Equivariant cohomology ring GKM graph modeled by $T^n \times S^1$ -action on $T^*\mathbb{C}^n$ (Based on joint work with Shintaro Kuroki)

V. Uma

I.I.T Chennai

Conference on Toric Topology 2021 Osaka

(ロ) (同) (三) (三) (三) (○)

Oriented Graph with legs

- Γ = (V, E) V−set of vertices ; E = E ∪ L where E−set of edges, L−set of legs
- $\forall e \in E \text{ let } i(e)$ -initial vertex , t(e)-terminal vertex
- \overline{e} -oppositely directed edge with $i(\overline{e}) = t(e)$ and $t(\overline{e}) = i(e)$.
- A leg $l \in L$ has only initial vertex and no terminal vertex.
- For $p \in \mathcal{V}$ let

$$\mathcal{E}_p := \{f \in \mathcal{E} \mid i(f) = p\}$$

• We say Γ -regular *m*-valent if $|\mathcal{E}_p| = m$ for every $p \in \mathcal{V}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Motivation

 (Γ, α)-GKM graphs and its graph equivariant cohomology H(Γ, α) were defined by Guillemin and Zara ([GZ]) to enable combinatorial study of the topology of GKM manifolds. In particular,

$$H^*_T(M) \simeq H(\Gamma, \alpha)$$

• Torus graphs were defined by Maeda, Masuda and Panov ([MMP]) to study the cohomology ring structure of torus manifolds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のへで

GKM graph with legs

- $\Gamma = (\mathcal{V}, \mathcal{E})$ regular *m*-valent graph
- ∇ = {∇_e | e ∈ E} called *connection* if ∇_e : E_{i(e)} → E_{t(e)} is a bijection satisfying:

•
$$\nabla_{\bar{e}} = \nabla_{e}^{-1};$$

• $\nabla_{e}(e) = \bar{e}.$

α : E → H²(BT) = Hom(Tⁿ, S¹)-called axial function satisfying:

•
$$\alpha(\bar{e}) = \pm \alpha(e) \forall e \in E;$$

- α(ε_p) = {α(ε) | ε ∈ ε_p}- pairwise linearly independent
 ∀ p ∈ V,
- $\alpha(\epsilon) \alpha(\nabla_{e}(\epsilon)) \equiv 0 \pmod{\alpha(e)}$ congruence relation $\forall e \in E \text{ and } \forall \epsilon \in \mathcal{E}_{i(e)}.$
- Then $\mathcal{G} = (\Gamma, \nabla, \alpha)$ is called a *GKM graph with legs*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Motivation from theory of toric hyperKahler varieties

- By the theory of *toric HyperKahler varieties* ([BD00], [K00],[HP]) the tangential representation on each fixed point set is isomorphic to T^n -action on $T^*(\mathbb{C}^n)$ given by $(t_1, \ldots, t_n) \cdot (z_1, \ldots, z_n, w_1, \ldots, w_n) :=$ $(t_1 \cdot z_1, \ldots, t_n \cdot z_n, t_1^{-1} \cdot w_1, \ldots, t_n^{-1} \cdot w_n)$, where $(t_1, \ldots, t_n) \in T^n, z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $(w_1, \ldots, w_n) \in T^*_z(\mathbb{C}^n)$.
- Harada and Proudfoot [HP] found a residual S^1 action on the toric hyperKahler variety so that the tangential representation at each fixed point may be regarded as $T^*(\mathbb{C}^n)$ with $T^n \times S^1$ -action given by $(t_1, \ldots, t_n, r) \cdot (z_1, \ldots, z_n, w_1, \ldots, w_n) :=$ $(t_1 \cdot z_1, \ldots, t_n \cdot z_n, r \cdot t_1^{-1} \cdot w_1, \ldots, r \cdot t_n^{-1} \cdot w_n)$, where $r \in S^1$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Relation with GKM graphs with legs

 Thus the toric hyperKahler varieties with Tⁿ × S¹-action give rise to 2n-valent GKM graphs with legs with axial functions

$$\{\alpha_1,\ldots,\alpha_n,-\alpha_1+\mathbf{X},\ldots,-\alpha_n+\mathbf{X}\}$$

with $\langle \alpha_1, \ldots, \alpha_n \rangle \simeq H^2(BT^n)$ and $\langle x \rangle \simeq H^2(BS^1)$.

(ロ) (同) (三) (三) (三) (○)

GKM graphs modelled by $T^n \times S^1$ -action on $T^*(\mathbb{C}^n)$

- G = (Γ, α, ∇)−be a 2*n*-valent GKM graph with legs with axial function
- α : E → H²(BTⁿ × BS¹) ≃ t^{*}_Z ⊕ Z ⋅ x satisfying the following two conditions:

• The pair $\{\epsilon_j^+, \epsilon_j^-\}$ such that $\alpha(\epsilon_j^+) + \alpha(\epsilon_j^-) = x$ is called a 1-dimensional pair in \mathcal{E}_p and x is called a residual basis.

<ロ> (四) (四) (三) (三) (三) (三)

Hyperplanes in \mathcal{G}

- Let $\mathcal{G} = (\Gamma, \alpha, \nabla)$ be a $T^*(\mathbb{C}^n)$ -modelled GKM graph.
- A (2n-2)-valent GKM subgraph $\mathbb{L} := (L, \alpha^L, \nabla^L)$ is called a *hyperplane* if \mathbb{L} is
 - ① $T^*(\mathbb{C}^{n-1})$ -modelled with residual basis x.

 - 2 \mathbb{L} is maximal with these properties.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ●

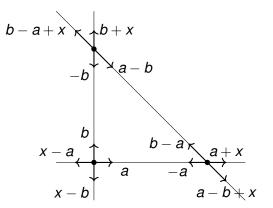


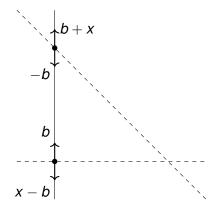
Figure: Example of GKM graph with legs associated to $T^*(\mathbb{CP}^n)$

A E > A E >

ъ

Notations and Terminology

Example of hyperplane



프 🕨 🗉 프

Notations and Terminology

Graph Equivariant Cohomology

• Let $\mathcal{G} = (\Gamma, \alpha, \nabla)$ be a $T^*(\mathbb{C}^n)$ -modelled GKM graph.

• The graph equivariant cohomology of \mathcal{G} is

 $H^*(\mathcal{G}) = \{ \varphi : \mathcal{V} \to H^*_T(\mathsf{pt}) \mid \varphi(i(e)) - \varphi(t(e)) \equiv 0 \pmod{\alpha(e)} \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Ring structure of $H^*(\mathcal{G})$

Theorem: Let $\mathcal{L} = \{L_1, \ldots, L_m\}$ set of all hyperplanes in \mathcal{G} satisfying the following

- $\forall L \in \mathcal{L}$ there exists *unique* pair of *halfspace* H and *its opposite side* \overline{H} s.t $H \cap \overline{H} = L$.
- ② $\forall \mathcal{L}' \subseteq \mathcal{L}$ the intersection $\bigcap_{L \in \mathcal{L}'} L$ is either empty or connected.

Let $\mathcal{H} = \{H_1, \dots, H_m, \overline{H_1}, \dots, \overline{H_m}\}$ be the set of all halfspaces. Let $\mathcal{I} = \{\mathcal{H}' \subseteq \mathcal{H} \mid \bigcap_{H \in \mathcal{H}'} H = \emptyset\}.$

Then $H^*(\mathcal{G})$ has the following presentation as \mathbb{Z} -algebra

$$\frac{\mathbb{Z}[X,H_1,\ldots,H_m,\overline{H_1},\ldots,\overline{H_m}]}{\mathcal{I}}$$

where $\ensuremath{\mathcal{I}}$ is the ideal generated by the following elements

•
$$H_i + \overline{H_i} - X$$
 for $1 \le i \le m$

•
$$\prod_{H \in \mathcal{H}'} H$$
 whenever $\mathcal{H}' \subseteq \mathcal{I}$.

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ ・ つ へ ()・

Simplicial complex $\Delta_{\mathcal{L}}$

• A vertex
$$v_i \in \Delta_{\mathcal{L}} \leftrightarrow L_i \in \mathcal{L}$$

•
$$\langle \mathbf{v}_{i_1}, \mathbf{v}_{i_2}, \dots, \mathbf{v}_{i_k} \rangle \in \Delta_{\mathcal{L}}$$
 whenever $L_{i_1} \cap \dots \cap L_{i_k} \neq \emptyset$

- Consider G̃ = (Γ, α̃, ∇) denote *x*-forgetful graph associated to G.
- $\mathbb{Z}[\widetilde{\mathcal{G}}] := \mathbb{Z}[L_1, \dots, L_m] / \mathcal{J}$ where \mathcal{J} is the ideal generated by $L_{i_1} \cdots L_{i_k}$ whenever $L_{i_1} \cap \cdots \cap L_{i_k} = \emptyset$
- If Δ_L is a shellable simplicial complex then we can find a canonical set of monomial generators for H^{*}(G̃) ≃ Z[G̃] as a H^{*}_{Tⁿ}(pt)-module.

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ ・ つ へ ()・

References

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- V. Guillemin, C. Zara, *1-skeleta, Betti numbers, and equivariant cohomology*, Duke Math. J. **107** (2001), 283–349.
- M. Harada, N. Proudfoot, Properties of the residual circle action on a hypertoric variety, Pacific J. of Math, Vol. 214, No. 2 (2004), 263–284.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- H. Maeda, M. Masuda, T. Panov, *Torus graphs and simplicial posets*, Adv. Math. **212** (2007), 458–483.

(A) (E) (A) (E)

ъ