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Toric varieties (resp., real toric varieties) are classified by fans (resp., mod 2 fans). More
generally, (real) toric spaces can be classified by pairs (K,λ) consisting of a simplicial complex K
and a (mod 2) characteristic map λ over K. It is known that the space obtained from a pair (K,λ)
is a smooth manifold if the simplicial complex K is a PL-sphere and λ is non-singular.

The classification of smooth (real) toric varieties for Picard number smaller than 4 has been
entirely achieved (see [1, 2]), so the next step is Picard number 4. The Picard number of a toric
variety over an (n − 1)-dimensional star-shaped PL-sphere K having m vertices is m − n. Thus,
it is natural to define the Picard number of K as Pic(K) = m − n. The wedge operation on a
vertex of a simplicial complex preserves both the PL-sphereness and the Picard number. Simplicial
complexes which cannot be described as the wedge of a lower dimensional simplicial complex are
called seeds. In [3], Choi and Park have described a way to construct the characteristic maps over
any wedged simplicial complex by using a puzzle starting from the characteristic maps over its
seed. In addition, they also showed there are at most finite seeds supporting a characteristic map.
More precisely, in this case when PicK = 4, we have n ≤ 11. Hence, toward the classification of
(real) toric manifolds of Picard number 4, we try to enumerate every seed PL-spheres of Picard
number 4 supporting a mod 2 characteristic map as the very first step.

As for the enumeration of seed PL-spheres supporting mod 2 characteristic maps, the classical
way was to find all PL-spheres and check the seedness and the existence of mod 2 characteristic
maps using the famous Garrison-Scott algorithm. This method leads us to get the complete list
up to n = 6.

In this work, we additionally develop the linear algebraic method using the condition of sup-
porting mod 2 characteristic functions. This method allowed us to obtain the result for n = 7 and
to show that the inequality n ≤ 11 is optimal as presented in the following table.

(n,m) (2, 6) (3, 7) (4, 8) (5, 9) (6, 10) (7, 11)
Number of Seed PLS
supporting chr. ftns

1 4 21 142 733 1190

Number of PLS 1 5 39 337 6257 ?
Number of Polytopes 1 5 37 322 ? ?

(n,m) (8, 12) (9, 13) (10, 14) (11, 15) (n, n+ 4) with n > 11
Number of Seed PLS
supporting chr. ftns

> 0 > 0 > 0 ≥ 2 0

Table 1. Data for the dimensions where the results have been obtained.

If time permits, I will present a website associated with a database containing all the known
results concerning the topological data of every known PL-spheres.

This is a joint work with Suyoung Choi and Hyuntae Jang.
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