Stability of Schubert classes and Bott-Samelson resolutions

Tomoo Matsumura

based on joint work with N. Perrin-T. Hudson and with S. Kuroki

International Christian University

March 26, 2021

Toric Topology 2021 in Osaka

1/16

T. Matsumura (ICU) March 26, 2021

Flag varieties and Schubert varieties

 $G_n := GL_n(\mathbb{C})$

 $B_n :=$ Borel subgp of G_n (upper triangular matrices)

 $B_n^- := opp.$ Borel (lower triang)

 $FI_n := G_n/B_n$ the flag variety

Schubert variety $X_w^{(n)} = \overline{B_n^- w B_n}$ B^- orbit closure of $w \in S_n$

 \cdots irreducible, codim $\ell(w)$, at worst rational singularities

Schubert classes $\sigma_w^{(n)} = [X_w^{(n)}]$ form a basis of the Chow ring $A^*(FI_n)$.

Schubert Calculus

Define the coefficients $c_{uv}^w \in \mathbb{Z}$ $(u, v, w \in S_n)$ by

$$\sigma_{u}^{(n)}\sigma_{v}^{(n)} = \sum_{w \in S_{n}} c_{uv}^{w} \sigma_{w}^{(n)}$$

Kleiman's transversality theorem implies that $c_{uv}^w \in \mathbb{Z}_{>0}$

 \Rightarrow **Goal**. Find a nice "combinatorial" formula for c_{wv}^u .

◆□▶ ◆圖▶ ◆臺▶ ◆臺 2/16

Stability of Schubert classes

 $FI_n \cong \text{the space of flags } U_{\bullet}: U_1 \subset \cdots \subset U_{n-1} \subset \mathbb{C}^n$

 $\Rightarrow \mathcal{U}_1 \subset \cdots \subset \mathcal{U}_{n-1}$ tautological bundle bundles on FI_n

$$A^*(FI_n) \cong \frac{\mathbb{Z}[x_1,\ldots,x_n]}{\langle e_i(x_1,\ldots,x_n), i=1,\ldots,n\rangle}, \quad c_1((\mathcal{U}_i/\mathcal{U}_{i-1})^{\vee}) \mapsto x_i$$

 $\mathbb{C}^n\hookrightarrow\mathbb{C}^{n+1}$ (first n coordinates) induces an embedding $f_n:FI_n\hookrightarrow FI_{n+1}$ and $S_n\hookrightarrow S_{n+1}$

$$f_n^* : A^*(FI_{n+1}) \twoheadrightarrow A^*(FI_n)$$
 (set $x_{n+1} = 0$)

 \Rightarrow The direct limit of $A^*(Fl_n)$ contains the polynomial ring $\mathbb{Z}[x_1, x_2, \ldots]$.

Fact (Stability of Schubert class).

$$f_n^*(\sigma_w^{(n+1)}) = \sigma_w^{(n)}, \quad w \in S_n$$

 $\Rightarrow \exists !$ a polynomial representative of the limit $\sigma_w^{(\infty)}$, the Schubert polynomial $\mathfrak{S}_w(x)$

$$\mathfrak{S}_w \cdot \mathfrak{S}_v = \sum_{u \in S_\infty} c^u_{wv} \mathfrak{S}_u \quad \text{ in } \mathbb{Z}[x_1, x_2, \dots]$$

T. Matsumura (ICU) March 26, 2021 3/16

Algebraic Cobordism Ω^*

Oriented cohomology theory A*

- A functor: X (smooth "manifolds") $\mapsto A^*(X)$ (graded rings)
- pushforward, projective bundle formula, extended homotopy property
- Chern classes
- Fundamental classes of "submanifolds with mild singularities (l.c.i)"

e.g.

Chow ring $CH^*(X)$, (connective) K-theory $CK^*(X)$

Algebraic Cobordism $\Omega^*(X)$ by Levine-Morel is the universal one

T. Matsumura (ICU)

Chern classes, Formal group law, Lazard ring

Line bundles L, M over X, $F_A(u, v) = u + v + (\text{higher degree}) \in A^*(\text{pt})[[u, v]].$

$$c_1^A(L\otimes M)=F_A(c_1(L),c_1(M))$$

There is $\chi_A(u) \in A^*(\mathsf{pt})[[u]]$ such that $F_A(u,\chi(u)) = 1 \implies c_1^A(L^{\vee}) = \chi_A(c_1^A(L))$.

Example

- Chow ring $F_{CH}(u, v) = u + v, \quad \chi_{CH}(u) = -u$
- $F_K(u,v) = u + v uv$, $\chi_K(u) = -u/(1-u)$ K-theory

Algebraic Cobordism Ω*

 $\Omega^*(\mathsf{pt}) = \mathbb{L}$ (Lazard ring) \cong a polynomial ring with infinite variables

$$c_1^\Omega(L\otimes M)=F_\Omega(c_1(L),c_1(M))=c_1^\Omega(L)+c_1^\Omega(M)+\sum_{i,j}c_{i,j}c_1^\Omega(L)^ic_1^\Omega(M)^j$$
 $(c_{i,j}\in\mathbb{L})$

T. Matsumura (ICU) 5/16

Cobordism ring of flag varieties

Theorem (Hornbostel-Kiritchenko).

$$\Omega^*(FI_n) \cong \mathbb{L}[x_1,\ldots,x_n]/\mathbb{S}_n, \quad c_1((\mathcal{U}_i/\mathcal{U}_{i-1})^{\vee}) \mapsto x_i$$

where \mathbb{S}_n is the ideal of symmetric polynomials in x_1, \ldots, x_n in positive degree.

$$i_n: FI_n \to FI_{n+1}$$
 induces $i_n^*: \Omega^*(FI_{n+1}) \to \Omega^*(FI_n) \quad (\cdots \text{ set } x_{n+1} = 0)$

$$\lim_{\longleftarrow} \Omega^*(FI_n) \cong \mathbb{L}[[x_1, x_2, x_3, \dots]]_{bd}/\mathbb{S}_{\infty}$$

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 900

T. Matsumura (ICU)

"Schubert classes" in cobordism

A Schubert variety $X_w^{(n)}$ has at worst rational singularities (up to K-theory it behaves nice)

- $\Rightarrow X_w^{(n)}$ may not be a local complete intersection
- \Rightarrow the class of $X_w^{(n)}$ in $\Omega^*(Fl_n)$ may not be well-defined

Problem

What can replace the Schubert classes in Ω^* ?

An answer:

The class of a resolution of $X_w^{(n)}$ in $\Omega^*(Fl_n)$ could be a replacement of the Schubert class

 \Rightarrow We can consider Bott–Samelson resolutions (Bott–Samelson classes in $\Omega^*(Fl_n)$)

Problem

Do Bott-Samelson classes have the stability?

An answer: Yes. We can consider the limit class in $\lim_{\longleftarrow} \Omega^*(Fl_n)$.

←ロト ←団 ト ← 重 ト ・ 重 ・ 夕 Q で

7/16

T. Matsumura (ICU) March 26, 2021

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2.
- 3.
- 4.
- 5.

e.g
$$w = 1342$$

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2. Delete the boxes on the right and below of each •.
- 3.
- 4.
- 5.

e.g
$$w = 1342$$

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2. Delete the boxes on the right and below of each •.
- 3. Call the remaining boxes the diagram of w, and denote by D(w)
- 4.
- 5.

e.g
$$w = 1342$$

Diagram of $w \in S_n$ and essential boxes

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2. Delete the boxes on the right and below of each •.
- 3. Call the remaining boxes the diagram of w, and denote by D(w)
- 4. The south east corners of D(w) are essential boxes $(p_1, q_1), \ldots, (p_s, q_s)$
- 5.

e.g
$$w = 1342$$

$$(p_1, q_1) = (3, 2)$$

4 D > 4 B > 4 E > 4 E > E 990

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2. Delete the boxes on the right and below of each •.
- 3. Call the remaining boxes the diagram of w, and denote by D(w)
- 4. The south east corners of D(w) are essential boxes $(p_1, q_1), \ldots, (p_s, q_s)$
- 5. Let r_i be the number of bullets in the northwest of (p_i, q_i) .

e.g
$$w = 1342$$

$$(p_1, q_1) = (3, 2)$$

 $r_1 = 1$

Diagram of $w \in S_n$ and essential boxes

- 1. Consider the transpose of the permutation matrix of w and place \bullet in the position of 1.
- 2. Delete the boxes on the right and below of each •.
- 3. Call the remaining boxes the diagram of w, and denote by D(w)
- 4. The south east corners of D(w) are essential boxes $(p_1,q_1),\ldots,(p_s,q_s)$
- 5. Let r_i be the number of bullets in the northwest of (p_i, q_i) .

Fact: Let $F_i = \langle e_{n-i+1}, \dots, e_n \rangle$ (F_{\bullet} the reference flag). Then we have

$$U_{\bullet} \in X_w \Leftrightarrow \dim(U_{p_i}, E/F_{n-q_i}) \geq p_i - r_i, \forall i = 1, \dots, s.$$

e.g w = 1342

$$(p_1,q_1)=(3,2)$$

 $r_1=1$
 $U_{ullet}\in X_{1342}\Leftrightarrow \dim(U_3\cap F_2)\geq 2$

Bott-Samelson Resolutions

Bott-Samelson variety

$$v \in S_n$$
 with $r := \ell(v)$ $\underline{v} = s_{i_1} s_{i_2} \cdots s_{i_r}$ reduced word

 P_i : *i*-th minimal parabolic subgroup in G_n

$$BS(\underline{v}) = w_0 P_{i_1} \times_B P_{i_2} \times_B \cdots \times_B P_{i_r}/B$$

 $BS(\underline{v})$ is smooth and has dimension r.

Magyar's description by fiber product [Magyar 1998]

$$BS(\underline{v}) \cong \{F_{\bullet}\} \times^{G/P_{i_{1}}} FI_{n} \times^{G/P_{i_{2}}} \cdots \times^{G/P_{i_{r}}} FI_{n}$$

$$([g_{1}, \dots, g_{r}] \mapsto ([w_{0}], [g_{1}], [g_{1}g_{2}], \dots, [g_{1} \cdots g_{r}]))$$

$$= \{(U_{\bullet}^{[0]}, \dots, U_{\bullet}^{[r]}) \in (FI_{n})^{r+1} \mid U_{i}^{[k-1]} = U_{i}^{[k]}, i \neq i_{k}, \forall k\} \quad (U_{\bullet}^{[0]} := F_{\bullet})$$

Bott-Samelson Resolution of Schubert Variety

Let $w \in S_n$, $w_0^{(n)}$ the longest in S_n . Bott-Samelson resolution of X_w is

$$BS(w_0^{(n)}w) \to X_w \qquad (U_{ullet}^{[0]}, \dots, U_{ullet}^{[r]}) \mapsto U_{ullet}^{[r]}$$

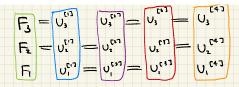
where $r := \ell(w_0^{(n)} w)$.

T. Matsumura (ICU) March 26, 2021

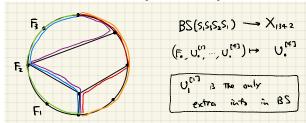
Example

$$w = 1342 = s_2 s_3, \quad w_0^{(4)} = s_1 s_2 s_3 s_1 s_2 s_1, \quad \underline{w_0^{(4)} w} = s_1 s_3 s_2 s_1$$

 $BS(s_1 s_3 s_2 s_1) \cong \{F_{\bullet}\} \times^{G/P_1} FI_4 \times^{G/P_3} FI_4 \times^{G/P_2} FI_4 \times^{G/P_1} FI_4$



Elnitsky's Rhombic Tiling [Elnitsky 1997]



◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ 壹 ● りへで

Stability of BS resolutions

Theorem (Hudson-M.-Perrin)

Let $w \in S_n$ and fix $\underline{w_0^{(n)}w}$. Set $\underline{w_0^{(n+1)}w} := s_1 \cdots s_n w_0^{(n)}w$.

Then the natural embedding $f_n: Fl_n \to Fl_{n+1}$ induces the following fiber diagram

$$BS(\underline{w_0^{(n)}w}) \longrightarrow BS(\underline{w_0^{(n+1)}w})$$

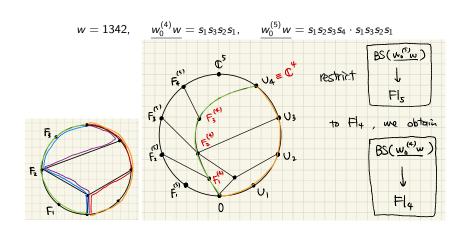
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$FI_n \longrightarrow FI_{n+1}$$

11 / 16

T. Matsumura (ICU) March 26, 2021

Example



"Schubert classes" in cobordism

 $[BS(w_0^{(n)}w) o FI_n]$ the class of a BS resolution of X_w in $\Omega^*(FI_n)$

Theorem (Hudson-M.-Perrin)

Let $w \in S_n$ and fix $w_0^{(n)}w$.

Set $\underline{w_0^{(m+1)}w} = s_1s_2\cdots s_m\underline{w_0^{(m)}w}$ inductively for all $m\geq n$.

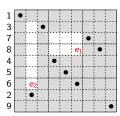
- $f_m^*[BS(w_0^{(m+1)}w) \to FI(\mathbb{C}^{m+1})] = [BS(w_0^{(m)}w) \to FI(\mathbb{C}^m)]$
- ullet There is a corresponding unique element $\mathcal{S}_w(x)$ in the limit $\mathbb{L}[[x_1,x_2,x_3,\dots]]_{bd}/\mathbb{S}_\infty$
- -Note $S_w(x)$ depends on the choice $\underline{v}^{(n)} = \underline{w_0^{(n)}w}$. To emphasize this, we write $S_w^{\underline{v}^{(n)}}(x)$.
- -Hudson-M.-Perrin computed $S_w(x)$ for dominant permutations w in the case of *infinitesimal cohomology theory*, using divided difference operators.

13 / 16

T. Matsumura (ICU) March 26, 2021

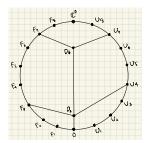
Another type of resolutions in vexillary case

Example. w = 137845629



$$\begin{aligned} &(p_1,q_1) = (4,6), & r_1 = 2 \\ &(p_2,q_2) = (7,2), & r_2 = 1 \end{aligned} \\ &\begin{cases} \dim(U_4 \cap F_3) \geq 2 \\ \dim(U_7 \cap F_7) \geq 6 \end{cases} \Leftrightarrow U_{\bullet} \in X_w$$

Define
$$Z_w:=\{(D_2,D_4,U_{ullet})\mid U_{ullet}\in X_w,\ D_2\subset U_4\cap F_3,\ D_6\subset U_7\cap F_7\}$$



$$Z_w \to X_w$$

$$(D_2, D_6, U_{\bullet}) \mapsto U_{\bullet}$$

is a resolution of singularities

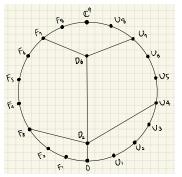
i.e., ess. boxes lined down from NE to SW The "rhombic tiling" looks like leaf venation

Bott–Samelson type of description of Z_w

As a tower of partial flag varieties

$$Gr(2; F_3) \leftarrow Gr(4; F_7/D_2) \longleftarrow FI_{\geq 1}(\mathbb{C}^9/D_6) \leftarrow FI_{\geq 2}(U_7/D_2) \leftarrow FI(U_4) = Z_w$$

$$D_2 \qquad D_6 \qquad U_7 \subset U_8 \qquad U_4 \subset U_5 \subset U_6 \qquad U_1 \subset U_2 \subset U_3$$



$$\{F_{\bullet}\} \times^{FI_{\{3,...,8\}}} FI_{\{2,...,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,6\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,4,...,8\}} \times^{FI_{\{4,...,8\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,6,7,8\}}} FI_{\{2,6,7,8\}} F$$

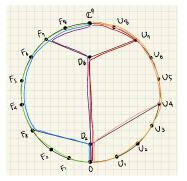
T. Matsumura (ICU) March 26, 2021

Bott–Samelson type of description of Z_w

As a tower of partial flag varieties

$$Gr(2; F_3) \leftarrow Gr(4; F_7/D_2) \longleftarrow FI_{\geq 1}(\mathbb{C}^9/D_6) \leftarrow FI_{\geq 2}(U_7/D_2) \leftarrow FI(U_4) = Z_w$$

$$D_2 \qquad D_6 \qquad U_7 \subset U_8 \qquad U_4 \subset U_5 \subset U_6 \qquad U_1 \subset U_2 \subset U_3$$



$$\{F_{\bullet}\} \times^{FI_{\{3,...,8\}}} FI_{\{2,...,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,6\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,4,...,8\}} \times^{FI_{\{4,...,8\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,6,7,8\}}} FI_{\{2,6,7,8\}} FI_$$

T. Matsumura (ICU) March 26, 2021

<ロト <部ト < 注 ト < 注 ト

Bott-Samelson type of description of Z_{w}

$$Gr(2; F_3) \leftarrow Gr(4; F_7/D_2) \leftarrow FI_{\geq 1}(\mathbb{C}^9/D_6) \leftarrow FI_{\geq 2}(U_7/D_2) \leftarrow FI(U_4)$$

$$\{F_{\bullet}\} \times^{FI_{\{3,...,8\}}} FI_{\{2,...,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,6\}}} FI_{\{2,6,7,8\}} \times^{FI_{\{2,7,8\}}} FI_{\{2,4,...,8\}} \times^{FI_{\{4,...,8\}}} FI_9$$

$$\{F_{\bullet}\} \times^{G/P(3)} G/P(2) \times^{G/P(2,7)} G/P(2,6) \times^{G/P(2,6,9)} G/P(2,6) \times^{G/P(2,7)} G/P(2,4) \times^{G/P(4)} G/B$$

$$w_0 P(3) \times_{P(2)} P(2,7) \times_{P(2,6)} P(2,6,9) \times_{P(2,6)} P(2,7) \times_{P(2,4)} P(4)/B$$

4日 > 4周 > 4 至 > 4 至 > 三