Toward the enumeration of Picard number 4 (Real) Toric manifolds.

Mathieu Vallée
ENS Rennes, University of Rennes 1, Ajou University
Jointly with Suyoung Choi and Hyuntae Jang.

March 24, 2021

- Backgrounds
 - Important definitions
 - Theorems
- The way to deal with the problem and store the obtained data
 - How to enumerate every Toric manifolds
 - Database and website
- Known and new results
 - History
 - STEP 1 of the process
 - New method

Table of Contents

- Backgrounds
 - Important definitions
 - Theorems
- 2 The way to deal with the problem and store the obtained data
 - How to enumerate every Toric manifolds
 - Database and website
- 3 Known and new results
 - History
 - STEP 1 of the process
 - New method

Important definitions

Let K be a simplicial complex on [m].

Definition 1 (Characteristic map).

A (non-singular) \mathbb{Z}_2 -characteristic map over K is a map $\lambda:[m]\to\mathbb{Z}_2^n$. It is non-singular if it satisfies the so-called *non-singularity condition*:

$$\{i_1,\ldots,i_s\}\in K\Leftrightarrow \lambda(i_1),\ldots,\lambda(i_s)$$
 are linearly independent.

 $\Lambda(K) = \{ \text{Characteristic maps over } K \}.$

 $GL_n(\mathbb{Z}_2) \curvearrowright \Lambda(K)$, orbits are D-J classes DJ(K).

 $\lambda = (\lambda_1 \quad \lambda_2 \quad \dots \quad \lambda_m).$

We find $\bar{\lambda} \in \mathcal{M}_{m,m-n}(\mathbb{Z}_2)$ such that $\lambda \bar{\lambda} = 0$.

Definition 2 (Dual characteristic map).

Such $\bar{\lambda}$ defines a dual characteristic map $\bar{\lambda}:[m] \to \mathbb{Z}_2^{m-n}$ over K.

A simplicial complex K is said *colorizable* if it supports a (dual) characteristic map.

Proposition 3.

Let K be a simplicial complex on [m] of dimension n-1, $\lambda \in \mathsf{DJ}(K)$, and $\bar{\lambda}$ its dual. Let J be a subset of [m]. The following are equivalent:

- $\bullet \quad \bar{\lambda}(J^c) \text{ is a basis of } \mathbb{Z}_2^{m-n};$

So dual characteristic maps and characteristic maps share equivalent data.

Definition 4 (Wedge operation).

Let K be a simplicial complex on V and $p \in V$ being a vertex of K. The wedge of K as p is the simplicial complex on $V \cup \{p_1, p_2\} \setminus \{p\}$ defined as follows:

$$Wed_{p}(K) := (I * Lk_{K}(p)) \cup (\partial I * K \setminus \{p\}), \tag{1.1}$$

where I is the 1-simplex with vertices $\{p_1, p_2\}$, and $K \setminus F := \{\sigma \in K : F \not\subset \sigma\}$, for a face $F \in K$.

Simplicial complexes which are not wedges are called *seeds*.

Wedge operation: commutative and associative. We can define a more general wedge operation.

Definition 5 (Extended wedge operation, Bahri-Benderski-Cohen-Gtiler).

Let K be a simplicial complex on [m], and $J=(j_1,\ldots,j_m)\in(\mathbb{N}^*)^m$. We define the wedged simplicial complex K(J) as the simplicial complex obtained after performing j_i-1 wedges on the vertex i for $i=1,\ldots,m$.

Remark 6.

Any simplicial complex L which is not a seed can always be represented as a wedged simplicial complex K(J) with K being a seed.

The combinatorial data of a simplicial complex L is a pair (K, J) with K a seed and J an m-tuple.

But in toric topology, we are working on pairs (K, λ) .

Question 7.

Is there a constructive way of obtaining $\Lambda(L)$ from $\Lambda(K)$ and J?

$$(\Lambda(K), J) \longrightarrow (\Lambda(K(J)).$$

Definition 8 (projection).

We define the *projection* of λ over K with respect to a vertex p of K as follows:

$$\operatorname{proj}_p(\lambda)(w) := \lambda(w)/\langle \lambda(p) \rangle.$$

The projection is a characteristic map on the link of K at the vertex p.

 λ_1 and λ_2 are called *p*-adjacent if there exists a CM λ over Wed_p(K) such that $\operatorname{proj}_{p_1}(\lambda) = \lambda_1$ and $\operatorname{proj}_{p_2}(\lambda) = \lambda_2$.

G(J): 1-skeleton of $\Delta^J := \Delta^{j_1-1} \times \ldots \times \Delta^{j_m-1}$

its irreducible cycles are triangles and squares.

Definition 9 (Puzzle. Choi, Park, 2017).

A *puzzle* on a wedged simplicial complex K(J), with K on [m] and $J = (j_1, \ldots, j_m)$ is a map $\pi : V(G(J)) \to DJ(K)$.

A puzzle is called realizable if the image of the edges, resp. subsquares, of G(J) are p-adjacent, resp. realizable.

A realizable puzzle creates a unique D-J class over K(J).

Important theorems

- K supports $\lambda \Leftrightarrow Wed(K)$ supports λ' ;
- Pic(K) = Pic(Wed(K));
- $\bar{\lambda}$ over a seed $\Rightarrow \bar{\lambda}$ is injective (so finite number of seed for a fixed Picard number). Namely, we have $m \leq 2^{\text{Pic}(K)} 1$ (CHOI-PARK, 2017);
- Puzzle (Choi-Park, 2017):

$$\{\text{Realizable puzzles}\} \stackrel{1:1}{\longleftrightarrow} \mathsf{DJ}(K).$$

(the wedge operation is commutative and associative)

Table of Contents

- Backgrounds
 - Important definitions
 - Theorems
- 2 The way to deal with the problem and store the obtained data
 - How to enumerate every Toric manifolds
 - Database and website
- 3 Known and new results
 - History
 - STEP 1 of the process
 - New method

Let p be a fixed Picard number.

The fundamental theorem for toric geometry: toric manifolds are classified by complete non-singular fans.

If a simplicial complex K supports a non-singular fan, then it always supports a mod 2 characteristic map.

The strategy is then to restrict our case to K's which support a mod 2 characteristic map.

	Direct Garrison-Scott computation	Puzzle method
Method descrip- tion	Use the Garrison-Scott algorithm on $K(J)$ directly.	Use the optimized version of the Garrison-Scott algorithm on the seed K . And use the Puzzle algorithm for getting all the CM on $K(J)$

Proposition 10 (Choi-Jang-V, 2021).

The puzzle algorithm is more efficient than the traditional Garisson-Scott algorithm for finding characteristic maps over wedged simplicial complexes.

Thus the last proposition gives us the following methods for finding "every" real toric manifolds of Picard number \mathfrak{p} .

STEP 1	Find $CS(\mathfrak{p}) = \{\text{Colorizable seeds } K \text{ of Pic } \mathfrak{p}\} \text{ and } DJ(K)$
STEP 2	Compute $D(K)$ (the characteristic map relation diagram for a puzzle)
	for every $K \in CS(\mathfrak{p})$
STEP 3	Find the realizable puzzles $\pi: V(G(J)) \to DJ(K)$.

Table: The steps of the process.

Remark 11.

- There are infinitely many PL-spheres of Picard number p but any given one can be calculated from this algorithm;
- The finite set $CS(\mathfrak{p})$ can be stored in a database for any Picard number \mathfrak{p} .

See the Website.

The upcoming idea for the website is the following:

- A toric topologist wants to know about a specific simplicial complex L;
- She or he visits the website and inputs the maximal faces set of L;
- The website finds L = K(J) and uses the puzzle algorithm to find the DJ classes over K(J).

Table of Contents

- Backgrounds
 - Important definitions
 - Theorems
- 2 The way to deal with the problem and store the obtained data
 - How to enumerate every Toric manifolds
 - Database and website
- Mown and new results
 - History
 - STEP 1 of the process
 - New method

Some historical results for (general) toric manifolds:

- Picard number 1 is trivial;
- Picard number 2 (1988, KLEINSCHMIDT) using linear transformations and matroids;
- Picard number 3 (1991, BATYREV based on the work of KLEINSCHMIDT and STURMFELS);

Enumeration of $CS(\mathfrak{p})$ for small \mathfrak{p} :

- $CS(1) = \{\partial \Delta^1\};$
 - $CS(2) = \{\partial \Delta^1 * \partial \Delta^1\};$
 - $CS(3) = \{\partial \Delta^1 * \partial \Delta^1 * \partial \Delta^1, \mathcal{P}_5, C_4^7\}.$
 - CS(4) = ?...

We focus on the STEP 1 of the process: finding all seed PL-spheres and their characteristic maps.

Classic way:

- Find all PL-spheres (Bistellar move, lexicographic ordering);
- Select the seeds among them;
- Use the Garrison-Scott algorithm for finding every characteristic maps over them.

Why is it difficult? Up to n=11, with 15 vertices: number of such simplicial complexes: $2^{\binom{15}{11}} = 2^{1365}$...

Methods B-M or Lexico lowered this complexity but results obtained only up to n = 6 (3 months), n = 7 unreachable.

(n,m)	(2,6)	(3,7)	(4,8)	(5,9)	(6, 10)
Colorizable seed PLS	1	4	21	142	733
PLS	1	5	39	337	6257
Polytopes	1	5	37	322	?

Table: Data for the dimensions where the results have been obtained with the classic methods

Description of the new method:

- Restrict the number of IDCM (orbits of the permutation action on the columns);
- ② Fix $\bar{\lambda}$, injective in an orbit;
- **3** Select the maximal faces compatible with $\bar{\lambda}$:
 - the set $\mathsf{MF}(\bar{\lambda}) = \{F_1, \dots, F_q\}$ (Maximal faces), and
 - $\partial \mathsf{MF}(\bar{\lambda}) = \{f_1, \dots, f_p\}$ (facets);
- Use linear algebra (pseudo manifold condition = a facet f_i should be included in exactly two maximal faces):

Matrix of the (highest dimensional) boundary operator on

$$\mathsf{MF}(\bar{\lambda})$$
: $M = m_{i,j} \in \mathcal{M}_{p,q}(\mathbb{Z}_2)$, with $m_{i,j} = \begin{cases} 1 & f_i \subset F_j \\ 0 & \text{otherwise} \end{cases}$

and $F_i \in \mathsf{MF}(\bar{\lambda})$ and $f_j \in \partial \mathsf{MF}(\bar{\lambda})$.

We denote by $\mathcal{K}(\bar{\lambda})$ the set of simplicial complexes supporting $\bar{\lambda}$.

A simplicial complex $K \in \mathcal{K}(\bar{\lambda})$ is a vector in \mathbb{Z}_2^q .

$$\mathcal{K}(\bar{\lambda}) \subset \ker_{\mathbb{Z}_2}(M)$$
.

Find a basis of the kernel of M (Gaussian elimination) \rightarrow Finite number of linear combinations.

(n,m)	(2,6)	(3,7)	(4,8)	(5,9)	(6, 10)	(7,11)
Colorizable seed PLS	1	4	21	142	733	1190
PLS	1	5	39	337	6257	?
Polytopes	1	5	37	322	?	?

Table: Data for the dimensions where the results have been obtained.

(n,m)	(8,12)	(9, 13)	(10, 14)	(11, 15)
Colorizable seed PLS	≥ 627	≥ 155	≥ 22	≥ 3

Table: Partial results obtained for higher dimensions.

The inequality $m \le 2^{Pic(K)} - 1$ is optimal for Pic(K) = 4.

tory
EP 1 of the process
w method

Thank you for listening !