Toward the enumeration of Picard number 4 (Real) Toric manifolds.

Mathieu Vallée
ENS Rennes, University of Rennes 1, Ajou University Jointly with Suyoung Choi and Hyuntae Jang.

March 24, 2021
(1) Backgrounds

- Important definitions
- Theorems
(2) The way to deal with the problem and store the obtained data
- How to enumerate every Toric manifolds
- Database and website
(3) Known and new results
- History
- STEP 1 of the process
- New method

Table of Contents

(1) Backgrounds

- Important definitions
- Theorems
(2) The way to deal with the problem and store the obtained data
- How to enumerate every Toric manifolds
- Database and website
(3) Known and new results
- History
- STEP 1 of the process
- New method

Important definitions

Let K be a simplicial complex on $[m]$.

Definition 1 (Characteristic map).

A (non-singular) \mathbb{Z}_{2}-characteristic map over K is a map $\lambda:[m] \rightarrow \mathbb{Z}_{2}^{n}$. It is non-singular if it satisfies the so-called non-singularity condition:

$$
\left\{i_{1}, \ldots, i_{s}\right\} \in K \Leftrightarrow \lambda\left(i_{1}\right), \ldots, \lambda\left(i_{s}\right) \text { are linearly independant. }
$$

$\Lambda(K)=\{$ Characteristic maps over K $\}$.
$\mathrm{GL}_{n}\left(\mathbb{Z}_{2}\right) \curvearrowright \Lambda(K)$, orbits are D-J classes $\mathrm{DJ}(K)$.
$\lambda=\left(\begin{array}{llll}\lambda_{1} & \lambda_{2} & \ldots & \lambda_{m}\end{array}\right)$.
We find $\bar{\lambda} \in \mathcal{M}_{m, m-n}\left(\mathbb{Z}_{2}\right)$ such that $\lambda \bar{\lambda}=0$.

Definition 2 (Dual characteristic map).

Such $\bar{\lambda}$ defines a dual characteristic map $\bar{\lambda}:[m] \rightarrow \mathbb{Z}_{2}^{m-n}$ over K.
A simplicial complex K is said colorizable if it supports a (dual) characteristic map.

Proposition 3.

Let K be a simplicial complex on $[m]$ of dimension $n-1, \lambda \in \operatorname{DJ}(K)$, and $\bar{\lambda}$ its dual. Let J be a subset of $[\mathrm{m}]$. The following are equivalent:
(1) $\bar{\lambda}\left(J^{c}\right)$ is a basis of \mathbb{Z}_{2}^{m-n};
(2) $\lambda(J)$ is a basis of \mathbb{Z}_{2}^{n}.

So dual characteristic maps and characteristic maps share equivalent data.

Definition 4 (Wedge operation).

Let K be a simplicial complex on V and $p \in V$ being a vertex of K. The wedge of K as p is the simplicial complex on $V \cup\left\{p_{1}, p_{2}\right\} \backslash\{p\}$ defined as follows:

$$
\begin{equation*}
\operatorname{Wed}_{p}(K):=\left(I * \operatorname{Lk}_{K}(p)\right) \cup(\partial I * K \backslash\{p\}), \tag{1.1}
\end{equation*}
$$

where I is the 1 -simplex with vertices $\left\{p_{1}, p_{2}\right\}$, and $K \backslash F:=\{\sigma \in K: F \not \subset \sigma\}$, for a face $F \in K$.

The pentagon P_{5}

$\operatorname{Wed}_{1}\left(P_{5}\right)$

Simplicial complexes which are not wedges are called seeds.
Wedge operation: commutative and associative. We can define a more general wedge operation.

Definition 5 (Extended wedge operation,Bahri-Benderski-Cohen-Gtiler).

Let K be a simplicial complex on $\left[m\right.$], and $J=\left(j_{1}, \ldots, j_{m}\right) \in\left(\mathbb{N}^{\star}\right)^{m}$. We define the wedged simplicial complex $K(J)$ as the simplicial complex obtained after performing $j_{i}-1$ wedges on the vertex i for $i=1, \ldots, m$.

Remark 6.

Any simplicial complex L which is not a seed can always be represented as a wedged simplicial complex $K(J)$ with K being a seed.

The combinatorial data of a simplicial complex L is a pair (K, J) with K a seed and J an m-tuple.
But in toric topology, we are working on pairs (K, λ).

Question 7.

Is there a constructive way of obtaining $\Lambda(L)$ from $\Lambda(K)$ and J ?

$$
(\Lambda(K), J) \longrightarrow(\Lambda(K(J)) .
$$

Definition 8 (projection).

We define the projection of λ over K with respect to a vertex p of K as follows:

$$
\operatorname{proj}_{p}(\lambda)(w):=\lambda(w) /\langle\lambda(p)\rangle .
$$

The projection is a characteristic map on the link of K at the vertex p.
λ_{1} and λ_{2} are called p-adjacent if there exists a CM λ over $\operatorname{Wed}_{p}(K)$ such that $\operatorname{proj}_{p_{1}}(\lambda)=\lambda_{1}$ and $\operatorname{proj}_{p_{2}}(\lambda)=\lambda_{2}$.
$G(J)$: 1-skeleton of $\Delta^{J}:=\Delta^{j_{1}-1} \times \ldots \times \Delta^{j_{m}-1}$
its irreducible cycles are triangles and squares.

Definition 9 (Puzzle. Choi, Park, 2017).

A puzzle on a wedged simplicial complex $K(J)$, with K on [m] and $J=\left(j_{1}, \ldots, j_{m}\right)$ is a map $\pi: \mathrm{V}(G(J)) \rightarrow \mathrm{DJ}(K)$.

A puzzle is called realizable if the image of the edges, resp. subsquares, of $G(J)$ are p-adjacent, resp. realizable.
A realizable puzzle creates a unique D-J class over $K(J)$.

Important theorems

- K supports $\lambda \Leftrightarrow \operatorname{Wed}(K)$ supports λ^{\prime};
- $\operatorname{Pic}(K)=\operatorname{Pic}(\operatorname{Wed}(K))$;
- $\bar{\lambda}$ over a seed $\Rightarrow \bar{\lambda}$ is injective (so finite number of seed for a fixed Picard number). Namely, we have $m \leq 2^{\operatorname{Pic}(K)}-1$ (Choi-Park, 2017);
- Puzzle (Choi-Park, 2017):
\{Realizable puzzles $\} \stackrel{1: 1}{\longleftrightarrow} \mathrm{DJ}(K)$.
(the wedge operation is commutative and associative)

Table of Contents

(1) Backgrounds

- Important definitions
- Theorems
(2) The way to deal with the problem and store the obtained data
- How to enumerate every Toric manifolds
- Database and website

3) Known and new results

- History
- STEP 1 of the process
- New method

Let \mathfrak{p} be a fixed Picard number.
The fundamental theorem for toric geometry: toric manifolds are classified by complete non-singular fans.
If a simplicial complex K supports a non-singular fan, then it always supports a $\bmod 2$ characteristic map.
The strategy is then to restrict our case to K 's which support a mod 2 characteristic map.

	Direct Garrison-Scott com- putation	Puzzle method
Method	Use the Garrison-Scott al- gorithm on $K(J)$ directly.	Use the optimized version of the Garrison-Scott algo- descrip- tion on the seed K. And
		use the Puzzle algorithm use getting all the CM on $K(J) .$.

Proposition 10 (Choi-Jang-V, 2021).

The puzzle algorithm is more efficient than the traditional Garisson-Scott algorithm for finding characteristic maps over wedged simplicial complexes.

Thus the last proposition gives us the following methods for finding "every" real toric manifolds of Picard number \mathfrak{p}.

STEP 1	Find $\operatorname{CS}(\mathfrak{p})=\{$ Colorizable seeds K of Pic $\mathfrak{p}\}$ and $\operatorname{DJ}(K)$
STEP 2	Compute $D(K)($ the characteristic map relation diagram for a puzzle) for every $K \in C S(\mathfrak{p})$
STEP 3	Find the realizable puzzles $\pi: \mathrm{V}(G(J)) \rightarrow \mathrm{DJ}(K)$.

Table: The steps of the process.

Remark 11.

- There are infinitely many PL-spheres of Picard number \mathfrak{p} but any given one can be calculated from this algorithm;
- The finite set $\operatorname{CS}(\mathfrak{p})$ can be stored in a database for any Picard number \mathfrak{p}.

[^0]See the Website.
The upcoming idea for the website is the following:

- A toric topologist wants to know about a specific simplicial complex L;
- She or he visits the website and inputs the maximal faces set of L;
- The website finds $L=K(J)$ and uses the puzzle algorithm to find the DJ classes over $K(J)$.

Table of Contents

(1) Backgrounds

- Important definitions
- Theorems
(2) The way to deal with the problem and store the obtained data
- How to enumerate every Toric manifolds
- Database and website
(3) Known and new results
- History
- STEP 1 of the process
- New method

Some historical results for (general) toric manifolds:

- Picard number 1 is trivial;
- Picard number 2 (1988,Kleinschmidt) using linear transformations and matroids;
- Picard number 3 (1991, Batyrev based on the work of Kleinschmidt and Sturmfels) ;
Enumeration of $\operatorname{CS}(\mathfrak{p})$ for small \mathfrak{p} :
- CS $(1)=\left\{\partial \Delta^{1}\right\}$;
- CS(2) $=\left\{\partial \Delta^{1} * \partial \Delta^{1}\right\} ;$
- CS(3) $=\left\{\partial \Delta^{1} * \partial \Delta^{1} * \partial \Delta^{1}, \mathcal{P}_{5}, C_{4}^{7}\right\}$.
- $\operatorname{CS}(4)=$?...

We focus on the STEP 1 of the process: finding all seed PL-spheres and their characteristic maps.
Classic way:
(1) Find all PL-spheres (Bistellar move, lexicographic ordering);
(2) Select the seeds among them;
(3) Use the Garrison-Scott algorithm for finding every characteristic maps over them.
Why is it difficult? Up to $n=11$, with 15 vertices: number of such simplicial complexes: ${\binom{15}{11}=2^{1365} \ldots}^{(1)}$
Methods B-M or Lexico lowered this complexity but results obtained only up to $n=6$ (3 months), $n=7$ unreachable.

(n, m)	$(2,6)$	$(3,7)$	$(4,8)$	$(5,9)$	$(6,10)$
Colorizable seed PLS	1	4	21	142	733
PLS	1	5	39	337	6257
Polytopes	1	5	37	322	$?$

Table: Data for the dimensions where the results have been obtained with the classic methods.

Description of the new method:
(1) Restrict the number of IDCM (orbits of the permutation action on the columns);
(2) Fix $\bar{\lambda}$, injective in an orbit;
(0) Select the maximal faces compatible with $\bar{\lambda}$:

- the set $\operatorname{MF}(\bar{\lambda})=\left\{F_{1}, \ldots, F_{q}\right\}$ (Maximal faces), and
- $\partial \mathrm{MF}(\bar{\lambda})=\left\{f_{1}, \ldots, f_{\rho}\right\}$ (facets);
(1) Use linear algebra (pseudo manifold condition $=$ a facet f_{i} should be included in exactly two maximal faces):
Matrix of the (highest dimensional) boundary operator on
$\operatorname{MF}(\bar{\lambda}): M=m_{i, j} \in \mathcal{M}_{p, q}\left(\mathbb{Z}_{2}\right), \quad$ with $\quad m_{i, j}=\left\{\begin{array}{ll}1 & f_{i} \subset F_{j} \\ 0 & \text { otherwise }\end{array}\right.$,
and $F_{i} \in \operatorname{MF}(\bar{\lambda})$ and $f_{j} \in \partial \operatorname{MF}(\bar{\lambda})$.
We denote by $\mathcal{K}(\bar{\lambda})$ the set of simplicial complexes supporting $\bar{\lambda}$.
A simplicial complex $K \in \mathcal{K}(\bar{\lambda})$ is a vector in \mathbb{Z}_{2}^{q}.
$\mathcal{K}(\bar{\lambda}) \subset \operatorname{ker}_{\mathbb{Z}_{2}}(M)$.
Find a basis of the kernel of M (Gaussian elimination) \rightarrow Finite number of linear combinations.

(n, m)	$(2,6)$	$(3,7)$	$(4,8)$	$(5,9)$	$(6,10)$	$(7,11)$
Colorizable seed PLS	1	4	21	142	733	1190
PLS	1	5	39	337	6257	$?$
Polytopes	1	5	37	322	$?$	$?$

Table: Data for the dimensions where the results have been obtained.

(n, m)	$(8,12)$	$(9,13)$	$(10,14)$	$(11,15)$
Colorizable seed PLS	≥ 627	≥ 155	≥ 22	≥ 3

Table: Partial results obtained for higher dimensions.
The inequality $m \leq 2^{\operatorname{Pic}(K)}-1$ is optimal for $\operatorname{Pic}(K)=4$.

Thank you for listening !

[^0]: Mathieu Vallée ENS Rennes, University of Rennes 1, Ajou University Jointly v

