diffeomorphisms of Σa Remarks

Cohomology of the Hirzebruch surface Σa

Let xj ∈ H2(Σa) be the image of xj by H∗(E ) → H∗(Σa). H
∗(Σa) is

generated by x1, x2 and represented as

H∗(Σa) = Z[x1, x2]/(x12, x2(x2 − ax1)).

Primitive square zero elements are

• ±x1 and ±(x2 − a
2x1) if a is even.

• ±x1 and ±(2x2 − ax1) if a is odd.

There are 8 automorphisms of H∗(Σa). 4 of them have upper triangular

representation matrices w.r.t. x1, x2;(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
1 a

0 −1

)
,

(
−1 a

0 1

)
.

If the representation matrix of φ is one of above and φ lifts

φ̃ : H∗(E ) → H∗(E ), then there exists f̃ : E → E such that f̃ ∗ = φ̃.
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Cohomology of the Hirzebruch surface Σa

Remaining 4 autohomorphism have different forms by the parity of a.

• In case when a is even, representation matrices are

±

(
a
2

a2

4 − 1

−1 − a
2

)
, ±

(
a
2

a2

4 + 1

−1 − a
2

)
.

• In case when a is odd, representation matrices are

±

(
a a2−1

2

−2 −a

)
, ±

(
a a2+1

2

−2 −a

)
.
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Case when a = 0

Suppose a = 0 and the representation matrix of φ is not upper triangular.

Then φ lifts φ̃ if and only if

• c1(ξ1)± y is even,

• c1(ξ1)
2 = y2.

For x , γx denotes a line bundle whose first Chern class is x .

Since a = 0, E is a fiber product

E //

��

P(C⊕ γy )

��
P(C⊕ ξ1) // B

By the condition,

P(C⊕ γy ) ∼= P(γ
1
2 (c1(ξ1)−y) ⊕ γ

1
2 (c1(ξ1)+y)) ∼= P(C⊕ γc1(ξ1)).
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Case when a = 0

E //

��

P(C⊕ γc1(ξ1))

��
P(C⊕ γc1(ξ1)) // B

The automorphism φ̃ is induced by one of

P(C⊕ γc1(ξ1))2 ⊃ E 3 (ℓ1, ℓ2) 7→


(ℓ2, ℓ1),

(ℓ⊥2 , ℓ1),

(ℓ2, ℓ
⊥
1 ),

(ℓ⊥2 , ℓ
⊥
1 ).
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Case when a is nonzero even

Suppose that a is nonzero even and the representation matrix of φ is not

upper triangular. Then φ lifts φ̃ if and only if

• 2±a
4 c1(ξ1) is integral,

• y = − a
2c1(ξ1),

• (4− a2)c1(ξ1)
2 = 0.

By the condition,

P(C⊕ ξ2) ∼= P(C⊕ γax1+y )

∼= P(γ− a
2 x1 ⊕ γ

a
2 (x1−c1(ξ1)))

∼= P(C⊕ γy )

as bundles over P(C⊕ ξ1). The existence of f̃ follows from the case

when a = 0.
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Case when a is odd

Suppose that a is odd and the representation matrix of φ is not upper

triangular. Then φ lifts φ̃ if and only if

• c1(ξ1) is even,

• y = − a
2c1(ξ1),

• (1− a2)c1(ξ1)
2 = 0.

In case when a 6= ±1, c1(ξ1)
2 = y2 = 0, by an argument similar to the

even case we have E → B is trivial Σa-bundle. Since Σa is strongly

cohomological rigid, φ̃ is induced by a bundle automorphism f̃ : E → E .

Remaining problem is the case a = ±1, and we need a different approach.
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Suppose that a = ±1 and the representation matrix of

φ : H∗(Σa) → H∗(Σa) is not upper triangular. Then it is one of

±
(

a 0

−2 −a

)
, ±

(
a 1

−2 −a

)
.

If φ lifts φ̃ : H∗(E ) → H∗(E ) then

• c1(ξ1) is even,

• y = − a
2c1(ξ1),

• (1− a2)c1(ξ1)
2 = 0.

y = − a
2c1(ξ1) means that the structure group of E → B can be reduced

to S1 ↷ Σa. Thus it is enough to show that

∃f : Σa → Σa S1-equivariant s.t. f ∗ = φ.

(f lifts f̃ and f̃ ∗ = φ̃).
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S1-action on Σa

Σa is diffeomorphic to S3 × S3/ ∼−a, where((
z1
w1

)
,

(
z2
w2

))
∼−a

((
z ′1
w ′
1

)
,

(
z ′2
w ′
2

))
if and only if

∃s1, s2 ∈ S1 s.t.

((
z1
w1

)
,

(
z2
w2

))
=

((
s1z

′
1

s1w
′
1

)
,

(
s2z

′
2

s−a
1 s2w

′
2

))
.

The S1-action w.r.t. y = − a
2c1(ξ1) is

t ·
[(

z1
w1

)
,

(
z2
w2

)]
−a

=

[(
z1

t2w1

)
,

(
z2

t−aw2

)]
−a
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S1-equivariant diffeomorphisms

For z ∈ C and k ∈ Z, we define z (k) to be

z (k) :=


zk if k > 0,

1 if k = 0,

z−k if k < 0.

The map f : Σa → Σa given by[(
z1
w1

)
,

(
z2
w2

)]
−a

7→

[
(|z2|4 + |w2|4)−

1
2

(
z1z

(−2a)
2 − w1w

(−2a)
2

w1z
(−2a)
2 + z1w

(−2a)
2

)
,

(
z2
w2

)]
−a

is well-defined and a diffeomorphism, because

(|z2|4 + |w2|4)−
1
2

(
z1z

(−2a)
2 − w1w

(−2a)
2

w1z
(−2a)
2 + z1w

(−2a)
2

)
is the first column vector of the

special unitary matrix(
z1 −w1

w1 z1

)
(|z2|4 + |w2|4)−

1
2

(
z
(−2a)
2 −w2

(−2a)

w
(2a)
2 z2

(2a)

)
.
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S1-equivariant diffeomorphisms

• By direct computation, f is S1-equivariant and f ∗(x1) = −2ax2 + x1.

• Let g1 : Σa → Σa be the equivariant diffeomorphism given by[(
z1
w1

)
,

(
z2
w2

)]
−a

7→
[(

z1
w1

)
,

(
−w2

z2

)]
−a

.

The representation matrix of g∗
1 is

(
1 a

0 −1

)
.

• Let g2 : Σa → Σa be the equivariant diffeomorphism given by[(
z1
w1

)
,

(
z2
w2

)]
−a

7→
[(

−w1

z1

)
,

(
w2

z2

)]
−a

.

The representation matrix of g∗
2 is either

(
−1 0

0 −1

)
or

(
−1 a

0 1

)
.

• f , f ◦ g1, f ◦ g2, f ◦ g1 ◦ g2 are what we wanted.
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One can show the following:

Theorem

Let B be a Bott manifold and E ,E ′ → B Hirzebruch surface bundles. If

H∗(E ) ∼= H∗(E ′) as H∗(B)-algebras, then E ∼= E ′ as bundles over B.

Thus we have

Corollary

Let B be a Bott manifold and E ,E ′ → B Hirzebruch surface bundles. Let

φ̃ : H∗(E ) → H∗(E ′) be an isomorphism as H∗(B)-algebras. Then there

exists an isomorphism f̃ : E ′ → E as bundles over B such that f̃ ∗ = φ̃.
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