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Points in a plane

Theorem (Birch ’59)

Any 3N points in a plane determine N triangles which have a point in
common.

Is ”3N” tight? — consider convex hulls instead of triangles.

2 / 17



Points in a plane

Theorem (Birch ’59)

Any 3N points in a plane determine N triangles which have a point in
common.

Is ”3N” tight? — consider convex hulls instead of triangles.

2 / 17



Suppose you have 4 points in a place.

Then you can partition them into 2 subsets whose convex hulls have a

point in common.

Why don’t we replace triangles with convex hulls?
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Theorem (Birch ’59)

Any 3N − 2 points in a plane can be partitioned into N subsets whose
convex hulls have a point in common.

”3N − 2” is best possible. For example, 3N − 3 for N = 2 does not work:
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Tverberg’s theorem

Theorem (Tverberg ’66)

Any (d + 1)(r − 1) + 1 points in Rd can be partitioned into r subsets
whose convex hulls have a point in common.

Corollary (Radon ’21)

Any d + 2 points in Rd can be partitioned into 2 subsets whose convex
hulls have a point in common.
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Restatement

(d + 1)(r − 1) + 1 points in Rd determines an affine map

∆(d+1)(r−1) → Rd

such that convex hulls of points are unions of images of faces.

Moreover, a common point of convex hulls lie in a simplex in each convex

hull.

Theorem (Tverberg’s theorem, restated)

For any affine map f : ∆(d+1)(r−1) → Rd , there are pairwise disjoint faces
σ1, . . . , σr of ∆(d+1)(r−1) such that

f (σ1) ∩ · · · ∩ f (σr ) ̸= ∅.
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Topological Tverberg theorem

What happens if an affine map is replaced with a continuous map?

Theorem (Bárány, Shlosman, Szűcs ’81, Özaydin ’87, Volovikov ’96)

For any continuous map f : ∆(d+1)(r−1) → Rd , there are pairwise disjoint
faces σ1, . . . , σr of ∆(d+1)(r−1) such that

f (σ1) ∩ · · · ∩ f (σr ) ̸= ∅

whenever r is a prime power.

Remark

1. The condition that r is a prime power is necessary (Frick ’15).

2. The case r = 2 is called the topological Radon theorem.
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Question

Why are we still considering a simplex?

• Tverberg asked whether we can replace a simplex by a polytope.

The answer is YES but the replacement is not essential because the

boundary of a polytope is a refinement of the boundary of a simplex.

• Blagojević, Haase and Ziegler ’19 constructed a family of matroids

{Mr}r≥2 which are replaceable with a simplex.

We want more!!
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r -complementary n-acyclic complex

• For faces σ1, . . . , σk of a regular CW complex X , let

X (σ1, . . . , σk)

be a subcomplex of X consisting of faces separated from σ1, . . . , σk .

• For n ≥ 0, X is called n-acyclic if H̃∗(X ) = 0 for ∗ ≤ n.

• A (-1)-acyclic space will mean a non-empty space.

Definition A regular CW complex X is r -complementary n-acyclic if for

any faces σ1, . . . , σk with

dimσ1 + · · ·+ dimσk ≤ n + 1 and 0 ≤ k ≤ r ,

X (σ1, . . . , σk) is (n − dimσ1 − · · · − dimσk)-acyclic.
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Examples

Example

A d-simplex is (r − 1)-complementary (d − r)-acyclic.

Proposition

Every simplicial d-sphere is 1-complementary (d − 1)-acyclic.

Example

Here is a 1-complementary 1-acyclic non-polyhedral 2-sphere.
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Main theorem

Theorem

Let X be an (r − 1)-complementary (d(r − 1)− 1)-acyclic regular CW
complex where r is a prime power. Then for any continuous map

f : X → Rd

there are pairwise disjoint faces σ1, . . . , σr of X such that

f (σ1) ∩ · · · ∩ f (σr ) ̸= ∅.
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Generalized the topological Radon theorem

Corollary

Let X be a simplicial d-sphere. Then for any continuous map

f : X → Rd

there are disjoint faces σ1, σ2 of X such that

f (σ1) ∩ f (σ2) ̸= ∅.

Remark

Since not every simplicial sphere is the boundary of a polytope, this is a
proper generalization of the topological Radon theorem.
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Discretized configuration space
• Let X be a regular CW complex.

The discretized configuration space

Confr (X )

is a subspace of X r consisting of faces σ1 × · · · × σr such that σ1, . . . , σr
are pairwise disjoint, where σ1, . . . , σr are faces of X .

• Let ∆ = {(x1, . . . , xr ) ∈ (Rd)r | x1 = · · · = xr}.

Lemma

Let f : X → Rd be a continuous map such that for every pairwise disjoint
faces σ1, . . . , σr of X ,

f (σ1) ∩ · · · ∩ f (σr ) = ∅.

Then there is a Σr -equivariant map

Confr (X ) → (Rd)r −∆.
13 / 17



Lemma

If Confr (X ) is (d(r − 1)− 1)-acyclic, then for any continuous map

f : X → Rd

there are pairwise disjoint faces σ1, . . . , σr of X such that

f (σ1) ∩ · · · ∩ f (σr ) ̸= ∅.

Proof.

Note that (Rd)r −∆ ≃ Sd(r−1)−1.

The case r is a prime.

The actions of Z/r (⊂ Σr ) on Confr (X ) and (Rd)r −∆ are free, so we
can apply the Borsuk-Ulam theorem.

The case r is a prime power.

We need a little bit of computation of equivariant cohomology.
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Acyclicity of Confr(X )

Proposition

If X is (r − 1)-complementary n-acyclic, then Confr (X ) is n-acyclic.

Proof.

Step 1 We describe Confr (X ) as a homotopy colimit of a functor over
the face poset of X .

Step 2 We construct a spectral sequence (≒ Bousfield-Kan spectral
sequence) which computes the homology of a homotopy colimit.

Step 3 By induction on r , we show that if X is (r − 1)-complementary
n-acyclic, then

H∗(Confr (X )) ∼= H∗(X ) (∗ ≤ n)

implying Confr (X ) is n-acyclic.

The main theorem is obtained by the above lemma and proposition.
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Tverberg complex

Definition

A regular CW complex X is (d , r)-Tverberg if for any continuous map
f : X → Rd , there are pairwise disjoint faces σ1, . . . , σr of X such that

f (σ1) ∩ · · · ∩ f (σr ) ̸= ∅.

Example

If a regular CW complex X includes a (d , r)-Tverberg subcomplex, then
X itself is (d , r)-Tverberg.

What is an ”essential” (d , r)-Tverberg complex?
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Atomicity

Definition

A (d , r)-Tverberg complex is called atomic if it has no (d , r)-Tverberg
subcomplex and is not a proper refinement of a (d , r)-Tverberg complex.

Problem

Count atomic (d , r)-Tverberg complexes for small d , r .

Proposition

Atomic (1, 2)-Tverberg complexes are a triangle and a Y-shaped graph.

Proposition

The only atomic (2, 2)-Tverberg polyhedral sphere is a tetrahedron.
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