On Fano and weak Fano regular semisimple Hessenberg varieties

Haozhi Zeng Huazhong University of Science and Technology

Joint work with Hiraku Abe and Naoki Fujita

March 24, 2021

Table of contents

Full Flag variety

Hessenberg varieties

Fano regular semisimple Hessenberg varieties

Weak Fano regular semisimple Hessenberg varieties

The definition of full flag variety

• The full flag variety $\operatorname{Flag}(\mathbb{C}^n)$ consists of nested sequences of linear subspaces of \mathbb{C}^n

$$V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n)$$

where V_i is of complex dimension i.

The definition of full flag variety

• The full flag variety $\operatorname{Flag}(\mathbb{C}^n)$ consists of nested sequences of linear subspaces of \mathbb{C}^n

$$V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n)$$

where V_i is of complex dimension i.

• $GL_n(\mathbb{C})$ acts on $Flag(\mathbb{C}^n)$ transitively and the isotropy group B of the point

$$0 \subset (e_1) \subset (e_1, e_2) \subset \cdots \subset (e_1, e_2, \cdots, e_n)$$

consists of upper triangular invertible matrices. Hence $\mathsf{Flag}(\mathbb{C}^n)$ is a nonsingular projective variety.

Full Flag variety

Torus action on $\mathsf{Flag}(\mathbb{C}^n)$

$$GL_n(\mathbb{C})/B \cong Flag(\mathbb{C}^n).$$

$$gB \mapsto 0 \subseteq \langle g_1 \rangle \subseteq \langle g_1, g_2 \rangle \subseteq \cdots \subseteq \langle g_1, g_2, \cdots, g_n \rangle.$$

Torus action on $\mathsf{Flag}(\mathbb{C}^n)$

 $GL_n(\mathbb{C})/B\cong \mathsf{Flag}(\mathbb{C}^n).$

$$gB \mapsto 0 \subseteq \langle g_1 \rangle \subseteq \langle g_1, g_2 \rangle \subseteq \cdots \subseteq \langle g_1, g_2, \cdots, g_n \rangle.$$

• Let T be the group consisting of the invertible and diagonal matrices. The left action $T \curvearrowright GL_n(\mathbb{C})$ induces a T action on $GL_n(\mathbb{C})/B$.

Torus action on $\mathsf{Flag}(\mathbb{C}^n)$

 $GL_n(\mathbb{C})/B\cong \operatorname{Flag}(\mathbb{C}^n).$

$$gB \mapsto 0 \subseteq \langle g_1 \rangle \subseteq \langle g_1, g_2 \rangle \subseteq \cdots \subseteq \langle g_1, g_2, \cdots, g_n \rangle.$$

- Let T be the group consisting of the invertible and diagonal matrices. The left action $T \curvearrowright GL_n(\mathbb{C})$ induces a T action on $GL_n(\mathbb{C})/B$.
 - $\mathsf{Flag}(\mathbb{C}^n)^T \cong \mathfrak{S}_n.$

Hessenberg varieties

Hessenberg functions

Let n be a positive integer, and we set $[n] := \{1, 2, \cdots, n\}$.

Hessenberg functions

Let n be a positive integer, and we set $[n] := \{1, 2, \dots, n\}$.

Definition

A **Hessenberg function** is a function $h:[n] \to [n]$ which satisfies the following conditions:

Hessenberg functions

Let n be a positive integer, and we set $[n] := \{1, 2, \dots, n\}$.

Definition

A **Hessenberg function** is a function $h : [n] \rightarrow [n]$ which satisfies the following conditions:

1
$$h(i+1) \ge h(i)$$
 for all $1 \le i \le n-1$,

Hessenberg functions

Let n be a positive integer, and we set $[n] := \{1, 2, \dots, n\}$.

Definition

A **Hessenberg function** is a function $h:[n] \to [n]$ which satisfies the following conditions:

- **1** $h(i+1) \ge h(i)$ for all $1 \le i \le n-1$,
- 2 $h(i) \ge i$ for all $1 \le i \le n$.

Hessenberg varieties

Examples

We can express a Hessenberg function by listing its values in a sequence as $h = (h(1), h(2), \dots, h(n))$.

Examples

We can express a Hessenberg function by listing its values in a sequence as $h = (h(1), h(2), \dots, h(n))$.

Example

1
$$n = 5$$
 and $h = (2, 3, 4, 5, 5);$

Examples

We can express a Hessenberg function by listing its values in a sequence as $h = (h(1), h(2), \dots, h(n))$.

Example

- **1** n = 5 and h = (2, 3, 4, 5, 5);
- 2 n = 5 and h = (5, 5, 5, 5, 5).

Hessenberg varieties

Express Hessenberg function by staircase diagram

1
$$n = 5$$
 and $h = (2, 3, 4, 5, 5)$.

Express Hessenberg function by staircase diagram

1
$$n = 5$$
 and $h = (2, 3, 4, 5, 5)$.

②
$$n = 5$$
 and $h = (5, 5, 5, 5, 5)$.

Partial order on Hessenberg functions

Let $h, h' : [n] \to [n]$ be Hessenberg functions. If for any $i \in [n]$ $h(i) \le h'(i)$ then we say $h \le h'$.

Example

Dual Hessenberg functions

For a Hessenberg function $h:[n] \to [n]$, we can define a new Hessenberg function $h^*:[n] \to [n]$ as follows.

$$h^*(i) = |\{j \in [n] | h(j) \ge n + 1 - i\}|.$$

Dual Hessenberg functions

For a Hessenberg function $h:[n] \to [n]$, we can define a new Hessenberg function $h^*:[n] \to [n]$ as follows.

$$h^*(i) = |\{j \in [n] | h(j) \ge n + 1 - i\}|.$$

Example

Let
$$n = 5$$
, $h = (3, 3, 4, 5, 5)$ then $h^* = (2, 3, 5, 5, 5)$.

Dual Hessenberg functions

For a Hessenberg function $h:[n] \to [n]$, we can define a new Hessenberg function $h^*:[n] \to [n]$ as follows.

$$h^*(i) = |\{j \in [n] | h(j) \ge n + 1 - i\}|.$$

Example

Let
$$n = 5$$
, $h = (3, 3, 4, 5, 5)$ then $h^* = (2, 3, 5, 5, 5)$.

Regular semisimple Hessenberg varieties

Let S be an $n \times n$ regular semisimple matrix (i.e. an $n \times n$ diagonalizable matrix with n distinct eigenvalues) and $h : [n] \to [n]$ be a Hessenberg function, we can define a subvariety of the full flag variety $\mathsf{Flag}(\mathbb{C}^n)$ as follows.

$$\operatorname{Hess}(S,h) := \{ V_{\bullet} \in \operatorname{Flag}(\mathbb{C}^n) | SV_i \subseteq V_{h(i)} \}.$$

 $\operatorname{Hess}(S,h)$ is called a **regular semisimple Hessenberg variety**.

Assumption and notation

• The general linear group $\mathrm{GL}_n(\mathbb{C})$ left acts on $\mathrm{Flag}(\mathbb{C}^n)$ so we have $\mathrm{Hess}(gSg^{-1},h)=g\,\mathrm{Hess}(S,h)$ in $\mathrm{Flag}(\mathbb{C}^n)$ for all $g\in\mathrm{GL}(\mathbb{C}^n)$. It follows that $\mathrm{Hess}(gSg^{-1},h)\cong\mathrm{Hess}(S,h)$ for all $g\in\mathrm{GL}(\mathbb{C}^n)$. Hence, we can always assume that the regular semisimple matrix S is a diagonal matrix.

Hessenberg varieties

examples

Example

• If h(i) = n for all $i \in [n]$, then for any S we have $\operatorname{Hess}(S, h) = \operatorname{Flag}(\mathbb{C}^n)$.

examples

Example

- If h(i) = n for all $i \in [n]$, then for any S we have $\operatorname{Hess}(S, h) = \operatorname{Flag}(\mathbb{C}^n)$.
- ② If h(i) = i + 1 for $i = 1, 2, \dots, n 1$, then $\operatorname{Hess}(S, h)$ is called the permutohedral variety which is the smooth projective toric variety corresponding to the fan consisting of the collection of Weyl chambers in type A_{n-1} .

Properties

The following properties on regular semisimple Hessenberg varieties can be found in De Mari, Procesi and Shayman's nice paper [4].

• Hess(S, h) is smooth;

Properties

The following properties on regular semisimple Hessenberg varieties can be found in De Mari, Procesi and Shayman's nice paper [4].

- Hess(S, h) is smooth;
- $\operatorname{dim}_{\mathbb{C}} \sum_{i=1}^{n} (h(i) i).$

Torus action on Hess(S, h)

Let T be the following complex torus consisting of diagonal matrices:

Then T acts on $\operatorname{Flag}(\mathbb{C}^n)$ via the $\operatorname{GL}_n(\mathbb{C})$ -action on $\operatorname{Flag}(\mathbb{C}^n)$. Since the matrix S defining $\operatorname{Hess}(S,h)$ is diagonal, all the elements of T commute with S. Therefore, the T-action on $\operatorname{Flag}(\mathbb{C}^n)$ preserves $\operatorname{Hess}(S,h)$, and hence T acts on $\operatorname{Hess}(S,h)$.

The fixed points set $Hess(S, h)^T$

• Recall that we have $\operatorname{Flag}(\mathbb{C}^n)^T = \mathfrak{S}_n$ by identifying $w \in \mathfrak{S}_n$ and V_{\bullet} , where $V_i = \mathbb{C}e_{w(1)} \oplus \mathbb{C}e_{w(2)} \oplus \cdots \oplus \mathbb{C}e_{w(i)}$ for all $1 \leq i \leq n$. In fact, $\operatorname{Hess}(S, h)$ contains all the T-fixed points of $\operatorname{Flag}(\mathbb{C}^n)^T$:

$$\operatorname{Hess}(S,h)^T = \operatorname{Flag}(\mathbb{C}^n)^T = \mathfrak{S}_n.$$

The fixed points set $Hess(S, h)^T$

• Recall that we have $\operatorname{Flag}(\mathbb{C}^n)^T = \mathfrak{S}_n$ by identifying $w \in \mathfrak{S}_n$ and V_{\bullet} , where $V_i = \mathbb{C}e_{w(1)} \oplus \mathbb{C}e_{w(2)} \oplus \cdots \oplus \mathbb{C}e_{w(i)}$ for all $1 \leq i \leq n$. In fact, $\operatorname{Hess}(S, h)$ contains all the T-fixed points of $\operatorname{Flag}(\mathbb{C}^n)^T$:

$$\operatorname{Hess}(S,h)^T = \operatorname{Flag}(\mathbb{C}^n)^T = \mathfrak{S}_n.$$

Problem If X is a T-invariant nonsingular subvariety of $\operatorname{Flag}(\mathbb{C}^n)$ such that $\chi(X) = \chi(\operatorname{Flag}(\mathbb{C}^n))$, then should X be isomorphism to some $\operatorname{Hess}(S,h)$?

Hessenberg varieties

Remark

Recently, Ayzenberg and Buchstaber constructed a family of smooth submanifolds X(h)'s of $\operatorname{Flag}(\mathbb{C}^n)$ with compact torus \mathbb{T} action have the following properties:

Remark

Recently, Ayzenberg and Buchstaber constructed a family of smooth submanifolds X(h)'s of $\operatorname{Flag}(\mathbb{C}^n)$ with compact torus \mathbb{T} action have the following properties:

$$\bullet H_*(X(h)) \cong H_*(\operatorname{Hess}(S,h));$$

Remark

Recently, Ayzenberg and Buchstaber constructed a family of smooth submanifolds X(h)'s of $\operatorname{Flag}(\mathbb{C}^n)$ with compact torus \mathbb{T} action have the following properties:

- $\bullet H_*(X(h)) \cong H_*(\operatorname{Hess}(S,h));$
- $2 X(h)^{\mathbb{T}} \cong \operatorname{Hess}(S,h)^{T}.$

Details can be found in [2].

Fano regular semisimple Hessenberg varieties

Weights

① Weight: An algebraic homomorphism $\mu: T \to \mathbb{C}^*$. Hence

 $\{Weights\} \cong \mathbb{Z}^n$.

Fano regular semisimple Hessenberg varieties

Weights

1 Weight: An algebraic homomorphism $\mu: T \to \mathbb{C}^*$. Hence

$$\{Weights\} \cong \mathbb{Z}^n$$
.

② Dominant weights:

$$\{\mu = (\mu_1, \mu_2, \cdots, \mu_n) \in \mathbb{Z}^n | \mu_1 \ge \mu_2 \ge \cdots \ge \mu_n\}$$

Weights

① Weight: An algebraic homomorphism $\mu: T \to \mathbb{C}^*$. Hence

$$\{Weights\} \cong \mathbb{Z}^n$$
.

② Dominant weights:

$$\{\mu = (\mu_1, \mu_2, \cdots, \mu_n) \in \mathbb{Z}^n | \mu_1 \ge \mu_2 \ge \cdots \ge \mu_n\}$$

Regular dominant weights:

$$\{\mu = (\mu_1, \mu_2, \cdots, \mu_n) \in \mathbb{Z}^n | \mu_1 > \mu_2 > \cdots > \mu_n \}$$

Line bundles associated to weights

• \mathbb{C}_{μ} be the one dimensional complex representation of T with weight $\mu=(\mu_1,\mu_2,\cdots,\mu_n)$. Consider the projection $B \twoheadrightarrow T$, then \mathbb{C}_{μ} is also B-module given by

$$\begin{pmatrix} b_1 & * & * & * \\ & b_2 & * & * \\ & & \ddots & * \\ & & & b_n \end{pmatrix} \cdot v = b_1^{\mu_1} b_2^{\mu_2} \cdots b_n^{\mu_n} v.$$

Line bundles associated to weights

• \mathbb{C}_{μ} be the one dimensional complex representation of T with weight $\mu = (\mu_1, \mu_2, \cdots, \mu_n)$. Consider the projection $B \twoheadrightarrow T$, then \mathbb{C}_{μ} is also B-module given by

$$\begin{pmatrix} b_1 & * & * & * \\ & b_2 & * & * \\ & & \ddots & * \\ & & & b_n \end{pmatrix} \cdot v = b_1^{\mu_1} b_2^{\mu_2} \cdots b_n^{\mu_n} v.$$

• $L_{\mu} := G \times^B \mathbb{C}_{\mu}^*$, the *B*-action on $G \times C_{\mu}^*$ is given by

$$(g, v)b := (gb, b^{-1} \cdot v) = (gb, \mu(b)v).$$

We also denote $L_{\mu}|_{\mathsf{Hess}(S,h)}$ by L_{μ} .

Fano regular semisimple Hessenberg varieties

Ample and nef line bundles

Proposition ([3])

1 L_{μ} is ample over $\operatorname{Flag}_n(\mathbb{C})$ if and only if μ is a regular dominant weight.

Ample and nef line bundles

Proposition ([3])

- **1** L_{μ} is ample over $\operatorname{Flag}_{n}(\mathbb{C})$ if and only if μ is a regular dominant weight.
- **2** L_{μ} is nef over $\operatorname{Flag}_n(\mathbb{C})$ if and only if μ is a dominant weight.

Corollary

Assume that $h(i) \ge i + 1$ for $1 \le i \le n - 1$, then

• L_{μ} is ample over $\operatorname{Hess}(S,h)$ if and only if μ is a regular dominant weight.

Ample and nef line bundles

Proposition ([3])

- **1** L_{μ} is ample over $\operatorname{Flag}_{n}(\mathbb{C})$ if and only if μ is a regular dominant weight.
- **2** L_{μ} is nef over $\operatorname{Flag}_n(\mathbb{C})$ if and only if μ is a dominant weight.

Corollary

Assume that $h(i) \ge i + 1$ for $1 \le i \le n - 1$, then

- **1** L_{μ} is ample over Hess(S, h) if and only if μ is a regular dominant weight.
- ② L_{μ} is nef over $\operatorname{Hess}(S,h)$ if and only if μ is a dominant weight.

The anti-cononical bundle

Proposition

$$\mathcal{O}(-K_{\mathsf{Hess}(S,h)}) \cong L_{\xi_h}$$

where

$$\xi_h = \sum_{1 \leq i < j \leq h(i)} (t_i - t_j) \ \ ext{and} \ \ t_i = (0, 0, \cdots, 1, 0, \cdots, 0)$$

Fano regular semisimple Hessenberg varieties

Example

Example

If
$$h = (2, 3, 4, 5, 5)$$
 then $\xi_h = t_1 - t_5$.

When Hess(S, h) is Fano

Fano: If $\mathcal{O}(-K_{\mathsf{Hess}(S,h)})$ is ample.

Theorem (Abe-Fujita-Z)

Assume that $h(i) \ge i+1$ for all $1 \le i \le n-1$. Then $\operatorname{Hess}(S,h)$ is Fano if and only if

$$h=(k+1,k+2,\cdots,n,n,\cdots,n)$$

such that $\frac{n-1}{2} \le k \le n-1$.

Fano regular semisimple Hessenberg varieties

Example

Example

- **1** If h = (2, 3, 3), Hess(S, h) is Fano.
- ② If h = (2, 3, 4, 4), Hess(S, h) is not Fano.

Definition

Weak Fano: If $\mathcal{O}(-K_{\mathsf{Hess}(S,h)})$ is nef and big.

Proposition ([5])

If $\mathcal{O}(-K_{\mathsf{Hess}(S,h)})$ is nef then the following conditions are equivalent:

When Hess(S, h) is weak Fano

Theorem (Abe-Fujita-Z)

Assume that $h(i) \ge i+1$ for all $1 \le i \le n-1$. Then $\operatorname{Hess}(S,h)$ is weak Fano if and only if

$$h(i) - h(i+1) + 2 - h^*(n+1-i) + h^*(n-i) \ge 0$$

for all $1 \le i \le n-1$.

Weak Fano regular semisimple Hessenberg varieties

Examples

Example

1 If h = (2, 3, 4, 4), Hess(S, h) is weak Fano.

Weak Fano regular semisimple Hessenberg varieties

Examples

Example

- **1** If h = (2, 3, 4, 4), Hess(S, h) is weak Fano.
- ② If h = (3, 3, 4, 4), Hess(S, h) is weak Fano.

Weak Fano regular semisimple Hessenberg varieties

references

- H. Abe, N. Fujita and H. Zeng, Fano and weak Fano Hessenberg varieties, arXiv: 2003.12286v1.
- A. Ayzenberg and V. Buchstaber, *Manifolds of isospectral matrices and Hessenberg varieties*, arXiv: 1803.01132v2.
- M. Brion, Lectures on the geometry of flag varieties, in Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85.
- F. De Mari, C. Processi, and M. A. Shayman, *Hessenberg varieties*, Trans. Amer. Math. Soc. 332 (1992), no. 2, 529–534.
- R. Lazarsfeld, *Positive in Algebraic Geometry I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, Vol. 48, Springer-Verlag, Berlin, 2004.