Strong cohomological rigidity problem of a Hirzebruch surface bundle

Hiroaki Ishida

Kagoshima University

Toric Topology 2021 in Osaka
March 24, 2020.

A Bott tower of height n is an iterated $\mathbb{C} P^{1}$-bundle

$$
B_{n} \rightarrow B_{n-1} \rightarrow \cdots \rightarrow B_{1} \rightarrow B_{0}=\{\text { a point }\}
$$

such that each fibration $B_{j} \rightarrow B_{j-1}$ is a projectivization of rank 2 decomposable vector bundle

$$
B_{j}=P\left(\xi_{j} \oplus \xi_{j}^{\prime}\right) \rightarrow B_{j-1} .
$$

The manifold in the tower is called a Bott manifold.
(1) B_{0} is a point. $B_{1}=P(\mathbb{C} \oplus \mathbb{C})=\mathbb{C} P^{1}$.
(2) B_{2} is a Hirzebruch surface. Depends on the choice of $\xi_{2}, \xi_{2}^{\prime}$.

Problem (Cohomological rigidity problem)

Let B_{n}, B_{n}^{\prime} be Bott manifolds of dimension n.

$$
H^{*}\left(B_{n}, \mathbb{Z}\right) \cong H^{*}\left(B_{n}^{\prime}, \mathbb{Z}\right) \xlongequal{?} B_{n} \cong B_{n}^{\prime}
$$

Problem (Strong cohomological rigidity problem)
Let B_{n}, B_{n}^{\prime} be Bott manifolds of dimension n. For any isomorphism $\varphi: H^{*}\left(B_{n}^{\prime}, \mathbb{Z}\right) \rightarrow H^{*}\left(B_{n}, \mathbb{Z}\right)$,

$$
{ }^{\exists} f: B_{n} \rightarrow B_{n}^{\prime}: \text { diffeomorphism s.t. } f^{*}=\varphi \text { ? }
$$

Strong cohomological rigidity \Longrightarrow Cohomological rigidity.

Strong cohomological rigidity problem can be separated into
(1) Cohomological rigidity problem.
(2) For any Bott manifold B_{n} and $\varphi: H^{*}\left(B_{n}, \mathbb{Z}\right) \rightarrow H^{*}\left(B_{n}, \mathbb{Z}\right)$,
${ }^{\exists} f: B_{n} \rightarrow B_{n}$: diffeomorphism s.t. $f^{*}=\varphi$?
(1) and (2) are true \Longrightarrow Strong cohomological rigidity.

The followings are useful to show diffeomorphisms.

Proposition

For a line bundle $\gamma, P\left(\xi \oplus \xi^{\prime}\right) \cong P\left(\gamma \otimes\left(\xi \oplus \xi^{\prime}\right)\right)$ as bundles.

Proposition

Let B be a Bott manifold. Rank 2 decomposable vector bundles over B are distinguished by their total Chern classes.
$\gamma:$ tautological line bundle over $\mathbb{C} P^{1}$.

$$
\begin{aligned}
B_{2} & =P\left(\gamma^{\otimes a} \oplus \gamma^{\otimes b}\right) \\
& \cong P\left(\mathbb{C} \oplus \gamma^{\otimes(b-a)}\right) \\
& \cong \begin{cases}P\left(\gamma^{\otimes(-k)} \oplus \gamma^{\otimes k}\right) & \text { if } b-a=2 k, \\
P\left(\gamma^{\otimes(-k)} \oplus \gamma^{\otimes(k+1)}\right) & \text { if } b-a=2 k+1,\end{cases} \\
& \cong \begin{cases}P(\underline{\mathbb{C}} \oplus \mathbb{C}) & \text { if } b-a \text { is even } \\
P(\underline{\mathbb{C}} \oplus \gamma) & \text { if } b-a \text { is odd. }\end{cases}
\end{aligned}
$$

Proposition

Let $P=P(\underline{\mathbb{C}} \oplus \xi) \rightarrow B$ be a $\mathbb{C} P^{1}$-bundle. Assume that $H^{\text {odd }}(B)=0$.
(1) $H^{*}(P)$ is freely generated by $x:=c_{1}(\gamma)$ as an $H^{*}(B)$-module, where γ is the tautological line bundle.
(2) $x\left(-x+c_{1}(\xi)\right)=0$ because $\gamma \oplus \gamma^{\perp}=\underline{\mathbb{C}} \oplus \xi$.
(3) An automorphism $\varphi: H^{*}(P) \rightarrow H^{*}(P)$ as an $H^{*}(B)$-algebra is either id or $\varphi(x)=-x+c_{1}(\xi)$. The latter one is induced by $f: P \rightarrow P, \ell \mapsto \ell^{\perp}$.

Theorem (2011)

Let B_{n} and B_{n}^{\prime} be Bott manifolds. Let $\varphi: H^{*}\left(B_{n}^{\prime}\right) \rightarrow H^{*}\left(B_{n}\right)$ be an isomorphism which is represented by an upper triangular matrix with respect to certain generators. Then φ is induced by a diffeomorphism $f: B_{n} \rightarrow B_{n}^{\prime}$.

The purpose of this talk is the following:

Theorem

Let B be a Bott manifold. Consider the Hirzebruch surface bundle

$$
E=P\left(\underline{\mathbb{C}} \oplus \xi_{2}\right) \rightarrow P\left(\underline{\mathbb{C}} \oplus \xi_{1}\right) \rightarrow B,
$$

where ξ_{1} is a \mathbb{C}-line bundle over B and ξ_{2} is a \mathbb{C}-line bundle over $P\left(\mathbb{C} \oplus \xi_{1}\right)$. Let $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$ be an automorphism as an $H^{*}(B)$-algebra. Then there exists a bundle automorphism $\widetilde{f}: E \rightarrow E$ over B such that $\widetilde{f}^{*}=\widetilde{\varphi}$.

Let B be a Bott manifold. Consider the Hirzebruch surface bundle

$$
E=P\left(\mathbb{C} \oplus \xi_{2}\right) \xrightarrow{\pi_{2}} P\left(\underline{\mathbb{C}} \oplus \xi_{1}\right) \xrightarrow{\pi_{1}} B,
$$

where ξ_{1} is a \mathbb{C}-line bundle over B and ξ_{2} is a \mathbb{C}-line bundle over $P\left(\mathbb{C} \oplus \xi_{1}\right)$. Let $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$ be an automorphism as an $H^{*}(B)$-algebras.

- π_{1}^{*}, π_{2}^{*} are injective. $H^{*}(B) \subset H^{*}\left(P\left(\underline{\mathbb{C}} \oplus \xi_{1}\right)\right) \subset H^{*}(E)$.
- Let γ_{1} and γ_{2} be the tautological line bundles of $P\left(\mathbb{C} \oplus \xi_{1}\right)$ and $P\left(\underline{\mathbb{C}} \oplus \xi_{2}\right)=E$, respectively. $x_{1}:=c_{1}\left(\gamma_{1}\right)$ and $x_{2}:=c_{1}\left(\gamma_{2}\right)$ are generators of $H^{*}(E)$ as an $H^{*}(B)$-algebra.
- $c_{1}\left(\xi_{2}\right)=a x_{1}+y$ for some $a \in \mathbb{Z}$ and $y \in H^{2}(B)$.
- The fiber is a Hirzebruch surface $\Sigma_{a}=P\left(\mathbb{C} \oplus \gamma^{\otimes a}\right) \rightarrow \mathbb{C} P^{1}$.
- $H^{*}(E) / H^{>0}(B) \cong H^{*}\left(\Sigma_{a}\right)$. $\widetilde{\varphi}$ descends to $\varphi: H^{*}\left(\Sigma_{a}\right) \rightarrow H^{*}\left(\Sigma_{a}\right)$.
- $H^{*}(E) / H^{>0}(B) \cong H^{*}\left(\Sigma_{a}\right) \cdot \widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$ descends to an automorphism $\varphi: H^{*}\left(\Sigma_{a}\right) \rightarrow H^{*}\left(\Sigma_{a}\right)$.
However, not every φ can lift. If φ lifts an automorphism $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$, then $c_{1}\left(\xi_{1}\right)$ and $c_{1}\left(\xi_{2}\right)=a x_{1}+y$ should satisfy a certain condition depending on φ.

Our plan to attack the problem is
(1) Choose $\varphi: H^{*}\left(\Sigma_{a}\right) \rightarrow H^{*}\left(\Sigma_{a}\right)$.
(2) Obtain a necessary and sufficient condition about $c_{1}\left(\xi_{1}\right)$ and $c_{1}\left(\xi_{2}\right)=a x_{1}+y$.
(3) Using the condition, construct $\widetilde{f}: E \rightarrow E$ such that $\widetilde{f}^{*}=\widetilde{\varphi}$.

Let $\overline{x_{j}} \in H^{2}\left(\Sigma_{a}\right)$ be the image of x_{j} by $H^{*}(E) \rightarrow H^{*}\left(\Sigma_{a}\right) . H^{*}\left(\Sigma_{a}\right)$ is generated by $\overline{x_{1}}, \overline{x_{2}}$ and represented as

$$
H^{*}\left(\Sigma_{a}\right)=\mathbb{Z}\left[\overline{x_{1}}, \overline{x_{2}}\right] /\left({\overline{x_{1}}}^{2}, \overline{x_{2}}\left(\overline{x_{2}}-a \overline{x_{1}}\right)\right)
$$

Primitive square zero elements are

- $\pm \overline{x_{1}}$ and $\pm\left(\overline{x_{2}}-\frac{a}{2} \overline{x_{1}}\right)$ if a is even.
- $\pm \overline{x_{1}}$ and $\pm\left(2 \overline{x_{2}}-a \overline{x_{1}}\right)$ if a is odd.

There are 8 automorphisms of $H^{*}\left(\Sigma_{a}\right)$. 4 of them have upper triangular representation matrices w.r.t. $\overline{x_{1}}, \overline{x_{2}}$;

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
1 & a \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & a \\
0 & 1
\end{array}\right)
$$

If the representation matrix of φ is one of above and φ lifts $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$, then there exists $\widetilde{f}: E \rightarrow E$ such that $\widetilde{f}^{*}=\widetilde{\varphi}$.

Remaining 4 autohomorphism have different forms by the parity of a.

- In case when a is even, representation matrices are

$$
\pm\left(\begin{array}{cc}
\frac{a}{2} & \frac{a^{2}}{4}-1 \\
-1 & -\frac{a}{2}
\end{array}\right), \quad \pm\left(\begin{array}{cc}
\frac{a}{2} & \frac{a^{2}}{4}+1 \\
-1 & -\frac{a}{2}
\end{array}\right)
$$

- In case when a is odd, representation matrices are

$$
\pm\left(\begin{array}{cc}
a & \frac{a^{2}-1}{2} \\
-2 & -a
\end{array}\right), \quad \pm\left(\begin{array}{cc}
a & \frac{a^{2}+1}{2} \\
-2 & -a
\end{array}\right)
$$

Suppose $a=0$ and the representation matrix of φ is not upper triangular. Then φ lifts $\widetilde{\varphi}$ if and only if

- $c_{1}\left(\xi_{1}\right) \pm y$ is even,
- $c_{1}\left(\xi_{1}\right)^{2}=y^{2}$.

For x, γ^{x} denotes a line bundle whose first Chern class is x.
Since $a=0, E$ is a fiber product

By the condition,

$$
P\left(\underline{\mathbb{C}} \oplus \gamma^{y}\right) \cong P\left(\gamma^{\frac{1}{2}\left(c_{1}\left(\xi_{1}\right)-y\right)} \oplus \gamma^{\frac{1}{2}\left(c_{1}\left(\xi_{1}\right)+y\right)}\right) \cong P\left(\underline{\mathbb{C}} \oplus \gamma^{c_{1}\left(\xi_{1}\right)}\right) .
$$

The automorphism $\widetilde{\varphi}$ is induced by one of

$$
P\left(\underline{\mathbb{C}} \oplus \gamma^{\varepsilon_{1}\left(\xi_{1}\right)}\right)^{2} \supset E \ni\left(\ell_{1}, \ell_{2}\right) \mapsto\left\{\begin{array}{l}
\left(\ell_{2}, \ell_{1}\right), \\
\left(\ell_{2}^{\frac{1}{2}}, \ell_{1}\right), \\
\left(\ell_{2}, \ell_{1}^{\perp}\right), \\
\left(\ell_{2}^{\left.\frac{1}{2}, \ell_{1}^{\perp}\right) .}\right.
\end{array}\right.
$$

Suppose that a is nonzero even and the representation matrix of φ is not upper triangular. Then φ lifts $\widetilde{\varphi}$ if and only if

- $\frac{2 \pm a}{4} c_{1}\left(\xi_{1}\right)$ is integral,
- $y=-\frac{a}{2} c_{1}\left(\xi_{1}\right)$,
- $\left(4-a^{2}\right) c_{1}\left(\xi_{1}\right)^{2}=0$.

By the condition,

$$
\begin{aligned}
P\left(\underline{\mathbb{C}} \oplus \xi_{2}\right) & \cong P\left(\mathbb{C} \oplus \gamma^{a x_{1}+y}\right) \\
& \cong P\left(\gamma^{-\frac{a}{2} x_{1}} \oplus \gamma^{\frac{\partial}{2}\left(x_{1}-c_{1}\left(\xi_{1}\right)\right)}\right) \\
& \cong P\left(\mathbb{C} \oplus \gamma^{y}\right)
\end{aligned}
$$

as bundles over $P\left(\underline{\mathbb{C}} \oplus \xi_{1}\right)$. The existence of \widetilde{f} follows from the case when $a=0$.

Suppose that a is odd and the representation matrix of φ is not upper triangular. Then φ lifts $\widetilde{\varphi}$ if and only if

- $c_{1}\left(\xi_{1}\right)$ is even,
- $y=-\frac{a}{2} c_{1}\left(\xi_{1}\right)$,
- $\left(1-a^{2}\right) c_{1}\left(\xi_{1}\right)^{2}=0$.

In case when $a \neq \pm 1, c_{1}\left(\xi_{1}\right)^{2}=y^{2}=0$, by an argument similar to the even case we have $E \rightarrow B$ is trivial Σ_{a}-bundle. Since Σ_{a} is strongly cohomological rigid, $\widetilde{\varphi}$ is induced by a bundle automorphism $\widetilde{f}: E \rightarrow E$.

Remaining problem is the case $a= \pm 1$, and we need a different approach.

Suppose that $a= \pm 1$ and the representation matrix of $\varphi: H^{*}\left(\Sigma_{a}\right) \rightarrow H^{*}\left(\Sigma_{a}\right)$ is not upper triangular. Then it is one of

$$
\pm\left(\begin{array}{cc}
a & 0 \\
-2 & -a
\end{array}\right), \quad \pm\left(\begin{array}{cc}
a & 1 \\
-2 & -a
\end{array}\right) .
$$

If φ lifts $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}(E)$ then

- $c_{1}\left(\xi_{1}\right)$ is even,
- $y=-\frac{a}{2} c_{1}\left(\xi_{1}\right)$,
- $\left(1-a^{2}\right) c_{1}\left(\xi_{1}\right)^{2}=0$.
$y=-\frac{a}{2} c_{1}\left(\xi_{1}\right)$ means that the structure group of $E \rightarrow B$ can be reduced to $S^{1} \curvearrowright \Sigma_{a}$. Thus it is enough to show that

$$
{ }^{\exists} f: \Sigma_{a} \rightarrow \Sigma_{a} S^{1} \text {-equivariant s.t. } f^{*}=\varphi \text {. }
$$

$\left(f\right.$ lifts \widetilde{f} and $\left.\widetilde{f}^{*}=\widetilde{\varphi}\right)$.
Σ_{a} is diffeomorphic to $S^{3} \times S^{3} / \sim_{-a}$, where

$$
\left(\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right) \sim_{-a}\left(\binom{z_{1}^{\prime}}{w_{1}^{\prime}},\binom{z_{2}^{\prime}}{w_{2}^{\prime}}\right)
$$

if and only if

$$
{ }^{\exists} s_{1}, s_{2} \in S^{1} \text { s.t. }\left(\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right)=\left(\binom{s_{1} z_{1}^{\prime}}{s_{1} w_{1}^{\prime}},\binom{s_{2} z_{2}^{\prime}}{s_{1}^{-a} s_{2} w_{2}^{\prime}}\right) .
$$

The S^{1}-action w.r.t. $y=-\frac{a}{2} c_{1}\left(\xi_{1}\right)$ is

$$
t \cdot\left[\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right]_{-a}=\left[\binom{z_{1}}{t^{2} w_{1}},\binom{z_{2}}{t^{-a} w_{2}}\right]_{-a}
$$

For $z \in \mathbb{C}$ and $k \in \mathbb{Z}$, we define $z^{(k)}$ to be

$$
z^{(k)}:= \begin{cases}z^{k} & \text { if } k>0 \\ 1 & \text { if } k=0 \\ \bar{z}^{-k} & \text { if } k<0\end{cases}
$$

The map $f: \Sigma_{a} \rightarrow \Sigma_{a}$ given by

$$
\left[\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right]_{-a} \mapsto\left[\left(\left|z_{2}\right|^{4}+\left|w_{2}\right|^{4}\right)^{-\frac{1}{2}}\binom{z_{1} z_{2}^{(-2 a)}-\overline{w_{1}} w_{2}^{(-2 a)}}{w_{1} z_{2}^{(-2 a)}+\overline{z_{1}} w_{2}^{(-2 a)}},\binom{\overline{z_{2}}}{w_{2}}\right]_{-a}
$$

is well-defined and a diffeomorphism, because
$\left(\left|z_{2}\right|^{4}+\left|w_{2}\right|^{4}\right)^{-\frac{1}{2}}\binom{z_{1} z_{2}^{(-2 a)}-\overline{w_{1}} w_{2}^{(-2 a)}}{w_{1} z_{2}^{(-2 a)}+\overline{z_{1}} w_{2}^{(-2 a)}}$ is the first column vector of the
special unitary matrix

$$
\left(\begin{array}{cc}
z_{1} & -\overline{w_{1}} \\
w_{1} & \overline{z_{1}}
\end{array}\right)\left(\left|z_{2}\right|^{4}+\left|w_{2}\right|^{4}\right)^{-\frac{1}{2}}\left(\begin{array}{cc}
z_{2}^{(-2 a)} & -w_{2}^{(-2 a)} \\
w_{2}^{(2 a)} & z_{2}^{(2 a)}
\end{array}\right) .
$$

- By direct computation, f is S^{1}-equivariant and $f^{*}\left(\overline{x_{1}}\right)=-2 a \overline{x_{2}}+\overline{x_{1}}$.
- Let $g_{1}: \Sigma_{a} \rightarrow \Sigma_{a}$ be the equivariant diffeomorphism given by

$$
\left[\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right]_{-a} \mapsto\left[\binom{z_{1}}{w_{1}},\binom{-\overline{w_{2}}}{\overline{z_{2}}}\right]_{-a}
$$

The representation matrix of g_{1}^{*} is $\left(\begin{array}{cc}1 & a \\ 0 & -1\end{array}\right)$.

- Let $g_{2}: \Sigma_{a} \rightarrow \Sigma_{a}$ be the equivariant diffeomorphism given by

$$
\left[\binom{z_{1}}{w_{1}},\binom{z_{2}}{w_{2}}\right]_{-a} \mapsto\left[\binom{-\overline{w_{1}}}{\overline{z_{1}}},\binom{w_{2}}{z_{2}}\right]_{-a}
$$

The representation matrix of g_{2}^{*} is either $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}-1 & a \\ 0 & 1\end{array}\right)$.

- $f, f \circ g_{1}, f \circ g_{2}, f \circ g_{1} \circ g_{2}$ are what we wanted.

One can show the following:

Theorem

Let B be a Bott manifold and $E, E^{\prime} \rightarrow B$ Hirzebruch surface bundles. If $H^{*}(E) \cong H^{*}\left(E^{\prime}\right)$ as $H^{*}(B)$-algebras, then $E \cong E^{\prime}$ as bundles over B.

Thus we have

Corollary

Let B be a Bott manifold and $E, E^{\prime} \rightarrow B$ Hirzebruch surface bundles. Let $\widetilde{\varphi}: H^{*}(E) \rightarrow H^{*}\left(E^{\prime}\right)$ be an isomorphism as $H^{*}(B)$-algebras. Then there exists an isomorphism $\widetilde{f}: E^{\prime} \rightarrow E$ as bundles over B such that $\widetilde{f}^{*}=\widetilde{\varphi}$.

