Toward the enumeration of Picard number 4 (Real) Toric manifolds.

Mathieu Vallée

ENS Rennes, University of Rennes 1, Ajou University
Jointly with Suyoung Choi and Hyuntae Jang.

March 24, 2021
1. **Backgrounds**
 - Important definitions
 - Theorems

2. **The way to deal with the problem and store the obtained data**
 - How to enumerate every Toric manifolds
 - Database and website

3. **Known and new results**
 - History
 - STEP 1 of the process
 - New method
Table of Contents

1 Backgrounds
 • Important definitions
 • Theorems

2 The way to deal with the problem and store the obtained data
 • How to enumerate every Toric manifolds
 • Database and website

3 Known and new results
 • History
 • STEP 1 of the process
 • New method
Important definitions

Let K be a simplicial complex on $[m]$.

Definition 1 (Characteristic map).

A (non-singular) \mathbb{Z}_2-characteristic map over K is a map $\lambda : [m] \to \mathbb{Z}_2^n$. It is non-singular if it satisfies the so-called *non-singularity condition*:

$$\{i_1, \ldots, i_s\} \in K \iff \lambda(i_1), \ldots, \lambda(i_s) \text{ are linearly independant.}$$

$\Lambda(K) = \{\text{Characteristic maps over } K\}$.

$\mathbb{GL}_n(\mathbb{Z}_2) \curvearrowright \Lambda(K)$, orbits are D-J classes $\text{DJ}(K)$.

$\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m)$.

We find $\bar{\lambda} \in \mathcal{M}_{m,m-n}(\mathbb{Z}_2)$ such that $\lambda \bar{\lambda} = 0$.

Definition 2 (Dual characteristic map).

Such $\bar{\lambda}$ defines a dual characteristic map $\bar{\lambda} : [m] \to \mathbb{Z}_2^{m-n}$ over K.

A simplicial complex K is said *colorizable* if it supports a (dual) characteristic map.
Proposition 3.

Let K be a simplicial complex on $[m]$ of dimension $n - 1$, $\lambda \in \text{DJ}(K)$, and $\bar{\lambda}$ its dual. Let J be a subset of $[m]$. The following are equivalent:

1. $\bar{\lambda}(J^c)$ is a basis of \mathbb{Z}_2^{m-n};
2. $\lambda(J)$ is a basis of \mathbb{Z}_2^n.

So dual characteristic maps and characteristic maps share equivalent data.

Definition 4 (Wedge operation).

Let K be a simplicial complex on V and $p \in V$ being a vertex of K. The wedge of K as p is the simplicial complex on $V \cup \{p_1, p_2\}\{p\}$ defined as follows:

$$\text{Wed}_p(K) := (I \ast \text{Lk}_K(p)) \cup (\partial I \ast K\{p\}),$$

where I is the 1-simplex with vertices $\{p_1, p_2\}$, and $K \backslash F := \{\sigma \in K : F \not\subset \sigma\}$, for a face $F \in K$.

Mathieu Vallée
ENS Rennes, University of Rennes 1, Ajou University
Jointly with Suyoung Choi and Hyuntae Jang.
Simplicial complexes which are not wedges are called *seeds*.
Wedge operation: commutative and associative. We can define a more general wedge operation.

Definition 5 (Extended wedge operation, Bahri-Benderski-Cohen-Gtiler).

Let K be a simplicial complex on $[m]$, and $J = (j_1, \ldots, j_m) \in (\mathbb{N}^*)^m$. We define the wedged simplicial complex $K(J)$ as the simplicial complex obtained after performing $j_i - 1$ wedges on the vertex i for $i = 1, \ldots, m$.

Mathieu Vallée ENS Rennes, University of Rennes 1, Ajou University Jointly with Suyoung Choi and Hyuntae Jang.
Remark 6.

Any simplicial complex L which is not a seed can always be represented as a wedged simplicial complex $K(J)$ with K being a seed.

The combinatorial data of a simplicial complex L is a pair (K, J) with K a seed and J an m-tuple. But in toric topology, we are working on pairs (K, λ).

Question 7.

Is there a constructive way of obtaining $\Lambda(L)$ from $\Lambda(K)$ and J?

$$(\Lambda(K), J) \longrightarrow (\Lambda(K(J))).$$
Definition 8 (projection).

We define the *projection* of λ over K with respect to a vertex p of K as follows:

$$\text{proj}_p(\lambda)(w) := \lambda(w)/\langle\lambda(p)\rangle.$$

The projection is a characteristic map on the link of K at the vertex p. λ_1 and λ_2 are called p-adjacent if there exists a CM λ over $\text{Wed}_p(K)$ such that $\text{proj}_{p_1}(\lambda) = \lambda_1$ and $\text{proj}_{p_2}(\lambda) = \lambda_2$.

$G(J)$: 1-skeleton of $\Delta^J := \Delta^{j_1-1} \times \ldots \times \Delta^{j_m-1}$

its irreducible cycles are triangles and squares.

Definition 9 (Puzzle. Choi, Park, 2017).

A *puzzle* on a wedged simplicial complex $K(J)$, with K on $[m]$ and $J = (j_1, \ldots, j_m)$ is a map $\pi : V(G(J)) \rightarrow \text{DJ}(K)$.

A puzzle is called realizable if the image of the edges, resp. subsquares, of $G(J)$ are p-adjacent, resp. realizable.

A realizable puzzle creates a unique D-J class over $K(J)$.

Mathieu Vallée
ENS Rennes, University of Rennes 1, Ajou University
Jointly with Suyoung Choi and Hyuntae Jang.
Important theorems

- K supports $\lambda \iff \text{Wed}(K)$ supports λ';
- $\text{Pic}(K) = \text{Pic}(\text{Wed}(K))$;
- $\bar{\lambda}$ over a seed $\Rightarrow \bar{\lambda}$ is injective (so finite number of seed for a fixed Picard number). Namely, we have $m \leq 2^{\text{Pic}(K)} - 1$ (CHOI-PARK, 2017);
- Puzzle (CHOI-PARK, 2017):

$$\{\text{Realizable puzzles}\} \overset{1:1}{\leftrightarrow} \text{DJ}(K).$$

(the wedge operation is commutative and associative)
Table of Contents

1 Backgrounds
 • Important definitions
 • Theorems

2 The way to deal with the problem and store the obtained data
 • How to enumerate every Toric manifolds
 • Database and website

3 Known and new results
 • History
 • STEP 1 of the process
 • New method
Let p be a fixed Picard number.

The fundamental theorem for toric geometry: toric manifolds are classified by complete non-singular fans.

If a simplicial complex K supports a non-singular fan, then it always supports a mod 2 characteristic map.

The strategy is then to restrict our case to K’s which support a mod 2 characteristic map.

<table>
<thead>
<tr>
<th>Direct Garrison-Scott computation</th>
<th>Puzzle method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method description</td>
<td>Use the Garrison-Scott algorithm on $K(J)$ directly.</td>
</tr>
</tbody>
</table>
Proposition 10 (Choi-Jang-V, 2021).

The puzzle algorithm is more efficient than the traditional Garisson-Scott algorithm for finding characteristic maps over wedged simplicial complexes.

Thus the last proposition gives us the following methods for finding "every" real toric manifolds of Picard number p.

| STEP 1 | Find $CS(p) = \{\text{Colorizable seeds } K \text{ of Pic } p\}$ and DJ(K) |
|--|
| STEP 2 | Compute $D(K)$ (the characteristic map relation diagram for a puzzle) for every $K \in CS(p)$ |
| STEP 3 | Find the realizable puzzles $\pi : V(G(J)) \rightarrow DJ(K)$. |

Table: The steps of the process.

Remark 11.

- There are infinitely many PL-spheres of Picard number p but any given one can be calculated from this algorithm;
- The finite set $CS(p)$ can be stored in a database for any Picard number p.
See the Website.

The upcoming idea for the website is the following:

- A toric topologist wants to know about a specific simplicial complex L;
- She or he visits the website and inputs the maximal faces set of L;
- The website finds $L = K(J)$ and uses the puzzle algorithm to find the DJ classes over $K(J)$.
Table of Contents

1 Backgrounds
 • Important definitions
 • Theorems

2 The way to deal with the problem and store the obtained data
 • How to enumerate every Toric manifolds
 • Database and website

3 Known and new results
 • History
 • STEP 1 of the process
 • New method
Some historical results for (general) toric manifolds:

- Picard number 1 is trivial;
- Picard number 2 (1988, Kleinschmidt) using linear transformations and matroids;
- Picard number 3 (1991, Batyrev based on the work of Kleinschmidt and Sturmfels);

Enumeration of $CS(p)$ for small p:

- $CS(1) = \{\partial \Delta^1\}$;
- $CS(2) = \{\partial \Delta^1 \ast \partial \Delta^1\}$;
- $CS(3) = \{\partial \Delta^1 \ast \partial \Delta^1 \ast \partial \Delta^1, P_5, C_4^7\}$.
- $CS(4) = \ldots$
We focus on the STEP 1 of the process: finding all seed PL-spheres and their characteristic maps.

Classic way:

1. Find all PL-spheres (Bistellar move, lexicographic ordering);
2. Select the seeds among them;
3. Use the Garrison-Scott algorithm for finding every characteristic maps over them.

Why is it difficult? Up to $n = 11$, with 15 vertices: number of such simplicial complexes: $2^{(15 \choose 11)} = 2^{1365} \ldots$

Methods B-M or Lexico lowered this complexity but results obtained only up to $n = 6$ (3 months), $n = 7$ unreachable.

<table>
<thead>
<tr>
<th>(n,m)</th>
<th>(2, 6)</th>
<th>(3, 7)</th>
<th>(4, 8)</th>
<th>(5, 9)</th>
<th>(6, 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorizable seed PLS</td>
<td>1</td>
<td>4</td>
<td>21</td>
<td>142</td>
<td>733</td>
</tr>
<tr>
<td>PLS</td>
<td>1</td>
<td>5</td>
<td>39</td>
<td>337</td>
<td>6257</td>
</tr>
<tr>
<td>Polytopes</td>
<td>1</td>
<td>5</td>
<td>37</td>
<td>322</td>
<td>?</td>
</tr>
</tbody>
</table>

Table: Data for the dimensions where the results have been obtained with the classic methods.
Description of the new method:

1. Restrict the number of IDCM (orbits of the permutation action on the columns);
2. Fix $\bar{\lambda}$, injective in an orbit;
3. Select the maximal faces compatible with $\bar{\lambda}$:
 - the set $\text{MF}(\bar{\lambda}) = \{F_1, \ldots, F_q\}$ (Maximal faces), and
 - $\partial \text{MF}(\bar{\lambda}) = \{f_1, \ldots, f_p\}$ (facets);
4. Use linear algebra (pseudo manifold condition $=$ a facet f_i should be included in exactly two maximal faces):

 Matrix of the (highest dimensional) boundary operator on

 $\text{MF}(\bar{\lambda})$: $M = m_{i,j} \in \mathcal{M}_{p,q}(\mathbb{Z}_2)$, with

 $m_{i,j} = \begin{cases} 1 & f_i \subset F_j \\ 0 & \text{otherwise} \end{cases}$,

 and $F_i \in \text{MF}(\bar{\lambda})$ and $f_j \in \partial \text{MF}(\bar{\lambda})$.

 We denote by $\mathcal{K}(\bar{\lambda})$ the set of simplicial complexes supporting $\bar{\lambda}$.
 A simplicial complex $K \in \mathcal{K}(\bar{\lambda})$ is a vector in \mathbb{Z}_2^q.
 $\mathcal{K}(\bar{\lambda}) \subset \ker_{\mathbb{Z}_2}(M)$.

 Find a basis of the kernel of M (Gaussian elimination) \rightarrow Finite number of linear combinations.
The way to deal with the problem and store the obtained data

The inequality $m \leq 2^{\text{Pic}(K)} - 1$ is optimal for $\text{Pic}(K) = 4$.
Thank you for listening!