What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	
00000	0000	00000	00	00

On string polytopes II

Eunjeong Lee

IBS Center for Geometry and Physics

arXiv:1904.00130, arXiv:1912.00658, arXiv:2009.06906

March 24, 2021 Toric Topology 2021 in Osaka, Japan

Eunjeong Lee (IBS-CGP)

On string polytopes II

What are string polytopes? •0000	Description of string polytopes 0000	Gelfand–Cetlin type string polytopes 00000	Small resolutions of string polytopes OO	Future works 0000	
What are st	ring polytopes	7			

What are string polytopes?

- G: simply-connected semisimple algebraic group over \mathbb{C} . Today, $G = SL_{n+1}(\mathbb{C})$.
- $\bullet~i:$ reduced decomposition of the longest element of the Weyl group of G.
- λ : dominant integral weight.

Using these data, one can define the string polytope $\Delta_{\mathbf{i}}(\lambda)$, which

9 lives in
$$\mathbb{R}^N$$
, where $N = \dim_{\mathbb{C}} G/B = \frac{n(n+1)}{2}$

- $\ \ \, {\bf @} \ \ \, \Delta_{\mathbf{i}}(\lambda)\cap \mathbb{Z}^N \leftrightarrow \text{weights of } V(\lambda),$
- \bigcirc is a Newton–Okounkov body of $(G/B, \mathcal{L}_{\lambda}, \nu_{i})$ (by [Kaveh, 15]).
- For $\mathbf{i} = (1, 2, 1, 3, 2, 1, ..., n, n 1, ..., 1)$,

 $\Delta_{\mathbf{i}}(\lambda) \simeq \text{Gelfand-Cetlin polytope GC}(\lambda).$

Combinatorics of $\Delta_{\mathbf{i}}(\lambda)$ depends on \mathbf{i} .

What are string polytopes?	Description of string polytopes	Gelfand-Cetlin type string polytopes	Small resolutions of string polytopes	
00000	0000	00000	00	0000

Gelfand–Cetlin polytopes

メロト メロトメ ヨトメ ヨト

What are string polytopes?

Description of string polytop 0000 Gelfand–Cetlin type string polytopes

Small resolutions of string polytopes 00 Future works

String polytopes and symplectic data of the corresponding Lagrangian submanifold

Theorem [Nishinou–Nohara–Ueda, 10]

One can get symplectic topological information (so called disk potential) of $\Phi^{-1}(u)$ using the combinatorics of $\Delta_i(\lambda)$.

March 24, 2021 4 / 2

イロト イロト イヨト

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes 00000	Small resolutions of string polytopes	Future works 0000
	eller and a second second second	*		

Gelfand–Cetlin toric varieties

 $X_{\widetilde{\Sigma}}$ is a small desingularization of X_{Σ} if $\widetilde{\Sigma}$ is smooth and it is a refinement of Σ satisfying $\widetilde{\Sigma}(1) = \Sigma(1)$.

Note: not all string polytopes are Gelfand-Cetlin polytopes.

イロト イヨト イヨト イヨト

What are string polytopes?	Description of string polytopes	Gelfand-Cetlin type string polytopes	Small resolutions of string polytopes	
00000	0000	00000	00	0000

There are combinatorially different string polytopes

GOAL

- Olassifying the unimodular equivalence classes of string polytopes.
- **②** Finding small Fano toric desingularization.

< □ > < 🗇 > < 🖻

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	
00000	●000	00000	00	0000

String polytopes and wiring diagrams

$$G = \mathsf{SL}_{n+1}(\mathbb{C}).$$

$$\Delta_{\mathbf{i}}(\lambda) = C_{\mathbf{i}} \cap C_{\mathbf{i}}^{\lambda}$$

 $C_{\mathbf{i}}$ is called the string cone, $C_{\mathbf{i}}^{\lambda}$ is called the λ -cone.

イロト イヨト イヨト

What are string polytopes? 00000

Description of string polytopes

Gelfand–Cetlin type string polytopes

Small resolutions of string polytopes 00 Future works 0000

Gleizer-Postnikov's rigorous paths

 ${\bf i}=(2,1,3,2,3,1)$

- $(\ell_1 \to \ell_2) \rightsquigarrow C_5$
- $(\ell_2 \rightarrow \ell_3) \rightsquigarrow C_1, C_2, C_3, C_4.$
- $(\ell_2 \to \ell_4 \to \ell_1 \to \ell_3) \rightsquigarrow C_2, C_3, C_4.$
- $(\ell_2 \to \ell_1 \to \ell_3) \rightsquigarrow C_2, C_4.$
- $(\ell_2 \to \ell_4 \to \ell_3) \rightsquigarrow C_3, C_4.$
- $(\ell_2 \to \ell_1 \to \ell_4 \to \ell_3) \rightsquigarrow C_4.$
- $(\ell_3 \to \ell_4) \rightsquigarrow C_6.$

イロト イヨト イヨト イヨ

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
00000	OOOO	00000	OO	0000

String inequalities

Definition

The string inequality associated to P is defined by

 $\sum_{C_i \subset \text{ region enclosed by } P} m_j \ge 0$

$$\begin{array}{ccccc} (\ell_1 \to \ell_2) \rightsquigarrow C_5 & m_5 \ge 0 \\ (\ell_2 \to \ell_3) \rightsquigarrow C_1, C_2, C_3, C_4 & m_1 + m_2 + m_3 + m_4 \ge 0 \\ (\ell_2 \to \ell_4 \to \ell_1 \to \ell_3) \rightsquigarrow C_2, C_3, C_4 & m_2 + m_3 + m_4 \ge 0 \\ (\ell_2 \to \ell_4 \to \ell_3) \rightsquigarrow C_2, C_4 & m_2 + m_4 \ge 0 \\ (\ell_2 \to \ell_4 \to \ell_3) \rightsquigarrow C_3, C_4 & m_3 + m_4 \ge 0 \\ (\ell_2 \to \ell_1 \to \ell_4 \to \ell_3) \rightsquigarrow C_4 & m_4 \ge 0 \\ (\ell_3 \to \ell_4) \rightsquigarrow C_6 & m_6 \ge 0 \end{array} \right\}$$

イロト イヨト イヨト イ

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes 00000	Small resolutions of string polytopes OO	Future works 0000
λ -inequalitie	S			

Definition

Let $\lambda = \lambda_1 \varpi_1 + \cdots + \lambda_n \varpi_n$ be a dominant weight. The λ -inequality associated to m_j is defined by

 $\sum_{k \ge j, i_k = i_j} m_k \le \lambda_{i_j}.$

$$\begin{array}{c} m_1 + m_4 \leq \lambda_2 \\ m_2 + m_6 \leq \lambda_1 \\ m_3 + m_5 \leq \lambda_3 \\ m_4 \leq \lambda_2 \\ m_5 \leq \lambda_3 \\ m_6 \leq \lambda_1 \end{array} \right\} \text{ defines } C_i^{\lambda}$$

イロト イヨト イヨト イ

What are string polytopes?	Description of string polytopes	Gelfand−Cetlin type string polytopes	Small resolutions of string polytopes	Future works
	0000	●0000	OO	0000
Indices				

 $ind_{A}(\mathbf{i}) = \# \text{ of crossings below } \ell_{1},$ $ind_{D}(\mathbf{i}) = \# \text{ of crossings below } \ell_{n+1}.$ $\mathbf{i} = (1, 2, 1, 3, 2, 1) | \mathbf{i} = (2, 1, 3, 2, 3, 1)$ $\ell_{1} \quad \ell_{2} \quad \ell_{3} \quad \ell_{4} \qquad \qquad \ell_{1} \quad \ell_{2} \quad \ell_{3} \quad \ell_{4}$ $\ell_{1} \quad \ell_{2} \quad \ell_{3} \quad \ell_{4} \qquad \qquad \ell_{1} \quad \ell_{2} \quad \ell_{3} \quad \ell_{4}$

 $\begin{array}{c|c} \mathsf{ind}_D(\mathbf{i}) = 0 & \mathsf{ind}_D(\mathbf{i}) = 1 \\ \mathsf{ind}_A(\mathbf{i}) = 3 & \mathsf{ind}_A(\mathbf{i}) = 1 \end{array}$

メロト メロト メヨト メヨ

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
00000	0000	○●○○○	OO	0000
Contraction	S			

- $C_D(\mathbf{i})$: erase ℓ_{n+1} and rearrange.
- $C_A(\mathbf{i})$: erase ℓ_1 and rearrange.

Contraction maps a reduced word of the longest element in \mathfrak{S}_{n+1} to a reduced word of the longest element in \mathfrak{S}_n .

What are string polytopes?

Description of string polytope 0000 Gelfand–Cetlin type string polytopes

Small resolutions of string polytopes

Future works 0000

Gelfand–Cetlin type string polytopes

Theorem [Cho–Kim–<u>L</u>–Park 1, 19⁺]

Let i be a reduced word of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. Then the following are equivalent.

- The string polytope $\Delta_i(\lambda)$ is unimodularly equivalent to the Gelfand–Cetlin polytope $GC(\lambda)$.
- **③** The associated string cone $C_{\mathbf{i}}$ is simplicial.
- There exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that

 $\operatorname{ind}_{\sigma_k} \left(C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i}) \right) = 0 \quad \text{ for all } k = n, \dots, 1.$

Here $\operatorname{ind}_{\bullet}$ denotes the \bullet -index of i and C_{\bullet} denotes a \bullet -contraction where $\bullet = D$ or A.

<ロト < 回 > < 回 > < 回 > < 回 >

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes 000●0	Small resolutions of string polytopes OO	Future works 0000
Examples				

•
$$\mathbf{i} = (2, 1, 2, 3, 2, 1)$$
. Then

$$\begin{split} &\text{ind}_D(\mathbf{i}) = 0, \quad C_D(\mathbf{i}) = (2, 1, 2), \\ &\text{ind}_A(2, 1, 2) = 0, \quad C_A(2, 1, 2) = (1), \\ &\text{ind}_D(1) = 0. \end{split}$$

Hence
$$\Delta_{(2,1,2,3,2,1)}(\lambda) \simeq GC(\lambda)$$
.
• $\mathbf{i} = (2, 1, 3, 2, 3, 1)$. Then

 $\operatorname{ind}_A(2,1,3,2,3,1) = 1$, $\operatorname{ind}_D(2,1,3,2,3,1) = 1$.

Hence $\Delta_{(2,1,2,3,2,1)}(\lambda) \not\simeq \mathsf{GC}(\lambda)$. Indeed,

of facets of
$$\Delta_{\mathbf{i}}(\lambda) = 13 \neq 12$$
.

・ロト ・ 日 ・ ・ ヨ ・ ・

As one may see, the combinatorics of string polytopes heavily depend on that of wiring diagrams. By analyzing wiring diagrams, [Cho–Kim–<u>L</u>, 20⁺] enumerates the number gc(n) of Gelfand–Cetlin type reduced words for $G = SL_{n+1}(\mathbb{C})$.

n	0	1	2	3	4	5	6	7
gc(n) # of all reduced decomp.					$\begin{array}{c} 40 \\ 768 \end{array}$	$916 \\ 292864$	$102176 \\ 1100742656$	$\frac{68464624}{48608795688960}$

Table: The first few terms of gc(n) (cf. OEIS A337699).

イロト イロト イヨト

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	
			•0	

Reduced decompositions having small indices

Definition

A reduced decomposition i of the longest element in \mathfrak{S}_{n+1} has small indices if there exists a sequence $(\sigma_1, \ldots, \sigma_n) \in \{A, D\}^n$ such that

 $\begin{aligned} &\operatorname{ind}_{\sigma_n}(\mathbf{i}) \leq \kappa(\sigma_{n-1}, \sigma_n), \\ &\operatorname{ind}_{\sigma_k}\left(C_{\sigma_{k+1}} \circ \cdots \circ C_{\sigma_n}(\mathbf{i})\right) = 0 \quad \text{ for all } k = n-1, \dots, 1, \end{aligned}$

where $\kappa(\sigma_{n-1}, \sigma_n)$ is 2 if $\sigma_{n-1} = \sigma_n$; n-1 otherwise.

For example, $\mathbf{i} = (1, 3, 2, 1, 3, 2)$ has small indices. Take $(D, D, D) \in \{A, D\}^3$. Then,

$$ind_D(1,3,2,1,3,2) = 2,$$

$$C_D(\mathbf{i}) = (1,2,1,) \rightsquigarrow ind_D(1,2,1) = 0,$$

$$C_D(1,2,1) = (1) \rightsquigarrow ind_D(1) = 0.$$

All reduced decompositions of the longest element in \mathfrak{S}_4 have small indices.

イロト イヨト イヨト イ

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
00000	0000	00000	O●	0000

Theorem [Cho–Kim–<u>L</u>–Park 2, 19⁺]

Let i be a reduced decomposition of the longest element in \mathfrak{S}_{n+1} . Let λ be a regular dominant integral weight. If i has small indices, then $X_{\Delta_i(\lambda)}$ admits a small toric desingularization \widetilde{X} . Moreover, \widetilde{X} is obtained by blowing-ups of a Bott manifold.

Corollary

Suppose that \mathbf{i} has small indices. Then, the following holds.

- $\Delta_{\mathbf{i}}(\lambda)$ is integral for any dominant integral weight λ .
- Solution For a parabolic subgroup P, $\Delta_i(\lambda_P)$ is reflexive, where λ_P is the weight corresponding to the anticanonical line bundle of G/P.
- One can compute the Floer theorectical disk potential defined by Fukaya–Oh–Ohta–Ono of the Lagrangian submanifold in G/B given by $\Delta_i(\lambda)$ for any regular dominant integral weight λ .

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
00000	0000	00000	OO	●000
Future work	S			

- 1. Studying which topological/geometric data can be obtained from different $\Delta_i(\lambda)$.
 - The combinatorial relations among string polytopes (Berenstein–Zelevinsky, 01) and other Newton–Okounkov bodies of G/B (Fujita–Higashitani, 20⁺) have been studied.

There is an open embedding $U_{w_0}^- \hookrightarrow G/B$ and the the unipotent cell $U_{w_0}^-$ admits a cluster algebra structure. [Fujita–Oya, 20⁺] constructed $\Delta(G/B, \mathcal{L}_{\lambda}, \nu_{\mathbf{s}})$ for each seed s and proved that $\Delta(G/B, \mathcal{L}_{\lambda}, \nu_{\mathbf{s}}) \simeq \Delta_{\mathbf{i}}(\lambda)$ when s comes from \mathbf{i} .

What are string polytopes?			Small resolutions of string polytopes	
00000	0000	00000	00	0000

メロト メロト メヨト メヨ

Describe $\Delta(G/B, \mathcal{L}_{\lambda}, \nu_{s})$ for various seeds s explicitly.

イロト イヨト イヨト イ

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
00000	0000	00000	OO	00●0
-				

<u>Future</u> works

- 2. Constructing a completely integrable system associated to $\Delta_i(\lambda)$.
 - For the Gelfand–Cetlin polytope, [Guillemin–Sternberg, 83] provided a completely integrable system. Using this, a detailed description of topology of Gelfand–Cetlin fibers has been studied by [Cho–Kim–Oh, 20].
 - [Harada-Kaveh, 15] proved the *existence* of completely integrable system. However, we don't know the explicit description yet.
- 3. Generalizing the previous result to other Lie types.
 - String polytopes (and also Newton-Okounkov bodies) are defined for any semisimple Lie groups. We studied the combinatorics of string polytope only for Lie type A.

What are string polytopes?	Description of string polytopes	Gelfand–Cetlin type string polytopes	Small resolutions of string polytopes	Future works
				0000

Thank you for your attention!

Image: A matrix