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Notations and Terminology

Oriented Graph with legs

Γ = (V, E) V–set of vertices ; E = E ∪ L where E–set of
edges, L–set of legs
∀e ∈ E let i(e)–initial vertex , t(e)–terminal vertex
e-oppositely directed edge with i(e) = t(e) and t(e) = i(e).
A leg l ∈ L has only initial vertex and no terminal vertex.
For p ∈ V let

Ep := {f ∈ E | i(f ) = p}

We say Γ-regular m-valent if |Ep| = m for every p ∈ V.
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Motivation

(Γ, α)-GKM graphs and its graph equivariant cohomology
H(Γ, α) were defined by Guillemin and Zara ([GZ]) to
enable combinatorial study of the topology of GKM
manifolds. In particular,

H∗T (M) ' H(Γ, α)

Torus graphs were defined by Maeda, Masuda and Panov
([MMP]) to study the cohomology ring structure of torus
manifolds.
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GKM graph with legs

Γ = (V, E)- regular m-valent graph
∇ = {∇e | e ∈ E} called connection if ∇e : Ei(e) → Et(e) is
a bijection satisfying:

∇ē = ∇−1
e ;

∇e(e) = ē.

α : E −→ H2(BT ) = Hom(T n,S1)-called axial function
satisfying:

α(ē) = ±α(e) ∀ e ∈ E ;
α(Ep) = {α(ε) | ε ∈ Ep}– pairwise linearly independent
∀ p ∈ V,
α(ε)− α(∇e(ε)) ≡ 0(mod α(e)) congruence relation
∀ e ∈ E and ∀ ε ∈ Ei(e).

Then G = (Γ,∇, α) is called a GKM graph with legs.
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Motivation from theory of toric hyperKahler varieties

By the theory of toric HyperKahler varieties ([BD00],
[K00],[HP]) the tangential representation on each fixed
point set is isomorphic to T n-action on T ∗(Cn) given by
(t1, . . . , tn) · (z1, . . . , zn,w1, . . . ,wn) :=
(t1 · z1, . . . , tn · zn, t−1

1 · w1, . . . , t−1
n · wn), where

(t1, . . . , tn) ∈ T n, z = (z1, . . . , zn) ∈ Cn and
(w1, . . . ,wn) ∈ T ∗z (Cn).
Harada and Proudfoot [HP] found a residual S1 action on
the toric hyperKahler variety so that the tangential
representation at each fixed point may be regarded as
T ∗(Cn) with T n × S1-action given by
(t1, . . . , tn, r) · (z1, . . . , zn,w1, . . . ,wn) :=
(t1 · z1, . . . , tn · zn, r · t−1

1 ·w1, . . . , r · t−1
n ·wn), where r ∈ S1.
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Relation with GKM graphs with legs

Thus the toric hyperKahler varieties with T n × S1-action
give rise to 2n-valent GKM graphs with legs with axial
functions

{α1, . . . , αn,−α1 + x , . . . ,−αn + x}

with 〈α1, . . . , αn〉 ' H2(BT n) and 〈x〉 ' H2(BS1).
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GKM graphs modelled by T n × S1-action on T ∗(Cn)

G = (Γ, α,∇)–be a 2n-valent GKM graph with legs with
axial function
α : E −→ H2(BT n × BS1) ' t∗Z ⊕ Z · x satisfying the
following two conditions:

1 ∀ p ∈ V
Ep = {ε+

1 , . . . , ε
+
n , ε

−
1 , . . . , ε

−
n }

such that α(ε+
j ) + α(ε−j ) = x for 1 ≤ j ≤ n.

2 {α(ε+
1 ), . . . , α(ε+

n ), x} span t∗Z ⊕ Z · x .

The pair {ε+
j , ε
−
j } such that α(ε+

j ) + α(ε−j ) = x is called a
1-dimensional pair in Ep and x is called a residual basis.
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Hyperplanes in G

Let G = (Γ, α,∇) be a T ∗(Cn)-modelled GKM graph.

A (2n − 2)-valent GKM subgraph L := (L, αL,∇L) is called
a hyperplane if L is

1 T ∗(Cn−1)-modelled with residual basis x .

2 L is maximal with these properties.

V. Uma Equivariant cohomology ring GKM graph modeled by T n × S1-action on T∗Cn (Based on joint work with Shintaro Kuroki)



Notations and Terminology

Example

a

b
x − a

x − b
−a

a + x

a− b + x

b − a

−b

b + xb − a + x

a− b

Figure: Example of GKM graph with legs associated to T ∗(CPn)
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Notations and Terminology

Example of hyperplane

b

x − b

−b

b + x
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Notations and Terminology

Graph Equivariant Cohomology

Let G = (Γ, α,∇) be a T ∗(Cn)-modelled GKM graph.

The graph equivariant cohomology of G is

H∗(G) = {ϕ : V → H∗T (pt) | ϕ(i(e))−ϕ(t(e)) ≡ 0 (mod α(e))}

V. Uma Equivariant cohomology ring GKM graph modeled by T n × S1-action on T∗Cn (Based on joint work with Shintaro Kuroki)



Notations and Terminology

Ring structure of H∗(G)

Theorem: Let L = {L1, . . . ,Lm} set of all hyperplanes in G
satisfying the following

1 ∀L ∈ L there exists unique pair of halfspace H and its
opposite side H s.t H ∩ H = L.

2 ∀L′ ⊆ L the intersection
⋂

L∈L′ L is either empty or
connected.

Let H = {H1, . . . ,Hm,H1, . . . ,Hm} be the set of all halfspaces.
Let I = {H′ ⊆ H |

⋂
H∈H′ H = ∅}.

Then H∗(G) has the following presentation as Z-algebra

Z[X ,H1, . . . ,Hm,H1, . . . ,Hm]

I
where I is the ideal generated by the following elements

Hi + Hi − X for 1 ≤ i ≤ m∏
H∈H′ H whenever H′ ⊆ I.
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Simplicial complex ∆L

A vertex vi ∈ ∆L ↔ Li ∈ L

〈vi1 , vi2 , . . . , vik 〉 ∈ ∆L whenever Li1 ∩ · · · ∩ Lik 6= ∅

Consider G̃ = (Γ, α̃,∇) denote x-forgetful graph associated
to G.

Z[G̃] := Z[L1, . . . ,Lm]/J where J is the ideal generated by
Li1 · · · Lik whenever Li1 ∩ · · · ∩ Lik = ∅

If ∆L is a shellable simplicial complex then we can find a
canonical set of monomial generators for H∗(G̃) ' Z[G̃] as
a H∗T n (pt)-module.
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