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The definition of full flag variety

@ The full flag variety Flag(C") consists of nested sequences of
linear subspaces of C"

V.:(VlCV2C"'CVn:(Cn)

where V; is of complex dimension i.
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The definition of full flag variety

@ The full flag variety Flag(C") consists of nested sequences of
linear subspaces of C"

V.:(VlCV2C"'CVn:(Cn)

where V; is of complex dimension i.

@ GL,(C) acts on Flag(C") transitively and the isotropy group
B of the point

Oc(el)c(elaeQ)C"'C(elae2a"'7ef7)

consists of upper triangular invertible matrices. Hence
Flag(C") is a nonsingular projective variety.
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Torus action on Flag(C")

° GLA(C)/B = Flag(C").

gB—0C (g1) C (g1,8) C---C(g1,8, " ,8&n)-
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Torus action on Flag(C")

° GLn(C)/B = Flag(C").
gB—0C (g1) C(g1,8) C - C (81,8 " ,8n)
@ Let T be the group consisting of the invertible and diagonal

matrices. The left action T~ GL,(C) induces a T action on
GL,(C)/B.



On Fano and weak Fano regular semisimple Hessenberg varieties

LFull Flag variety

Torus action on Flag(C")

° GLA(C)/B = Flag(C").

gB—0C (g1) C (g1,8) C---C(g1,8, " ,8&n)-

@ Let T be the group consisting of the invertible and diagonal
matrices. The left action T~ GL,(C) induces a T action on
GL,(C)/B.

° Flag(C") ™ = &,
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Hessenberg functions

Let n be a positive integer, and we set [n] = {1,2,--- ,n}.
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Hessenberg functions

Let n be a positive integer, and we set [n] = {1,2,--- ,n}.

Definition
A Hessenberg function is a function h: [n] — [n] which satisfies
the following conditions:
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Hessenberg functions

Let n be a positive integer, and we set [n] = {1,2,--- ,n}.
Definition
A Hessenberg function is a function h: [n] — [n] which satisfies
the following conditions:

Q@ h(i+1)>h(i)foralll<i<n-—1,
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Hessenberg functions

Let n be a positive integer, and we set [n] = {1,2,--- ,n}.

Definition
A Hessenberg function is a function h: [n] — [n] which satisfies
the following conditions:

Q@ h(i+1)>h(i)foralll<i<n-—1,

@ h(i)>iforalll<i<n.
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Examples

We can express a Hessenberg function by listing its values in a
sequence as h = (h(1), h(2),--- , h(n)).
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Examples

We can express a Hessenberg function by listing its values in a
sequence as h = (h(1), h(2),--- , h(n)).

Example

Q@ n=5and h=(2,3,4,5,5);
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Examples

We can express a Hessenberg function by listing its values in a
sequence as h = (h(1), h(2),--- , h(n)).

Example

Q@ n=5and h=(2,3,4,5,5);
@ n=5and h=(5,5,5,5,5).
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Express Hessenberg function by staircase diagram

@ n=5and h=(2,3,4,5,5).
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Express Hessenberg function by staircase diagram

@ n=5and h=(2,3,4,5,5).

@ n=5and h=(5,5,5,5,5).
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Partial order on Hessenberg functions

Let h, H' : [n] — [n] be Hessenberg functions. If for any i € [n]
h(i) < W' (i) then we say h < H'.

Example

PN
PN
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Dual Hessenberg functions

For a Hessenberg function h: [n] — [n], we can define a new
Hessenberg function h* : [n] — [n] as follows.

W (i) = {j € [n][h() = n+ 1= i}].
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Dual Hessenberg functions

For a Hessenberg function h: [n] — [n], we can define a new
Hessenberg function h* : [n] — [n] as follows.

W (i) = {j € [n][h() = n+ 1= i}].

Example
Let n=5, h=(3,3,4,5,5) then h* = (2,3,5,5,5).
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Dual Hessenberg functions

For a Hessenberg function h: [n] — [n], we can define a new
Hessenberg function h* : [n] — [n] as follows.

W (i) = {j € [n][h() = n+ 1= i}].

Example
Let n=5, h=(3,3,4,5,5) then h* = (2,3,5,5,5).
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Regular semisimple Hessenberg varieties

Let S be an n x n regular semisimple matrix (i.e. an n x n
diagonalizable matrix with n distinct eigenvalues) and h : [n] — [n]
be a Hessenberg function, we can define a subvariety of the full
flag variety Flag(C") as follows.

Hess(S, h) := { Ve € Flag(C")[SV; C Vi }-

Hess(S, h) is called a regular semisimple Hessenberg variety.
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Assumption and notation

@ The general linear group GL,(C) left acts on Flag(C") so we
have Hess(gSg™!, h) = gHess(S, h) in Flag(C") for all
g € GL(C"). It follows that Hess(gSg~1, h) = Hess(S, h) for
all g € GL(C"). Hence, we can always assume that the
regular semisimple matrix S is a diagonal matrix.
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examples

Example

@ If h(i) = nfor all i € [n], then for any S we have
Hess(S, h) = Flag(C").
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examples

Example

@ If h(i) = nfor all i € [n], then for any S we have
Hess(S, h) = Flag(C").

Q@ Ifh(i)=i+1fori=1,2,---,n—1, then Hess(S, h) is called
the permutohedral variety which is the smooth projective toric
variety corresponding to the fan consisting of the collection of
Weyl chambers in type A,_1.
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Properties

The following properties on regular semisimple Hessenberg varieties
can be found in De Mari, Procesi and Shayman's nice paper [4].

@ Hess(S, h) is smooth;
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Properties

The following properties on regular semisimple Hessenberg varieties
can be found in De Mari, Procesi and Shayman's nice paper [4].

@ Hess(S, h) is smooth;
Q dimc X7 (h(i) — ).
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Torus action on Hess(S, h)

Let T be the following complex torus consisting of diagonal
matrices:

T = _ €GLyC) | gieCrforall1<i<n

8n

Then T acts on Flag(C") via the GL,(C)-action on Flag(C").
Since the matrix S defining Hess(S, h) is diagonal, all the elements
of T commute with S. Therefore, the T-action on Flag(C")
preserves Hess(S, h), and hence T acts on Hess(S, h).
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The fixed points set Hess(S, h) T

@ Recall that we have Flag(C")7 = &, by identifying w € &,
and Vs, where Vi = Ce,1) ® Cey) & - - & Cey; for all
1 <i< n. In fact, Hess(S, h) contains all the T-fixed points
of Flag(C™):

Hess(S, h)" = Flag(C™) " = &,,.
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The fixed points set Hess(S, h) T

@ Recall that we have Flag(C")7 = &, by identifying w € &,
and Vs, where Vi = Ce,1) ® Cey) & - - & Cey; for all
1 <i< n. In fact, Hess(S, h) contains all the T-fixed points
of Flag(C™):

Hess(S, h)" = Flag(C™) " = &,,.

Problem If Xis a T-invariant nonsingular subvariety of Flag(C") such
that x(X) = x(Flag(C")), then should X be isomorphism to
some Hess(S, h)?
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Remark

Recently, Ayzenberg and Buchstaber constructed a family of
smooth submanifolds X(h)’s of Flag(C") with compact torus T
action have the following properties:
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Remark

Recently, Ayzenberg and Buchstaber constructed a family of
smooth submanifolds X(h)’s of Flag(C") with compact torus T
action have the following properties:

@ H.(X(h)) = H.(Hess(S, h));
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Remark

Recently, Ayzenberg and Buchstaber constructed a family of
smooth submanifolds X(h)’s of Flag(C") with compact torus T
action have the following properties:

@ H.(X(h)) = H.(Hess(S, h));
Q@ X(h)T =2 Hess(S, h)".

Details can be found in [2].
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Weights

@ Weight: An algebraic homomorphism p: T — C*. Hence

{Weights} = 7.".
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@ Weight: An algebraic homomorphism p: T — C*. Hence

{Weights} = 7.".

@ Dominant weights:

{,UJ:(/,Ll,,UQ,"- a/«Ln)GZnLul 2/,42 > Zlun}
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Weights

@ Weight: An algebraic homomorphism p: T — C*. Hence

{Weights} = 7.".

@ Dominant weights:

{,UJ:(/,Ll,,UQ,"- a/«Ln)GZnLul 2/,42 > Zlun}

© Regular dominant weights:

{n=(n1,p2, -+ pn) € Z"\p1 > po > -+ > pin}
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Line bundles associated to weights

e C, be the one dimensional complex representation of T with
weight p = (p1, p2, - -+ , pn)- Consider the projection B — T,
then C,, is also B-module given by

by x x %

b2 * * 101 e
— 1 M2
N R A

bn
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Line bundles associated to weights

e C, be the one dimensional complex representation of T with
weight p = (p1, p2, - -+ , pn)- Consider the projection B — T,
then C,, is also B-module given by

b1 x x %
b2 * *

vy — ML M2 n
. v=b"b, bhrv.

bn

o L,=G XB(CZ, the B-action on G x C is given by

(g v)b:=(gb,b™"' - v) = (gb, u(b)V).

We also denote Ly [Hess(s,ny by Ly-
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Ample and nef line bundles

Proposition ([3])

@ L, is ample over Flag,(C) if and only if j1 is a regular
dominant weight.
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Ample and nef line bundles

Proposition ([3])
@ L, is ample over Flag,(C) if and only if j1 is a regular
dominant weight.

@ L, is nef over Flag,(C) if and only if v is a dominant weight.

Corollary
Assume that h(i) > i+ 1 for1 <i<n-—1, then

@ L, is ample over Hess(S, h) if and only if i is a regular
dominant weight.
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Ample and nef line bundles

Proposition ([3])
@ L, is ample over Flag,(C) if and only if j1 is a regular
dominant weight.

@ L, is nef over Flag,(C) if and only if v is a dominant weight.

Corollary
Assume that h(i) > i+ 1 for1 <i<n-—1, then

@ L, is ample over Hess(S, h) if and only if i is a regular
dominant weight.

@ L, is nef over Hess(S, h) if and only if j1 is a dominant weight.
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The anti-cononical bundle

Proposition

O(_KHess(S,h)) = Lﬁh

where

&p = Z (ti—t_,-)andt,-:(O,O,...’170’...’0)
1<i<j<h(i)
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Example

Example
If h=1(2,3,4,5,5) then {, = t; — ts.
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When Hess(S, h) is Fano

Fano: If O(—Khess(s,h)) is ample.

Theorem (Abe-Fujita-Z)

Assume that h(i) > i+ 1 for all 1 < i< n—1. Then Hess(S, h) is
Fano if and only if

h=(k+1,k+2,---,nn,--- n)

such that "51 < k<n-1.
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Example

Example

Q If h=1(2,3,3), Hess(S, h) is Fano.
Q If h=(2,3,4,4), Hess(S, h) is not Fano.
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Definition

Weak Fano: If O(—Kess(s,n) is nef and big.
Proposition ([5])

If O(—Khess(s,n)) is nef then the following conditions are
equivalent:

o O(_KHess(S,h)) is big;
(2] fHess(&h) cl((’)(—KHess(S,h)))d > 0 where d = dim¢ Hess(S, h).
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When Hess(S, h) is weak Fano

Theorem (Abe-Fujita-Z)

Assume that h(i) > i+ 1 for all1 < i< n—1. Then Hess(S, h) is
weak Fano if and only if

h(i) = h(i+1)+2—h(n+1—i)+h(n—0) >0

foralll <i<n-—1.
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Examples

Example

Q If h=1(2,3,4,4), Hess(S, h) is weak Fano.
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Examples

Example

Q If h=(2,3,4,4), Hess(S, h) is weak Fano.
@ If h=(3,3,4,4), Hess(S, h) is weak Fano.
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