Tverberg's theorem for cell complexes

Daisuke Kishimoto

joint work with S. Hasui, M. Takeda and M. Tsutaya

Toric Topology 2021 in Osaka; 26 March 2021

Points in a plane

Theorem (Birch '59)

Any 3N points in a plane determine N triangles which have a point in common.

2 / 17

Points in a plane

Theorem (Birch '59)

Any 3N points in a plane determine N triangles which have a point in common.

Is "3N" tight? — consider convex hulls instead of triangles.

Suppose you have 4 points in a place.

Then you can partition them into 2 subsets whose convex hulls have a point in common.

Suppose you have 4 points in a place.

Then you can partition them into 2 subsets whose convex hulls have a point in common.

Why don't we replace triangles with convex hulls?

Theorem (Birch '59)

Any 3N-2 points in a plane can be partitioned into N subsets whose convex hulls have a point in common.

Theorem (Birch '59)

Any 3N - 2 points in a plane can be partitioned into N subsets whose convex hulls have a point in common.

"3N-2" is best possible. For example, 3N-3 for N=2 does not work:

•

Tverberg's theorem

Theorem (Tverberg '66)

Any (d+1)(r-1)+1 points in \mathbb{R}^d can be partitioned into r subsets whose convex hulls have a point in common.

Tverberg's theorem

Theorem (Tverberg '66)

Any (d+1)(r-1)+1 points in \mathbb{R}^d can be partitioned into r subsets whose convex hulls have a point in common.

Corollary (Radon '21)

Any d+2 points in \mathbb{R}^d can be partitioned into 2 subsets whose convex hulls have a point in common.

Restatement

(d+1)(r-1)+1 points in \mathbb{R}^d determines an affine map

$$\Delta^{(d+1)(r-1)} \to \mathbb{R}^d$$

such that convex hulls of points are unions of images of faces.

Moreover, a common point of convex hulls lie in a simplex in each convex hull.

Theorem (Tverberg's theorem, restated)

For any affine map $f: \Delta^{(d+1)(r-1)} \to \mathbb{R}^d$, there are pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of $\Delta^{(d+1)(r-1)}$ such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$
.

Topological Tverberg theorem

What happens if an affine map is replaced with a continuous map?

Topological Tverberg theorem

What happens if an affine map is replaced with a continuous map?

Theorem (Bárány, Shlosman, Szűcs '81, Özaydin '87, Volovikov '96)

For any continuous map $f: \Delta^{(d+1)(r-1)} \to \mathbb{R}^d$, there are pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of $\Delta^{(d+1)(r-1)}$ such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$

whenever r is a prime power.

Remark

- 1. The condition that r is a prime power is necessary (Frick '15).
- 2. The case r = 2 is called the topological Radon theorem.

Question

Why are we still considering a simplex?

- Tverberg asked whether we can replace a simplex by a polytope.
 - The answer is YES but the replacement is not essential because the boundary of a polytope is a refinement of the boundary of a simplex.
- Blagojević, Haase and Ziegler '19 constructed a family of matroids $\{M_r\}_{r\geq 2}$ which are replaceable with a simplex.

We want more!!

r-complementary *n*-acyclic complex

• For faces $\sigma_1, \ldots, \sigma_k$ of a regular CW complex X, let

$$X(\sigma_1,\ldots,\sigma_k)$$

be a subcomplex of X consisting of faces separated from $\sigma_1, \ldots, \sigma_k$.

- For $n \ge 0$, X is called *n*-acyclic if $\widetilde{H}_*(X) = 0$ for $* \le n$.
- A (-1)-acyclic space will mean a non-empty space.

Definition A regular CW complex X is r-complementary n-acyclic if for any faces $\sigma_1, \ldots, \sigma_k$ with

$$\dim \sigma_1 + \cdots + \dim \sigma_k \le n+1$$
 and $0 \le k \le r$,

$$X(\sigma_1,\ldots,\sigma_k)$$
 is $(n-\dim\sigma_1-\cdots-\dim\sigma_k)$ -acyclic.

Examples

Example

A *d*-simplex is (r-1)-complementary (d-r)-acyclic.

Proposition

Every simplicial d-sphere is 1-complementary (d-1)-acyclic.

Example

Here is a 1-complementary 1-acyclic non-polyhedral 2-sphere.

Main theorem

Theorem

Let X be an (r-1)-complementary (d(r-1)-1)-acyclic regular CW complex where r is a prime power. Then for any continuous map

$$f: X \to \mathbb{R}^d$$

there are pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of X such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$
.

Generalized the topological Radon theorem

Corollary

Let X be a simplicial d-sphere. Then for any continuous map

$$f: X \to \mathbb{R}^d$$

there are disjoint faces σ_1, σ_2 of X such that

$$f(\sigma_1) \cap f(\sigma_2) \neq \emptyset$$
.

Remark

Since not every simplicial sphere is the boundary of a polytope, this is a proper generalization of the topological Radon theorem.

Discretized configuration space

• Let X be a regular CW complex.

The discretized configuration space

$$Conf_r(X)$$

is a subspace of X^r consisting of faces $\sigma_1 \times \cdots \times \sigma_r$ such that $\sigma_1, \ldots, \sigma_r$ are pairwise disjoint, where $\sigma_1, \ldots, \sigma_r$ are faces of X.

• Let $\Delta = \{(x_1, \dots, x_r) \in (\mathbb{R}^d)^r \mid x_1 = \dots = x_r\}.$

Lemma

Let $f: X \to \mathbb{R}^d$ be a continuous map such that for every pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of X,

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) = \emptyset.$$

Then there is a Σ_r -equivariant map

$$\operatorname{\mathsf{Conf}}_r(X) o (\mathbb{R}^d)^r - \Delta.$$

Lemma

If $Conf_r(X)$ is (d(r-1)-1)-acyclic, then for any continuous map

$$f: X \to \mathbb{R}^d$$

there are pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of X such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$
.

Proof.

Note that $(\mathbb{R}^d)^r - \Delta \simeq S^{d(r-1)-1}$.

The case r is a prime.

The actions of \mathbb{Z}/r ($\subset \Sigma_r$) on $\mathsf{Conf}_r(X)$ and $(\mathbb{R}^d)^r - \Delta$ are free, so we can apply the Borsuk-Ulam theorem.

The case r is a prime power.

We need a little bit of computation of equivariant cohomology.

Acyclicity of $Conf_r(X)$

Proposition

If X is (r-1)-complementary n-acyclic, then $Conf_r(X)$ is n-acyclic.

Proof.

Step 1 We describe $Conf_r(X)$ as a homotopy colimit of a functor over the face poset of X.

Step 2 We construct a spectral sequence (: Bousfield-Kan spectral sequence) which computes the homology of a homotopy colimit.

Step 3 By induction on r, we show that if X is (r-1)-complementary n-acyclic, then

$$H_*(\mathsf{Conf}_r(X)) \cong H_*(X) \quad (* \le n)$$

implying $Conf_r(X)$ is *n*-acyclic.

The main theorem is obtained by the above lemma and proposition.

Tverberg complex

Definition

A regular CW complex X is (d, r)-Tverberg if for any continuous map $f: X \to \mathbb{R}^d$, there are pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of X such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$
.

Example

If a regular CW complex X includes a (d, r)-Tverberg subcomplex, then X itself is (d, r)-Tverberg.

What is an "essential" (d, r)-Tverberg complex?

Atomicity

Definition

A (d, r)-Tverberg complex is called atomic if it has no (d, r)-Tverberg subcomplex and is not a proper refinement of a (d, r)-Tverberg complex.

Problem

Count atomic (d, r)-Tverberg complexes for small d, r.

Proposition

Atomic (1,2)-Tverberg complexes are a triangle and a Y-shaped graph.

Proposition

The only atomic (2,2)-Tverberg polyhedral sphere is a tetrahedron.