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Flag varieties and Schubert varieties

Gy := GL,(C)
B, := Borel subgp of G, (upper triangular matrices)
B, := opp. Borel (lower triang)
Fl, := G,/B, the flag variety
Schubert variety X\ = B, wB, B orbit closure of w € S,
- irreducible, codim ¢(w), at worst rational singularities
Schubert classes o) = [XV(V")] form a basis of the Chow ring A*(Fl,).

Schubert Calculus
Define the coefficients ¢, € Z (u,v,w € S,) by

oo = 3 ol
wES),
Kleiman's transversality theorem implies that ¢, € Z>o

= Goal. Find a nice “combinatorial” formula for cj,.

v
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Stability of Schubert classes
Fl, = the space of flags Us : Uy C --- C Up—1 C C"
= Uy C -+ C Up—1 tautological bundle bundles on Fl,

Zlx, .-, Xa]
(ei(x1,...,xn), i =1,...,n)

A*(Fl,) = . alUh/Ui—1)Y) — x;

C" < C™* (first n coordinates) induces an embedding f, : Fl, < Fl,41 and S, < Sy11
£ A (Floi1) — A (Fl,)  (set xp1=0)

= The direct limit of A*(F/,) contains the polynomial ring Z[x1, x2, .. .].

Fact (Stability of Schubert class). J

f,,*(craf“)) = 037), wesS,

= 3! a polynomial representative of the limit a‘(,voo), the Schubert polynomial &, (x)

Gu -6, = > b, inZl, ...

UESso
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Algebraic Cobordism Q*

Oriented cohomology theory A*
@ A functor: X (smooth “manifolds”) — A*(X) (graded rings)
o pushforward, projective bundle formula, extended homotopy property
@ Chern classes

o Fundamental classes of “submanifolds with mild singularities (I.c.i)"

e.g.
Chow ring CH*(X), (connective) K-theory CK*(X)

Algebraic Cobordism Q*(X) by Levine-Morel is the universal one

T. Matsumura (ICU) March 26, 2021 4/16



Chern classes, Formal group law, Lazard ring

Line bundles L, M over X, Fa(u,v) = u-+ v + ( higher degree ) € A*(pt)|[u, v]].
o (L® M) = Fa(a(L), a(M))

There is xa(u) € A*(pt)[[u]] such that Fa(u,x(u)) =1 = '(LY) = xa(cf(L)).

Example
e Chow ring Feu(u,v) =u+v, xcu(u)=—u
o K-theory Fx(u,v) =u+v—uv, xk(u)=—-u/(1-u)

Algebraic Cobordism Q*
Q*(pt) = L (Lazard ring) = a polynomial ring with infinite variables
(L@ M) = Fo(a(L), a(M)) = (L) + (M) + Y G (L)' (MY (cjel)
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Cobordism ring of flag varieties

Theorem (Hornbostel-Kiritchenko).

Q*(FI,,) %’L[Xh...,xn]/Sn, C1((U,'/Z/{,'_1)V) — X

where S, is the ideal of symmetric polynomials in xi, ..., x, in positive degree.

in: Fln = Flay1 induces iy : Q*(Flpg1) = Q*(Fla) (- set xp41 = 0)

lim Q" (Fl,) =2 L[[x1, x2, X3, - - - ]]bd/Soco
—
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“Schubert classes” in cobordism

A Schubert variety X,,(v") has at worst rational singularities (up to K-theory it behaves nice)
= x{ may not be a local complete intersection

= the class of X{" in Q*(Fl,) may not be well-defined

What can replace the Schubert classes in Q*7?

Problem J

An answer:
The class of a resolution of X{” in Q*(Fl,) could be a replacement of the Schubert class

= We can consider Bott—Samelson resolutions (Bott—Samelson classes in Q*(Fl,))

Do Bott—Samelson classes have the stability?

Problem J

An answer: Yes. We can consider the limit class in lim Q" (Fl,).
—
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Schubert conditions (essential ones)

Diagram of w € S, and essential boxes
1. Consider the transpose of the permutation matrix of w and place e in the position of 1.

2.

3
4.
5

e.g w = 1342

1

3 N
4|
=
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Schubert conditions (essential ones)

Diagram of w € S, and essential boxes

1. Consider the transpose of the permutation matrix of w and place e in the position of 1.
2. Delete the boxes on the right and below of each e.

3.

4.

5.

e.g w = 1342

1
3 9
4
2

T. Matsumura (ICU) March 26, 2021 8/16



Schubert conditions (essential ones)

Diagram of w € S, and essential boxes

1. Consider the transpose of the permutation matrix of w and place e in the position of 1.

. Delete the boxes on the right and below of each e.

2
3. Call the remaining boxes the diagram of w, and denote by D(w)
4
5

e.g w = 1342
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Schubert conditions (essential ones)

Diagram of w € S, and essential boxes

1. Consider the transpose of the permutation matrix of w and place e in the position of 1.
. Delete the boxes on the right and below of each e.
. Call the remaining boxes the diagram of w, and denote by D(w)

2
3
4. The south east corners of D(w) are essential boxes (p1,q1),- ., (ps, gs)
5

e.g w = 1342
(pr,aq1) = (3,2)

.................
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Schubert conditions (essential ones)

Diagram of w € S, and essential boxes

1.

Consider the transpose of the permutation matrix of w and place e in the position of 1.

. Delete the boxes on the right and below of each e.

. Call the remaining boxes the diagram of w, and denote by D(w)

2
3
4.
5

The south east corners of D(w) are essential boxes (p1, 1), ..., (ps, gs)

. Let r; be the number of bullets in the northwest of (p;, gi).

e.g w = 1342

(plaql) = (3a2)
R =1
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Schubert conditions (essential ones)

Diagram of w € S, and essential boxes

1.

Consider the transpose of the permutation matrix of w and place e in the position of 1.

. Delete the boxes on the right and below of each e.
. Call the remaining boxes the diagram of w, and denote by D(w)

2
3
4.
5

The south east corners of D(w) are essential boxes (p1, 1), ..., (ps, gs)

. Let r; be the number of bullets in the northwest of (pi, gi).

Fact: Let Fj = (en—i+1,--.,€n) (Fe the reference flag). Then we have

Ue € Xow < dim(Up,E/Faq)>pi—ri,Vi=1,...,s.

e.g w = 1342
(p1,q1) = (3,2)
T
3 . Us € X342 & dim(Us N F2) > 2
4| el e
2 Z'.
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Bott—Samelson Resolutions

Bott—Samelson variety
v € S, with r := ¢(v) v =sjsj,---s;, reduced word
P;i: i-th minimal parabolic subgroup in G,
BS(v) = woP;, xg Py, Xg-+- x5 P;, /B
BS(v) is smooth and has dimension r.

Magyar's description by fiber product [Magyar 1998]
BS(v) = {F.} «S/Pu Fl, xS/Pa ... xC/Pr Fp

(g1, & = ([wol. [e1] [grge]. - - - [g1 - &)
{UP, U0y e (FLY T Ul = 0M i G vk (U= )

Bott-Samelson Resolution of Schubert Variety
Let w € S, w0 ) the longest in S,. Bott—Samelson resolution of X,, is

BS(wW\"w) = X,  (UD,..., U) — Ul
where r := E(Wé")w).
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Example

w = 1342 = S2S3, W(g4) — 515253515251, Wé4)W — 51535251
BS(s1s35251) 22 {Fe} x/P1 Fly x¢/Ps Fly x /P2 Fl, x¢/P1 Fl,

F‘s—
‘:1“

Elnitsky’s Rhombic Tiling [Elnitsky 1997]

BS(slssgz l) T x131~2

w [82] 43
(F',U'/ Ty v, )‘—’ U'
I

U & e el

extra &b A BS
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Stability of BS resolutions

Theorem (Hudson—M.—Perrin)

Let w € S, and fix Wé")w. Set Wé'ﬂ'l)w =S5y --- s,,wé")w.

Then the natural embedding f, : Fl, — Fln+1 induces the following fiber diagram

BS(Wé") w) —— BS(Wé"H) w)

| |

Fl, ———— = Fl,1
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Example

4 5
w = 1342, Wé )W = 51535251, Wé )W — 51525354 *+ 51535251

f

& -
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“Schubert classes” in cobordism

[BS(w"w) — Fl,] the class of a BS resolution of X,, in Q*(Fl,)

Theorem (Hudson—M.—Perrin)

Let w € S, and fix w"w.

m+1)

Set w\"Mw = 515, - - - s»w ™ w inductively for all m > n.

o FABS(W™w) — FI(C™M)] = [BS(wW{™w) — FI(C™)]

@ There is a corresponding unique element Sy (x) in the limit L[[x1, X2, X3, . . . ]]6d/Soo
v

n . . . (n)
-Note S, (x) depends on the choice v(" = Wé )w. To emphasize this, we write S%  (x).
-Hudson—M.—Perrin computed S, (x) for dominant permutations w in the case of

infinitesimal cohomology theory, using divided difference operators.
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Another type of resolutions in vexillary case

Example. w = 137845629

(Pl, ql) = (47 6)7 n=2
(p2> q2) = (77 2)7 n=1

dim(Us N F3) > 2

S U, € Xu
dim(U; N F;) > 6

ONOO D OO~NWR

Define Z,, := {(D2, Da, Us) | Us € Xy, Do C Us N F3, Ds C Uz N F7}

Zw — Xw
(D2, Dg, Us) — U,
is a resolution of singularities
- w is 2143-avoiding (vexillary)

i.e., ess. boxes lined down from NE to SW
The “rhombic tiling” looks like leaf venation
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Bott—Samelson type of description of Z,

As a tower of partial flag varieties
Gr(2; F3) + Gr(4; F1/Dy) «— FI>1(C°/Ds) +— Flsa(Us/D2) «— FI(Us) = Z,
D, De Uz C Us Uy C Us C Us Ui Cc U C U

{F.} ><Fl{3,.A.,8} FI{2,.A.,8} ><FI{2,7,8} FI{2,6,7,8} XFI{z,ﬁ} FI{2,6,7,8} ><FI{2,7,S} FI{2,4,...,8} ><FI{‘,“HYS} Flg
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Bott—Samelson type of description of Z,

Gr(2; F3) < Gr(4; F1/Ds) + FI>1(C°/Ds) « Fl>3(Ur/Ds) < FI(Us)
{Fo}XFI{3 """ 8 F/{z,...,a} x 278} Fl{2,6,7,8}><F/{2’6} F/{2,6,7,8} x 278} F/{2,4 ..... 8}><FI{4 """ 8 Flg

{F}x/PRIG/P(2)x /PPN G P(2,6)x /P09 G/ P(2,6)x /PTG /P(2,4)x /"W G /B

WoP(3) Xp(z) P(2,7) XP(2Y6) P(2,6,9) Xp(2y6) P(2,7) Xp(2’4) P(4)/ B
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