Homotopy Classification of 4-dimensional Toric Orbifolds

Jongbaek Song
(jointly with X . Fu and T. So)
arXiv:2011.13537
School of Mathematics, KIAS

Toric Topology 2021 in Osaka
March 24-26, 2021

Motivation and Question

Cohomological rigidity problem

For two (quasi)toric manifolds M and N,

$$
H^{*}(M ; \mathbb{Z}) \cong H^{*}(N ; \mathbb{Z}) \stackrel{?}{\Longrightarrow} M \cong N .
$$

- No counter-example has beed found so far.

Question

For two toric orbifolds X and Y,

$$
H^{*}(X ; \mathbb{Z}) \cong H^{*}(Y ; \mathbb{Z}) \xlongequal{?} X \cong Y
$$

- \exists many counter-examples in weighted projective spaces.
- e.g., $H^{*}\left(\mathbb{C P}_{1,2,3}^{2} ; \mathbb{Z}\right) \cong H^{*}\left(\mathbb{C P}_{1,1,6}^{2} ; \mathbb{Z}\right)$, but $\mathbb{C P}_{1,2,3}^{2} \nsubseteq \mathbb{C P}_{1,1,6}^{2}{ }^{1}$
- However, $\mathbb{C P}_{1,2,3}^{2} \simeq \mathbb{C P}_{1,1,6}^{2}{ }^{1}$

[^0]
Question and Theorem

Modified question

For two toric orbifolds X and Y,

$$
H^{*}(X ; \mathbb{Z}) \cong H^{*}(Y ; \mathbb{Z}) \xrightarrow{(?)} X \simeq Y
$$

- This is true for all weighted projective spaces.

Theorem (Fu-So-S

Let X and Y be two 4-dimensional toric orbifolds such that $H^{3}(X ; \mathbb{Z})$ and $H^{3}(Y ; \mathbb{Z})$ have no 2-torsion. Then,

$$
X \simeq Y \text { if and only if } H^{*}(X ; \mathbb{Z}) \cong H^{*}(Y ; \mathbb{Z})
$$

Toric orbifolds

- P : simple polytope.
- $\lambda: \mathcal{F}(P) \rightarrow \mathbb{Z}^{\operatorname{dim} P}$ such that
$\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)\right\}$ is linearly independent whenever $\bigcap_{j=1}^{k} F_{i_{j}} \neq \emptyset$.

Definition (Constructive definition)

$$
X(P, \lambda)=\left(P \times T^{\operatorname{dim} P}\right) /{\sim_{\lambda}}_{\lambda}
$$

where $(x, t) \sim_{\lambda}(y, s)$, whenever $x=y$ and $t^{-1} s \in T_{F(x)}$.

When $\operatorname{dim} P=2$,

- $P:(n+2)$-gon. $(n \geq 1)$
- $\lambda: \mathcal{F}(P) \rightarrow \mathbb{Z}^{2}$ such that

$$
\left\{\lambda\left(F_{i}\right), \lambda\left(F_{i+1}\right)\right\} \text { is linearly independent for } i=1, \ldots, n+2
$$

Pictorial description of a 4-dimensional toric orbifold

1. T^{2}-orbits and the orbifold structure.

2. Cofibration. $\left(S^{3} / G \xrightarrow{f} \bigvee S^{2} \longrightarrow X\right)$

Topology of 4-dimensional toric orbifold X.

1. $\pi_{1}(X)=1$.
2. homology groups are:

i	0	1	2	3	4
$H_{i}(X ; \mathbb{Z})$	\mathbb{Z}	0	$\mathbb{Z}^{n} \oplus \mathbb{Z}_{m}$	0	\mathbb{Z}

3. (Homology decomposition theorem implies...)

$$
X \simeq\left(\bigvee_{n} S^{2} \vee P^{3}(m)\right) \cup_{f} e^{4}
$$

for some attaching map $f: S^{3} \rightarrow \bigvee_{n} S^{2} \vee P^{3}(m)$, where $P^{3}(m)$ denotes the $\bmod m$ Moore space, namely, the cofiber of the degree m map on S^{2}.

Cellular basis

Let $\mathscr{C}_{n, m}$ be the category of mapping cones

$$
C_{f}:=\left(\bigvee_{i=1}^{n} S_{i}^{2} \vee P^{3}(m)\right) \cup_{f} e^{4}
$$

	$i=2$	$i=3$	$i=4$
$H_{i}\left(C_{f} ; \mathbb{Z}\right)$	$\begin{aligned} & \mathbb{Z}^{n}\left\langle\mu_{1}, \ldots, \mu_{n}\right\rangle \oplus \mathbb{Z}_{m}\langle\nu\rangle \\ & \cdot \mu_{i} \leftrightarrow S_{i}^{2} ; \\ & \quad \cdot \nu \leftrightarrow \text { the 2-cell of } P^{3}(m) \end{aligned}$	0	$\mathbb{Z}\langle\epsilon\rangle$
$H^{i}\left(C_{f} ; \mathbb{Z}\right)$	$\begin{gathered} \mathbb{Z}^{n}\left\langle u_{1}, \ldots, u_{n}\right\rangle \\ \cdot u_{i}: \text { dual to } \mu_{i} . \end{gathered}$	$\mathbb{Z}_{m}\langle v\rangle$	$\mathbb{Z}\langle e\rangle$
$H^{i}\left(C_{f} ; \mathbb{Z}_{m}\right)$	$\begin{aligned} & \left(\mathbb{Z}_{m}\right)^{n+1}\left\langle\bar{u}_{1}, \ldots, \bar{u}_{n}, \bar{v}\right\rangle \\ & \cdot \bar{u}_{i}: \bmod m \text { image of } u_{i} ; \\ & \cdot \bar{v}: \text { dual to } \nu . \end{aligned}$	$\mathbb{Z}_{m}\langle\beta(\bar{v})\rangle$	$\mathbb{Z}_{m}\langle\bar{e}\rangle$

(1) Cup product in $H^{*}\left(C_{f} ; \mathbb{Z}\right)$ and $H^{*}\left(C_{f} ; \mathbb{Z}_{m}\right)$

Definition ('cellular cup product representation' of C_{f})

$$
M_{\text {cup }}(f):=(A, \mathbf{b}, c) \in \operatorname{Mat}_{n}(\mathbb{Z}) \oplus\left(\mathbb{Z}_{m}\right)^{n} \oplus \mathbb{Z}_{m}
$$

such that

1. $u_{i} \cup u_{j}=a_{i j} e$, where $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$;
2. $\bar{u}_{i} \cup \bar{v}=b_{i} \bar{e}$, where $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$;
3. $\bar{v} \cup \bar{v}=c \bar{e}$.
(2) Cellular map $\psi: C_{f^{\prime}} \rightarrow C_{f}$ for $C_{f}, C_{f^{\prime}} \in \mathscr{C}_{n, m}$

Definition ('cellular map representation' of $\psi: C_{f^{\prime}} \rightarrow C_{f}$)

$$
M(\psi):=(W, \mathbf{y}, z) \in \operatorname{Mat}_{n}(\mathbb{Z}) \oplus\left(\mathbb{Z}_{m}\right)^{n} \oplus \mathbb{Z}_{m}
$$

such that

1. $\psi_{\mathbb{Z}}^{*}\left(u_{j}\right)=\sum_{i=1}^{n} w_{i j} u_{i}^{\prime}$, where $W=\left(w_{i j}\right)_{1 \leq i, j \leq n}$;
2. $\psi_{\mathbb{Z}_{m}}^{*}(\bar{v})=\sum_{i=1}^{n} y_{i} \bar{u}_{i}^{\prime}+z \bar{v}^{\prime}$, where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), z \in \mathbb{Z}_{m}$.

Homotopy theory of complexes in $\mathscr{C}_{n, 1}$

- We consider a mapping cone C_{f} with $f: S^{3} \rightarrow \bigvee_{i=1}^{n} S_{i}^{2}$.
- $\mathscr{C}_{n, 1}$ includes
- all quasitoric manifolds of dimension 4;
- in general, 4-dimensional toric orbifolds $X(P, \lambda)$ with $H^{3}=0$, e.g. (P, λ) contains at least one 'smooth' vertex.
- other CW-complexes which may not be realizable as toric spaces.
- $M_{\text {cup }}\left(C_{f}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$.
- $M(\psi) \in \operatorname{Mat}_{n}(\mathbb{Z})$ for a cellular map $\psi: C_{f} \rightarrow C_{f^{\prime}}$.
- 'Hilton-Milnor theorem' implies

$$
f \simeq \sum_{i=1}^{n} a_{i} \eta_{i}+\sum_{1 \leq j<k \leq n} a_{j k} \omega_{j k}
$$

for some integers a_{i} and $a_{j k}$, where

$$
\begin{aligned}
& -\eta_{i}: S^{3} \xrightarrow{\text { Hopf }} S_{i}^{2} \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2} \\
& \text { - } \omega_{j k}: S^{3} \xrightarrow{\left[\iota_{1}, \iota_{2}\right]} S_{j}^{2} \vee S_{k}^{2} \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2}
\end{aligned}
$$

Lemma. $M_{\text {cup }}\left(C_{f}\right)=\left(\begin{array}{cccc}a_{1} & a_{12} & \cdots & a_{1 n} \\ a_{12} & a_{2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & \cdots & a_{n} .\end{array}\right)$

Theorem

$$
C_{f} \simeq C_{f^{\prime}} \text { if and only if } H^{*}\left(C_{f}\right) \cong H^{*}\left(C_{f^{\prime}}\right) .
$$

Homotopy theory of complexes in $\mathscr{C}_{n, m}$ with $m>1$

- We consider a mapping cone C_{f} with $f: S^{3} \rightarrow \bigvee_{i=1}^{n} S_{i}^{2} \vee P^{3}(m)$.
- $\mathscr{C}_{n, m}$ includes all toric orbifolds of dimension 4.
- 'Hilton-Milnor theorem' implies

$$
f \simeq \sum_{i=1}^{n} a_{i} \eta_{i}+\sum_{1 \leq j<k \leq n} a_{j k} \omega_{j k}+\eta_{P}+\sum_{i=1}^{n} \omega_{i P},
$$

for some integers a_{i} and $a_{j k}$, where

$$
\begin{aligned}
& -\eta_{i}: S^{3} \xrightarrow{\text { Hopf }} S_{i}^{2} \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2}, \\
& -\omega_{j k}: S^{3} \xrightarrow{\left[\iota_{1}, \iota_{2}\right]} S_{j}^{2} \vee S_{k}^{2} \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2}, \\
& -\eta_{P}: S^{3} \xrightarrow{g} P^{3}(m) \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2} \vee P^{3}(m), \\
& -\omega_{i P}: S^{3} \xrightarrow{g_{i}} P^{4}(m) \xrightarrow{\left[\kappa_{1}, \kappa_{2}\right]} S_{i}^{2} \vee P^{3}(m) \hookrightarrow \bigvee_{\ell=1}^{n} S_{\ell}^{2} \vee P^{3}(m) .
\end{aligned}
$$

Result for $\mathscr{C}_{n, m}$

Proposition

For $C_{f} \in \mathscr{C}_{n, m}$, let

$$
M_{c u p}\left(C_{f}\right)=\left(\left(a_{i j}\right)_{1 \leq i, j \leq n},\left(b_{1}, \ldots, b_{n}\right), c\right) \in \operatorname{Mat}_{n}(\mathbb{Z}) \oplus\left(\mathbb{Z}_{m}\right)^{n} \oplus \mathbb{Z}_{m}
$$

Then, $C_{f} \simeq \hat{C} \vee P^{3}(m)$ for some $\hat{C} \in \mathscr{C}_{n, 1}$ if and only if the system of mod-m linear equations

$$
(\star) \quad\left\{\begin{array}{ccc}
a_{11} y_{1}+\cdots+a_{1 n} y_{n} & \equiv-b_{1} \\
\vdots & & \\
a_{n 1} y_{1}+\cdots+a_{n n} y_{n} & \equiv-b_{n} \\
b_{1} y_{1}+\cdots+b_{n} y_{n} & \equiv-c
\end{array}\right.
$$

$$
(\bmod m)
$$

has a solution.

Main result (1) for 4-dimensional toric orbifolds

Theorem 1

Let X be 4 -dimensional toric orbifold such that $H^{3}(X ; \mathbb{Z})=\mathbb{Z}_{m}$ for some odd $m>1$. Then,

$$
X \simeq \hat{X} \vee P^{3}(m)
$$

for some $\hat{X} \in \mathscr{C}_{n, 1}$ such that $H^{i}(X ; \mathbb{Z})=H^{i}(\hat{X} ; \mathbb{Z})$ for $i \neq 3$.

Sketch of proof.

1. $m=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$ prime factorization with odd primes p_{1}, \ldots, p_{s}.
2. $X \simeq{ }_{\left(p_{i}\right)} \hat{X} \vee P^{3}\left(p_{i}^{r_{i}}\right)$ for each $i=1, \ldots, s$.
3. $\bmod p_{i}^{r_{i}}$ version of (\star) has a solution for each i.
4. Chinese Remainder thm gives a solution of mod m version of (\star).
5. The result follows from the Proposition above.

Main result (2) for 4 -dimensional toric orbifolds

Theorem 2

Let X and Y be two 4-dimensional toric orbifolds such that $H^{3}(X ; \mathbb{Z})$ and $H^{3}(Y ; \mathbb{Z})$ have no 2-torsion. Then,

$$
X \simeq Y \text { if and only if } H^{*}(X ; \mathbb{Z}) \cong H^{*}(Y ; \mathbb{Z})
$$

Sketch of proof.

1. Since 'only if' part is obvious, we show 'if' part.
2. Theorem 1 implies

$$
X \simeq \hat{X} \vee P^{3}(m) \quad \text { and } \quad Y \simeq \hat{Y} \vee P^{3}(m)
$$

for some $\hat{X}, \hat{Y} \in \mathscr{C}_{n, 1}$.
3. Hypothesis implies $H^{*}(\hat{X}) \cong H^{*}(\hat{Y})$.
4. The result for $\mathscr{C}_{n, 1}$ shows $\hat{X} \simeq \hat{Y}$, which yields $X \simeq Y$.

Thank you for your attention.

[^0]: ${ }^{1}$ A. Bahri, M. Franz, D. Notbohm, and N. Ray, The classification of weighted projective spaces. Fund. Math. 220 (2013), no. 3, 217-226.

