On the secondary cohomology of moment-angle complexes (j.w. A.Bahri, T.Panov, J.Song, and D.Stanley)

Ivan Limonchenko
 University of Toronto
 ilimonch@math.toronto.edu

International conference
"Toric Topology 2021 in Osaka"
Osaka City University
Osaka, Japan
March 25, 2021

Motivation: Topological Data Analysis

For this part of the talk we fix a field of coefficients \mathbf{k}.

Definition: Rips complex

Let X be a finite pseudometric space and $U(\varepsilon)$ be its open cover by balls of radius $\varepsilon>0$ centered at the points of X.
We call the flagification of the nerve of $U(\varepsilon)$ the Rips complex K^{ε} of X for the radius ε.

Motivation: Topological Data Analysis

For this part of the talk we fix a field of coefficients \mathbf{k}.

Definition: Rips complex

Let X be a finite pseudometric space and $U(\varepsilon)$ be its open cover by balls of radius $\varepsilon>0$ centered at the points of X.
We call the flagification of the nerve of $U(\varepsilon)$ the Rips complex K^{ε} of X for the radius ε.

If a discrete set of times $\varepsilon_{1}, \ldots, \varepsilon_{r}, \ldots$ is taken into account, this yields a filtration of the corresponding Rips complexes :

$$
K^{0}=X \subset K^{1} \subset K^{2} \subset \ldots,
$$

where $K^{r}:=K^{\varepsilon_{r}}$ is a subcomplex in K^{r+1} for all $r \geq 0$.

Persistent homology

Let $\mathcal{K}:=\left(K^{r}\right)_{r \geq 0}$. The persistent complex of \mathcal{K} is the sequence of simplicial chain complexes $\mathcal{C}:=\left(C_{*}^{r}\right)_{r \geq 0}$ with injective chain maps $x: C_{*}^{r} \rightarrow C_{*}^{r+1}$.

Persistent homology

Let $\mathcal{K}:=\left(K^{r}\right)_{r \geq 0}$. The persistent complex of \mathcal{K} is the sequence of simplicial chain complexes $\mathcal{C}:=\left(C_{*}^{r}\right)_{r \geq 0}$ with injective chain maps $x: C_{*}^{r} \rightarrow C_{*}^{r+1}$.

Definition

For $0 \leq r<s$, the (r, s)-persistent homology $\mathrm{PH}_{*}^{r \rightarrow s}(\mathcal{K})$ is defined by

$$
P H_{*}^{r \rightarrow s}(\mathcal{K}):=\operatorname{im}\left(x_{*}^{r \rightarrow s}: H_{*}\left(C_{*}^{r}\right) \rightarrow H_{*}\left(C_{*}^{s}\right)\right),
$$

where $x^{r \rightarrow s}: C_{*}^{r} \rightarrow C_{*}^{s}$ is the $(s-r)$-many compositions of x.

Persistent homology

Let $\mathcal{K}:=\left(K^{r}\right)_{r \geq 0}$. The persistent complex of \mathcal{K} is the sequence of simplicial chain complexes $\mathcal{C}:=\left(C_{*}^{r}\right)_{r \geq 0}$ with injective chain maps $x: C_{*}^{r} \rightarrow C_{*}^{r+1}$.

Definition

For $0 \leq r<s$, the (r, s)-persistent homology $\mathrm{PH}_{*}^{r \rightarrow s}(\mathcal{K})$ is defined by

$$
P H_{*}^{r \rightarrow s}(\mathcal{K}):=\operatorname{im}\left(x_{*}^{r \rightarrow s}: H_{*}\left(C_{*}^{r}\right) \rightarrow H_{*}\left(C_{*}^{s}\right)\right),
$$

where $x^{r \rightarrow s}: C_{*}^{r} \rightarrow C_{*}^{s}$ is the $(s-r)$-many compositions of x.
A homology class $\alpha \in H_{*}\left(C_{*}^{r}\right)$ is said to
(1) be born at K^{r} if $\alpha \notin P H_{*}^{t \rightarrow r}(\mathcal{K})$ for all $t<r$,
(2) die entering K^{s} if $x_{*}^{r \rightarrow s-1}(\alpha)$ is non-zero in $H_{*}\left(C_{*}^{s-1}\right)$ and $x_{*}^{r \rightarrow s}(\alpha)$ vanishes in $H_{*}\left(C_{*}^{s}\right)$.
In this case, the interval $[r, s)$ is called the persistence of $\alpha \in H_{*}\left(C_{*}^{r}\right)$.

Barcode

Note that $\mathcal{C}=\left(C_{*}^{r}\right)_{r \geq 0}$ is a free $\mathbf{k}[x]$-module induced from the injective chain maps. Hence, $P H_{*}(\mathcal{K}):=\bigoplus_{r<s} P H_{*}^{r \rightarrow s}(\mathcal{K})$ is a $\mathbf{k}[x]$-module and here is the algebraic interpretation of the persistence of a homology class $\alpha \in H_{*}\left(C_{*}^{r} ; \mathbf{k}\right)$.

Barcode

Note that $\mathcal{C}=\left(C_{*}^{r}\right)_{r \geq 0}$ is a free $\mathbf{k}[x]$-module induced from the injective chain maps. Hence, $P H_{*}(\mathcal{K}):=\bigoplus_{r<s} P H_{*}^{r \rightarrow s}(\mathcal{K})$ is a $\mathbf{k}[x]$-module and here is the algebraic interpretation of the persistence of a homology class $\alpha \in H_{*}\left(C_{*}^{r} ; \mathbf{k}\right)$.

Definition

There is an isomorphism of f.g. modules over $\mathbf{k}[x]$:

$$
P H_{*}(\mathcal{C}) \cong\left(\bigoplus_{a} t^{a} \cdot \mathbf{k}[x]\right) \oplus\left(\bigoplus_{b, c} t^{b} \cdot\left(\mathbf{k}[x] / t^{c} \mathbf{k}[x]\right)\right)
$$

The barcode is the set of intervals $\{[a ; \infty),[b, b+c)\}$.

Barcode

Note that $\mathcal{C}=\left(C_{*}^{r}\right)_{r \geq 0}$ is a free $\mathbf{k}[x]$-module induced from the injective chain maps. Hence, $P H_{*}(\mathcal{K}):=\bigoplus_{r<s} P H_{*}^{r \rightarrow s}(\mathcal{K})$ is a $\mathbf{k}[x]$-module and here is the algebraic interpretation of the persistence of a homology class $\alpha \in H_{*}\left(C_{*}^{r} ; \mathbf{k}\right)$.

Definition

There is an isomorphism of f.g. modules over $\mathbf{k}[x]$:

$$
P H_{*}(\mathcal{C}) \cong\left(\bigoplus_{a} t^{a} \cdot \mathbf{k}[x]\right) \oplus\left(\bigoplus_{b, c} t^{b} \cdot\left(\mathbf{k}[x] / t^{c} \mathbf{k}[x]\right)\right)
$$

The barcode is the set of intervals $\{[a ; \infty),[b, b+c)\}$.
The free part above represents the homology generators which are born at K^{a} and persist for all the future parameters. The torsion part above corresponds to the homology generators whose persistences are $[b, b+c)$.

Persistent homology and toric topology

Observe that for a filtration of Rips complexes

$$
K^{0}=X \subset K^{1} \subset K^{2} \subset \ldots,
$$

one has:

$$
H^{-i, 2 j}\left(\mathcal{Z}_{K^{r}}\right) \cong \bigoplus_{\substack{J \subset[m] \\|J|=j}} \widetilde{H}_{j-i-1}\left(K_{J}^{r}\right), \quad \text { for each } r \geq 0
$$

and the following sequence of mappings:

$$
\mathcal{Z}_{K^{1}} \rightarrow \mathcal{Z}_{K^{2}} \rightarrow \cdots \rightarrow \mathcal{Z}_{K^{n}} \rightarrow \cdots
$$

induced by the embeddings of simplicial complexes $K^{r} \hookrightarrow K^{r+1}$.

Bigraded barcode

Set $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right):=\oplus H_{*}\left(\mathcal{Z}_{K^{r}}\right) \cong \oplus \widetilde{H}_{*}\left(K_{J}^{r}\right)$.

Definition

There is an isomorphism of f.g. modules over $\mathbf{k}[x]$:

$$
H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong\left(\bigoplus_{A} t^{A} \cdot \mathbf{k}[x]\right) \oplus\left(\bigoplus_{B, C} t^{B} \cdot\left(\mathbf{k}[x] / t^{C} \mathbf{k}[x]\right)\right)
$$

We define the bigraded barcode $B B(X)$ for the Rips filtration complex \mathcal{K} of a pseudometric space X to be the set of intervals: $\{[A ; \infty),[B, B+C)\}$.

For each dimension d one gets a barcode $B B_{d}(X)$ if one considers the part of $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ consisting of simplicial homology classes of dimension d.

Cohomology of \mathcal{Z}_{K} and the doubling operation

The bigraded barcode $B B_{d}(X)$ has certain nice properties, however only a weaker version of the so called stability theorem holds for it. One of the reasons is that ordinary (co)homology of a moment-angle complex is not invariant under the doubling of a vertex operation.

Cohomology of \mathcal{Z}_{K} and the doubling operation

The bigraded barcode $B B_{d}(X)$ has certain nice properties, however only a weaker version of the so called stability theorem holds for it. One of the reasons is that ordinary (co)homology of a moment-angle complex is not invariant under the doubling of a vertex operation.

Definition

Suppose K is a simplicial complex on $[m]=\{1,2, \ldots, m\}$, $\{v\} \in K$. We call the double of K at v the simplicial complex K^{v} on $[m] \sqcup w$, whose elements are simplices of K and for each $v \in \sigma \in K: \sigma \cup w$ and $(\sigma-v) \cup w$ are also in K^{v}.

Cohomology of \mathcal{Z}_{K} and the doubling operation

The bigraded barcode $B B_{d}(X)$ has certain nice properties, however only a weaker version of the so called stability theorem holds for it. One of the reasons is that ordinary (co)homology of a moment-angle complex is not invariant under the doubling of a vertex operation.

Definition

Suppose K is a simplicial complex on $[m]=\{1,2, \ldots, m\}$, $\{v\} \in K$. We call the double of K at v the simplicial complex K^{v} on $[m] \sqcup w$, whose elements are simplices of K and for each $v \in \sigma \in K: \sigma \cup w$ and $(\sigma-v) \cup w$ are also in K^{v}.

Note that if $X^{\prime}=X \sqcup x^{\prime}$ and $d\left(x, x^{\prime}\right)=0$ for some $x \in X$, then a Rips complex K^{\prime} of X^{\prime} is a flagification of K^{x}.

Cohomology of \mathcal{Z}_{K} and the doubling operation

The bigraded barcode $B B_{d}(X)$ has certain nice properties, however only a weaker version of the so called stability theorem holds for it. One of the reasons is that ordinary (co)homology of a moment-angle complex is not invariant under the doubling of a vertex operation.

Definition

Suppose K is a simplicial complex on $[m]=\{1,2, \ldots, m\}$, $\{v\} \in K$. We call the double of K at v the simplicial complex K^{v} on $[m] \sqcup w$, whose elements are simplices of K and for each $v \in \sigma \in K: \sigma \cup w$ and $(\sigma-v) \cup w$ are also in K^{v}.

Note that if $X^{\prime}=X \sqcup x^{\prime}$ and $d\left(x, x^{\prime}\right)=0$ for some $x \in X$, then a Rips complex K^{\prime} of X^{\prime} is a flagification of K^{x}.
Now we are going to introduce the secondary cohomology $H H^{*}\left(\mathcal{Z}_{K}\right)$ of \mathcal{Z}_{K}, which turns out to be invariant under the doubling operation.

Secondary cohomology: geometric description

Recall that $H_{p}\left(\mathcal{Z}_{K}\right) \cong \sum_{I \subset[m]} \widetilde{H}_{p-|I|-1}\left(K_{l}\right)$.
Given $j \in[m] \backslash I$, define the homomorphism

$$
\phi_{p ; I, j}: \widetilde{H}_{p}\left(K_{l}\right) \rightarrow \widetilde{H}_{p}\left(K_{l \cup\{j\}}\right)
$$

induced by the inclusion $K_{I} \hookrightarrow K_{I \cup\{j\}}$.

Secondary cohomology: geometric description

Recall that $H_{p}\left(\mathcal{Z}_{K}\right) \cong \sum_{I \subset[m]} \widetilde{H}_{p-|I|-1}\left(K_{l}\right)$.
Given $j \in[m] \backslash I$, define the homomorphism

$$
\phi_{p ; l, j}: \widetilde{H}_{p}\left(K_{l}\right) \rightarrow \widetilde{H}_{p}\left(K_{l \cup\{j\}}\right)
$$

induced by the inclusion $K_{I} \hookrightarrow K_{I \cup\{j\}}$.
Now define

$$
\partial_{p}^{\prime}=(-1)^{p+1} \sum_{I \subset[m], j \in[m] \backslash I} \varepsilon(j, I) \phi_{p ; I, j},
$$

where $\varepsilon(j, I)=(-1)^{\#\{i \in I: i<j\}}$. One can check that $\left(\partial_{p}^{\prime}\right)^{2}=0$.

Secondary cohomology: geometric description

Recall that $H_{p}\left(\mathcal{Z}_{K}\right) \cong \sum_{I \subset[m]} \widetilde{H}_{p-|I|-1}\left(K_{I}\right)$.
Given $j \in[m] \backslash I$, define the homomorphism

$$
\phi_{p ; l, j}: \widetilde{H}_{p}\left(K_{l}\right) \rightarrow \widetilde{H}_{p}\left(K_{l \cup\{j\}}\right)
$$

induced by the inclusion $K_{I} \hookrightarrow K_{I \cup\{j\}}$.
Now define

$$
\partial_{p}^{\prime}=(-1)^{p+1} \sum_{I \subset[m], j \in[m] \backslash I} \varepsilon(j, I) \phi_{p ; I, j},
$$

where $\varepsilon(j, I)=(-1)^{\#\{i \in I: i<j\}}$. One can check that $\left(\partial_{p}^{\prime}\right)^{2}=0$. The extra sign $(-1)^{p+1}$ is chosen so that ∂^{\prime} together with the simplicial boundary ∂ satisfy the bicomplex relation $\partial \partial^{\prime}=-\partial^{\prime} \partial$.

Secondary cohomology: geometric description

For the cohomological version, given $i \in I$, define

$$
\psi_{p ; i, I}: \tilde{H}^{p}\left(K_{l}\right) \rightarrow \widetilde{H}^{p}\left(K_{\backslash \backslash\{i\}}\right)
$$

induced by the inclusion $K^{\text {} \backslash\{i\}}$ $\hookrightarrow K_{I}$, and

$$
d_{p}^{\prime}=(-1)^{p+1} \sum_{i \in I}(-1)^{\varepsilon(i, I)} \psi_{p ; i, I}
$$

Secondary cohomology: geometric description

For the cohomological version, given $i \in I$, define

$$
\psi_{p ; i, l}: \widetilde{H}^{p}\left(K_{l}\right) \rightarrow \widetilde{H}^{p}\left(K_{l \backslash\{i\}}\right)
$$

induced by the inclusion $K_{\backslash \backslash i\}} \hookrightarrow K_{1}$, and

$$
d_{p}^{\prime}=(-1)^{p+1} \sum_{i \in I}(-1)^{\varepsilon(i, l)} \psi_{p ; i, l} .
$$

We define $d^{\prime}: H^{*}\left(\mathcal{Z}_{K}\right) \rightarrow H^{*}\left(\mathcal{Z}_{K}\right)$ using the decomposition $H^{*}\left(\mathcal{Z}_{K}\right)=\bigoplus_{I \subset[m]} \widehat{H}^{*}\left(K_{I}\right)$; it acts in the bigraded cohomology of \mathcal{Z}_{K} as follows:

$$
d^{\prime}: H^{-k, 2 \prime}\left(\mathcal{Z}_{K}\right) \rightarrow H^{-k+1,2 l-2}\left(\mathcal{Z}_{K}\right)
$$

Definition

The (bigraded) secondary cohomology of \mathcal{Z}_{K} is

$$
H H^{*}\left(\mathcal{Z}_{K}\right)=H\left(H^{*}\left(\mathcal{Z}_{K}\right), d^{\prime}\right)
$$

Secondary cohomology: algebraic description

> Recall that $H^{*}\left(\mathcal{Z}_{K}\right) \cong H^{*}\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right]$, where $d\left(u_{i}\right)=v_{i}, d\left(v_{i}\right)=0$.

Secondary cohomology: algebraic description

Recall that $H^{*}\left(\mathcal{Z}_{K}\right) \cong H^{*}\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right]$, where $d\left(u_{i}\right)=v_{i}, d\left(v_{i}\right)=0$.
We introduce the second differential d^{\prime} of bidegree $(1,-2)$ on the Koszul bigraded ring $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$ by setting

$$
d^{\prime}\left(u_{i}\right)=1, \quad d^{\prime}\left(v_{j}\right)=0
$$

and extending by the Leibniz rule.

Secondary cohomology: algebraic description

Recall that $H^{*}\left(\mathcal{Z}_{K}\right) \cong H^{*}\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right]$, where $d\left(u_{i}\right)=v_{i}, d\left(v_{i}\right)=0$.
We introduce the second differential d^{\prime} of bidegree $(1,-2)$ on the Koszul bigraded ring $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$ by setting

$$
d^{\prime}\left(u_{i}\right)=1, \quad d^{\prime}\left(v_{j}\right)=0
$$

and extending by the Leibniz rule.
Explicitly, the differential d^{\prime} is defined on square-free monomials $u_{J} v_{I}$ by

$$
d^{\prime}\left(u_{J} v_{l}\right)=\sum_{j \in J} \varepsilon(j, J) u_{J \backslash\{j\}} v_{l}, \quad d^{\prime}\left(v_{l}\right)=0 .
$$

Secondary cohomology: algebraic description

It turns out that with d and d^{\prime} defined above, $\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d, d^{\prime}\right)$ is a bicomplex, that is, d and d^{\prime} satisfy $d d^{\prime}=-d^{\prime} d$.

Secondary cohomology: algebraic description

It turns out that with d and d^{\prime} defined above,
$\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d, d^{\prime}\right)$ is a bicomplex, that is, d and d^{\prime} satisfy $d d^{\prime}=-d^{\prime} d$.

Theorem

The secondary cohomology ${H H^{*}}^{*}\left(\mathcal{Z}_{K}\right)$ is isomorphic to the first double cohomology of the bicomplex $\left(\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d, d^{\prime}\right)$:

$$
H H^{*}\left(\mathcal{Z}_{K}\right) \cong H\left(H\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right), d^{\prime}\right)
$$

It follows that $H H\left(\mathcal{Z}_{K}\right)$ is a combinatorial invariant of K.

Secondary cohomology and the doubling operation

Theorem
Let K^{v} be the double of a simplicial complex K at its vertex v. Then

$$
H H\left(\mathcal{Z}_{K}\right) \cong H H\left(\mathcal{Z}_{K^{v}}\right)
$$

Secondary cohomology and the doubling operation

Theorem

Let K^{v} be the double of a simplicial complex K at its vertex v. Then

$$
H H\left(\mathcal{Z}_{K}\right) \cong H H\left(\mathcal{Z}_{K^{v}}\right)
$$

The idea behind the proof is to show that the chain map $\phi: C H\left(\mathcal{Z}_{K^{v}}\right) \cong \oplus_{I \subset[m] \cup w} \widetilde{H}\left(K_{l}^{v}\right) \rightarrow C H\left(\mathcal{Z}_{K}\right) \cong \oplus_{I \subset[m]} \widetilde{H}\left(K_{l}\right)$, determined by the property that for $\alpha \in \widetilde{H}\left(K_{l}^{v}\right)$

$$
\phi(\alpha)= \begin{cases}0 & w \in I \\ \alpha & w \notin I\end{cases}
$$

is a weak equivalence.

Secondary cohomology and the doubling operation

Theorem

Let K^{v} be the double of a simplicial complex K at its vertex v. Then

$$
H H\left(\mathcal{Z}_{K}\right) \cong H H\left(\mathcal{Z}_{K^{v}}\right)
$$

The idea behind the proof is to show that the chain map $\phi: C H\left(\mathcal{Z}_{K^{v}}\right) \cong \oplus_{I \subset[m] \cup w} \widetilde{H}\left(K_{l}^{v}\right) \rightarrow C H\left(\mathcal{Z}_{K}\right) \cong \oplus_{I \subset[m]} \widetilde{H}\left(K_{l}\right)$, determined by the property that for $\alpha \in \widetilde{H}\left(K_{I}^{v}\right)$

$$
\phi(\alpha)= \begin{cases}0 & w \in I \\ \alpha & w \notin I\end{cases}
$$

is a weak equivalence.
For $H H\left(\mathcal{Z}_{K}\right)$ we are able to define the barcode and show the stability theorem holds for it.

First examples

The ($m-1$)-simplex

For a simplicial complex K without ghost vertices, the following statements are equivalent:
(a) all full subcomplexes of K are acyclic;
(b) $K=\Delta^{m-1}$ and $\mathcal{Z}_{K}=\left(D^{2}\right)^{m}$;
(c) \mathcal{Z}_{K} is acyclic;
(d) $H H^{*}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}$.

First examples

The ($m-1$)-simplex

For a simplicial complex K without ghost vertices, the following statements are equivalent:
(a) all full subcomplexes of K are acyclic;
(b) $K=\Delta^{m-1}$ and $\mathcal{Z}_{K}=\left(D^{2}\right)^{m}$;
(c) \mathcal{Z}_{K} is acyclic;
(d) $H H^{*}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}$.

The boundary of an ($m-1$)-simplex

Let $K=\partial \Delta^{m-1}$. The only non-trivial cohomology groups are

$$
\begin{gathered}
H^{0}\left(\mathcal{Z}_{K}\right)=H^{0,0}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\langle[1]\rangle, \\
H^{2 m-1}\left(\mathcal{Z}_{K}\right)=H^{-1,2 m}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{1} v_{2} v_{3} \cdots v_{m}\right]\right\rangle
\end{gathered}
$$

The differential $d^{\prime}=0$ on $H^{*}\left(\mathcal{Z}_{K}\right)$, and $H H^{*}\left(\mathcal{Z}_{K}\right)=H^{*}\left(\mathcal{Z}_{K}\right)$.

Let K be the boundary of a square labeled clockwisely.
Then $\mathcal{Z}_{K} \cong S^{3} \times S^{3}$ and its non-trivial cohomology groups are

$$
\begin{gathered}
H^{0}\left(\mathcal{Z}_{K}\right)=H^{0,0}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\langle 1\rangle \\
H^{3}\left(\mathcal{Z}_{K}\right)=H^{-1,4}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{1} v_{3}\right],\left[u_{2} v_{4}\right]\right\rangle \\
H^{6}\left(\mathcal{Z}_{K}\right)=H^{-2,8}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{1} u_{2} v_{3} v_{4}\right]\right\rangle
\end{gathered}
$$

The differential $d^{\prime}=0$ on $H^{*}\left(\mathcal{Z}_{K}\right)$, and we have

$$
H H^{*}\left(\mathcal{Z}_{K}\right)=H^{*}\left(\mathcal{Z}_{K}\right)
$$

in this case.

Let K be the boundary of a pentagon labeled clockwisely.
Then $\mathcal{Z}_{K} \cong\left(S^{3} \times S^{4}\right)^{\# 5}$ and its non-trivial cohomology groups are

$$
\begin{aligned}
H^{0}\left(\mathcal{Z}_{K}\right) & =H^{0,0}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\langle 1\rangle \\
H^{3}\left(\mathcal{Z}_{K}\right) & =H^{-1,4}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{1} v_{3}\right],\left[u_{1} v_{4}\right],\left[u_{2} v_{4}\right],\left[u_{2} v_{5}\right],\left[u_{3} v_{5}\right]\right\rangle, \\
H^{4}\left(\mathcal{Z}_{K}\right) & =H^{-2,6}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{4} u_{5} v_{2}\right],\left[u_{2} u_{3} v_{5}\right],\left[u_{5} u_{1} v_{3}\right],\left[u_{3} u_{4} v_{1}\right],\left[u_{1} u_{2} v_{4}\right]\right\rangle \\
H^{7}\left(\mathcal{Z}_{K}\right) & =H^{-3,10}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}\left\langle\left[u_{1} u_{2} u_{3} v_{4} v_{5}\right]\right\rangle .
\end{aligned}
$$

There is only one non-trivial differential d^{\prime} :

$$
0 \longrightarrow H^{-2,6}\left(\mathcal{Z}_{K}\right) \xrightarrow{d^{\prime}} H^{-1,4}\left(\mathcal{Z}_{K}\right) \longrightarrow 0
$$

It is given on the basis elements by

$$
\begin{aligned}
d^{\prime}\left[u_{4} u_{5} v_{2}\right] & =\left[u_{5} v_{2}\right]-\left[u_{4} v_{2}\right]=\left[u_{2} v_{5}\right]-\left[u_{2} v_{4}\right], \\
d^{\prime}\left[u_{2} u_{3} v_{5}\right] & =\left[u_{3} v_{5}\right]-\left[u_{2} v_{5}\right], \\
d^{\prime}\left[u_{5} u_{1} v_{3}\right] & =\left[u_{1} v_{3}\right]-\left[u_{5} v_{3}\right]=\left[u_{1} v_{3}\right]-\left[u_{3} v_{5}\right], \\
d^{\prime}\left[u_{3} u_{4} v_{1}\right] & =\left[u_{4} v_{1}\right]-\left[u_{3} v_{1}\right]=\left[u_{1} v_{4}\right]-\left[u_{1} v_{3}\right], \\
d^{\prime}\left[u_{1} u_{2} v_{4}\right] & =\left[u_{2} v_{4}\right]-\left[u_{1} v_{4}\right] .
\end{aligned}
$$

The corresponding matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right)
$$

has rank 4 and defines a homomorphism onto a direct summand of \mathbb{Z}^{5}.

More examples

It follows that the non-trivial secondary cohomology groups for a pentagon K are

$$
H H^{0,0}\left(\mathcal{Z}_{K}\right) \cong H H^{-1,4}\left(\mathcal{Z}_{K}\right) \cong H H^{-2,6}\left(\mathcal{Z}_{K}\right) \cong H H^{-3,10}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}
$$

More examples

It follows that the non-trivial secondary cohomology groups for a pentagon K are

$$
H H^{0,0}\left(\mathcal{Z}_{K}\right) \cong H H^{-1,4}\left(\mathcal{Z}_{K}\right) \cong H H^{-2,6}\left(\mathcal{Z}_{K}\right) \cong H H^{-3,10}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z}
$$

The next example shows that $H H^{*}\left(\mathcal{Z}_{K}\right)$ may have torsion.

The minimal triangulation of $\mathbb{R} P^{2}$

Let K be the minimal triangulation of $\mathbb{R} P^{2}$ with 6 vertices. In this case, $H^{-3,12}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}_{2}, H^{-3,10}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}^{6}, H^{-2,8}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}^{15}$, $H^{-1,6}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}^{10}, H^{0,0}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}$ and all other bigraded cohomology groups vanish.
Hence, for the differential d^{\prime} we have

$$
\begin{gathered}
0 \xrightarrow{d^{\prime}} H^{-3,12}\left(\mathcal{Z}_{K}\right) \xrightarrow{d^{\prime}} 0, \\
0 \xrightarrow{d^{\prime}} H^{-3,10}\left(\mathcal{Z}_{K}\right) \xrightarrow{d^{\prime}} H^{-2,8}\left(\mathcal{Z}_{K}\right) \xrightarrow{d^{\prime}} H^{-1,6}\left(\mathcal{Z}_{K}\right) \xrightarrow{d^{\prime}} 0 .
\end{gathered}
$$

The first sequence implies that $H H^{-3,12}\left(\mathcal{Z}_{K}\right)=\mathbb{Z}_{2}$.

General results

Theorem

Let $K^{\prime}=K \sqcup\{w\}$ for a simplicial complex K. Then,

$$
H H^{-k, 2 \ell}\left(\mathcal{Z}_{K^{\prime}}\right)= \begin{cases}\mathbb{Z} & (-k, 2 \ell)=(0,0),(-1,4) \\ 0 & \text { otherwise }\end{cases}
$$

This gives $H H\left(\mathcal{Z}_{K}\right)$ for $K=\{3 \mathrm{pts}\}, \mathcal{Z}_{K} \simeq\left(S^{3}\right)^{\vee 3} \vee\left(S^{4}\right)^{\vee 2}$.

General results

Theorem

Let $K^{\prime}=K \sqcup\{w\}$ for a simplicial complex K. Then,

$$
H H^{-k, 2 \ell}\left(\mathcal{Z}_{K^{\prime}}\right)= \begin{cases}\mathbb{Z} & (-k, 2 \ell)=(0,0),(-1,4) \\ 0 & \text { otherwise }\end{cases}
$$

This gives $H H\left(\mathcal{Z}_{K}\right)$ for $K=\{3 \mathrm{pts}\}, \mathcal{Z}_{K} \simeq\left(S^{3}\right)^{\vee 3} \vee\left(S^{4}\right)^{\vee 2}$.

Theorem

Let K be a simplicial complex on $[m]$ s.t. $K_{[s]}=\Delta^{s-1}$. Let K^{\prime} be the simplicial complex on $[m+1]$, where we have glued an s-simplex to K by identifying a facet of the simplex with $K_{[s]}$. Then one has

$$
H H\left(\mathcal{Z}_{K^{\prime}}\right) \cong H H\left(\mathcal{Z}_{L}\right)
$$

where $L=K_{[m]-[s]} \sqcup w$.

General results

The last two statements imply the next result.

Theorem (first part)

For a simplicial complex K without a ghost vertex, the following statements are equivalent:
(a) all full subcomplexes of K are homotopy discrete sets of points;
(b) K is flag and its 1 -skeleton $\operatorname{sk}^{1}(K)$ is a chordal graph;
(c) K can be obtained by iterating the procedure of attaching a simplex along a face, starting from a simplex. Here, by attaching along \varnothing we mean adding a disjoint simplex.

General results

Theorem (second part)

Moreover, when K is a flag complex, (a), (b), and (c) are equivalent to
(d) \mathcal{Z}_{K} is homotopy equivalent to a wedge of spheres;
(e) K is a Golod complex.

Finally, each of the (a), (b), and (c) implies
(f) Either K is a simplex, or $\operatorname{HH}\left(\mathcal{Z}_{K}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$.

THANK YOU FOR YOUR ATTENTION!

