Constructing Bieberbach Groups from a quotient group of the orbit braid group

Shuya Cai @ Fudan University

Toric Topology 2022 in Osaka March, 24, 2022

- 1 Crystallographic Groups and Bieberbach Groups
- 2 Conclusions related to a quotient of the Artin braid groups
- 3 Constructing Bieberbach Groups from $B_n^{orb}/[P_n,P_n]$
- 4 Further Research

Charlap L. S., Bieberbach Groups and Flat Manifolds; Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.

Charlap L. S., Bieberbach Groups and Flat Manifolds; Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.

Definition

Let G be a Hausdorff topological group. A subgroup H of G is said to be uniform if G/H is compact.

Charlap L. S., Bieberbach Groups and Flat Manifolds; Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.

Definition

Let G be a Hausdorff topological group. A subgroup H of G is said to be uniform if G/H is compact.

Definition

A discrete and uniform subgroup Π of $\mathbb{R}^n \rtimes O(n,\mathbb{R}) \subset \mathrm{Aff}(\mathbb{R}^n)$ is said to be a crystallographic Group of dimension n. If in addition Π is torsion free then Π is called a Bieberbach group of dimension n.

If Φ is a group, an integral representation of rank m of Φ is defined to be a homomorphism $\Theta:\Phi\to Aut(\mathbb{Z}^m)$. Two such representations are said to be equivalent if their images are conjugate in $Aut(\mathbb{Z}^m)$. We say that Θ is a faithful representation if it is injective.

Let Π be a group. Then Π is a crystallographic group if and only if there exists an integer $n \in \mathbb{N}$ and a short exact sequence

$$1 \to \mathbb{Z}^n \to \Pi \xrightarrow{\zeta} \Phi \to 1$$

such that:

- lacktriangledown Φ is finite, and
- the integral representation $\Theta:\Phi\to Aut(\mathbb{Z}^n)$, induced by conjugation on \mathbb{Z} and defined by $\Theta(\varphi)(x)=\pi x\pi^{-1}$, for all $x\in\mathbb{Z}^n, \varphi\in\Phi$, where $\pi\in\Pi$ is such that $\zeta(\pi)=\varphi$, is faithful.

Let Π be a group. Then Π is a crystallographic group if and only if there exists an integer $n \in \mathbb{N}$ and a short exact sequence

$$1 \to \mathbb{Z}^n \to \Pi \xrightarrow{\zeta} \Phi \to 1$$

such that:

- lacktriangledown Φ is finite, and
- the integral representation $\Theta:\Phi\to Aut(\mathbb{Z}^n)$, induced by conjugation on \mathbb{Z} and defined by $\Theta(\varphi)(x)=\pi x\pi^{-1}$, for all $x\in\mathbb{Z}^n, \varphi\in\Phi$, where $\pi\in\Pi$ is such that $\zeta(\pi)=\varphi$, is faithful.

The integer n is called the dimension of Π . The finite group Φ is called the holonomy group of Π . And the integral representation $\Theta:\Phi\to Aut(\mathbb{Z}^n)$ is called the holonomy representation of Π .

$$1 \to \mathbb{Z}^n \to \Pi \xrightarrow{\zeta} \Phi \to 1$$

Corollary

Let Π be a crystallographic group of dimension n and holonomy group Φ , and let H be a subgroup of Φ . $\zeta^{-1}(H)$ is a crystallographic subgroup of Π of dimension n with holonomy group H.

Definition

A Riemannian manifold M is called **flat** if it has zero curvature at every point.

Definition

A Riemannian manifold M is called **flat** if it has zero curvature at every point.

Theorem (the first Bieberbach Theorem)

There is a correspondence between Bieberbach groups and fundamental groups of closed flat Riemannian manifolds.

Theorem (Wolf J.A.)

The holonomy group of the corresponding flat manifold M is isomorphic to the group Φ .

Theorem (Auslander and Kuranishi)

Any finite group is the holonomy group of some flat manifold.

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . Then M is orientable if and only if the integral representation $\Theta: \Phi \to \operatorname{Aut}(\mathbb{Z}^n)$ satisfies

$$Im(\Theta) \subset SO(n, \mathbb{Z}).$$

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . Then M is orientable if and only if the integral representation $\Theta: \Phi \to \operatorname{Aut}(\mathbb{Z}^n)$ satisfies

$$\operatorname{Im}(\Theta) \subset \operatorname{SO}(n, \mathbb{Z}).$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . The holonomy group Φ is generated by U_1, \dots, U_s . Then the first Betti number of M is:

$$b_1(M) = \operatorname{rank} H_1(M, \mathbb{Z}) = \operatorname{rank} \frac{\pi}{[\pi, \pi]}$$
$$= n - \operatorname{rank}(\Theta(U_1) - I, \dots, \Theta(U_s) - I).$$

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . The holonomy group Φ is cyclic. Suppose that $A=\Theta(1)$. Then M supports an Anosv diffeomorphism if and only if A has none of the following numbers as simple eigenvalues:

$$\pm 1, \pm i, \pm \omega, \pm \omega^2, where \quad \omega^3 = 1.$$

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . The holonomy group Φ is cyclic. Suppose that $A=\Theta(1)$. Then M supports an Anosv diffeomorphism if and only if A has none of the following numbers as simple eigenvalues:

$$\pm 1, \pm i, \pm \omega, \pm \omega^2, where \quad \omega^3 = 1.$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π . Then M is Kähler if and only if

- ullet the dimension of M is even, and
- \bullet each \mathbb{R} -irreducible summand of φ which is also \mathbb{C} -irreducible occurs with an even multiplicity.

Definition

The Artin braid group B_n on n strands is defined by the presentation:

- \ast generators: $\sigma_1, \cdots, \sigma_{n-1}$;
- ***** relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad |i - j| \ge 2,$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad i = 1, \dots, n-2.$

Definition

The Artin pure braid group P_n is defined by the presentation:

- \Re generators: $S_{ij}, 1 \leq i < j \leq n$;
- ***** relations:

$$S_{rs}^{-1}S_{ij}S_{rs} = \left\{ \begin{array}{ll} S_{ij}, & r < s < i < j; \\ S_{ij}, & i < r < s < j; \\ S_{rj}S_{ij}S_{rj}^{-1}, & r < i = s < j; \\ (S_{ij}S_{sj})S_{ij}(S_{ij}S_{sj})^{-1}, & r < i = s < j; \\ (S_{rj}S_{sj}S_{rj}^{-1}S_{rj}^{-1})S_{ij}(S_{rj}S_{sj}S_{rj}^{-1}S_{sj}^{-1})^{-1}, & r = i < s < j; \\ (S_{rj}S_{sj}S_{rj}^{-1}S_{rj}^{-1})S_{ij}(S_{rj}S_{sj}S_{rj}^{-1}S_{sj}^{-1})^{-1}, & r < i < s < j. \end{array} \right.$$

Proposition (Gonçalves, Guaschi, Ocampo)

Let $n \ge 2$. There is a short exact sequence:

$$1 \to \mathbb{Z}^{\frac{n(n-1)}{2}} \to B_n/[P_n, P_n] \xrightarrow{\overline{s}} \Sigma_n \to 1,$$

and the middle group $B_n/[P_n, P_n]$ is a crystallographic group.

Proposition (Gonçalves, Guaschi, Ocampo)

Let $n \ge 2$. There is a short exact sequence:

$$1 \to \mathbb{Z}^{\frac{n(n-1)}{2}} \to B_n/[P_n, P_n] \xrightarrow{\overline{s}} \Sigma_n \to 1,$$

and the middle group $B_n/[P_n, P_n]$ is a crystallographic group.

Corollary

Let $n \geqslant 3$, and let H be a subgroup of Σ_n . Then the group H_n defined by

$$\widetilde{H}_n = s^{-1}(H)/[P_n, P_n] \tag{1}$$

is a crystallographic group of dimension $\frac{n(n-1)}{2}$ with holonomy group H.

Theorem (Gonçalves, Guaschi, Ocampo)

If $n \geqslant 3$ then the quotient group $B_n/[P_n, P_n]$ has no finite-order element of even order.

Theorem (Gonçalves, Guaschi, Ocampo)

If $n \geqslant 3$ then the quotient group $B_n/[P_n, P_n]$ has no finite-order element of even order.

Corollary

Let $n \geqslant 3$, and let H be a 2-subgroup of Σ_n . Then the group \widetilde{H}_n given by equation (1) is a Bieberbach group of dimension $\frac{n(n-1)}{2}$.

Consider the cyclic subgroup $H_{2^d,k} \subset \Sigma_n$:

$$H_{2^d,k} = \langle \mu \rangle,$$

 $\mu = (2^d, \dots, 1)(2 \cdot 2^d, \dots, 1 + 2^d) \dots (k, \dots, k - (2^d - 1))$

with $k=2^dm$ such that $2^d\leqslant k\leqslant n$ and m is a positive integer. Then $\widetilde{H}_{2^d,k}=s^{-1}(H_{2^d,k})/[P_n,P_n]$ is a Bieberbach group with

holonomy group $H_{2^d,k}$ and holonomy representation

$$\psi_{H_{2^d,k}}:H_{2^d,k}\to \operatorname{Aut}(\mathbf{P_n/[P_n,P_n]}).$$

Theorem (Ocampo, Rodriguez-Nieto)

Let $k=2^dm$. Let $\chi_{H_{2^d,k}}$ be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\widetilde{H}_{2^d,k}$ and holonomy group $H_{2^d,k}=\mathbb{Z}_{2^d}$. Then

- ① $\chi_{H_{2^d,k}}$ is orientable if and only if one of n or m is even.
- **1** The first homology group of the flat manifold $\chi_{H_{2^d,k}}$ is $H_1(\chi_{H_{2^d,k}},\mathbb{Z})=\mathbb{Z}^{|\mathfrak{I}|}\oplus\mathbb{Z}_{2^{d-1}}$, where \mathfrak{I} is the transversal of the action by conjugation of $H_{2^d,k}$ on the basis $\{A_{i,j}|1\leqslant i< j\leqslant n\}$ of $P_n/[P_n,P_n]$ satisfying

$$|\Im| = \frac{k}{2^d} + \frac{k(2n-k-2)}{2^{d+1}} + \frac{(n-k)(n-k-1)}{2}.$$

So, the first Betti number of the flat manifold $\chi_{H_{2d}}$ is

$$b_1(\chi_{H_{2^d,k}}) = \frac{(2^d - 1)k^2 - 2kn(2^d - 1) + 2^d n^2 - 2^d n}{2^{d+1}}.$$

Theorem (Ocampo, Rodriguez-Nieto)

- $\hbox{ \begin{tabular}{l} \hline \textbf{0} \hline \hline \textbf{0} \hline \hline \textbf{0} \hline \hline \textbf{0} \hline \textbf{0} \hline \hline \textbf{0} \hline$
 - 0 $n \geqslant 4$ in the cased = 1,
 - 0 $n \geqslant 5$ in the case d=2,
 - $n \geqslant 2^d$ in the case $d \geqslant 3$.
- Suppose that $\frac{n(n-1)}{2}$ is even, so n=4q or n=4q+1, for some q. Let d=1, then the flat manifold $\chi_{H_{2^d,k}}$ is Kähler if and only if n=4q and m is even. Let d2 then the flat manifold $\chi_{H_{2^d,k}}$ is Kähler if and only if one of the following conditions holds
 - $0 \quad n = 4q$
 - 0 n=4q+1 and m is even.

Theorem (Ocampo)

Let G be a finite abelian group.

- There exists n and a Bieberbach subgroup Γ_G of $B_n/[P_n, P_n]$ of dimension $\frac{n(n-1)}{2}$ with holonomy group G.
- ① The finite abelian group G is the holonomy group of a flat manifold χ_{Γ_G} of dimension $\frac{n(n-1)}{2}$, where n is an integer for which G embeds in the symmetric group Σ_n , and the fundamental group of χ_{Γ_G} is isomorphic to a subgroup Γ_G of $B_n/[P_n,P_n]$.

Theorem (Ocampo)

Let $q=p_1^{r_1}p_2^{r_2}\cdots p_t^{r_t}$ be an odd number, where p_i are distinct odd primes and $r_i\geqslant 1$ for all $1\leqslant i\leqslant t$. Let χ_{Γ_q} be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\Gamma_q\subset B_n/[P_n,P_n]$ and holonomy group \mathbb{Z}_q . Then

- **a** χ_{Γ_q} is orientable.
- **1** The first Betti number of χ_{Γ_q} is $b_1(\chi_{\Gamma_q}) = \sum_{i=1}^t \frac{p_i^{r_i}-1}{2} + \frac{t(t-1)}{2}$.
- (§) The flat manifold χ_{Γ_q} with fundamental group Γ_q admits Anosov diffeomorphism if and only if $q \neq 3$.

Theorem (Ocampo)

Let $q=p_1^{r_1}p_2^{r_2}\cdots p_t^{r_t}$ be an odd number, where p_i are distinct odd primes and $r_i\geqslant 1$ for all $1\leqslant i\leqslant t$. Let χ_{Γ_q} be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\Gamma_q\subset B_n/[P_n,P_n]$ and holonomy group \mathbb{Z}_q . Then

- ① χ_{Γ_q} is orientable.
- **1** The first Betti number of χ_{Γ_q} is $b_1(\chi_{\Gamma_q}) = \sum\limits_{i=1}^t rac{p_i^{r_i}-1}{2} + rac{t(t-1)}{2}$.
- ① The flat manifold χ_{Γ_q} with fundamental group Γ_q admits Anosov diffeomorphism if and only if $q \neq 3$.

Theorem (Ocampo)

Let p be an odd prime and let $r\geqslant 1$. Let $\chi_{\Gamma_{p^r}}$ be the flat manifold of dimension $\frac{p^r(p^r-1)}{2}$ with fundamental group $\Gamma_{p^r}\subset B_n/[P_n,P_n]$ and holonomy group \mathbb{Z}_{p^r} . Then the flat manifold $\chi_{\Gamma_{p^r}}$ is Kähler if and only if there is an integer $u\geqslant 1$ such that $p^r=4u+1$.

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g\geqslant 1$ without boundary, and let $n\geqslant 2$. Then there exists a split extension of the form:

$$1 \to \mathbb{Z}^{2ng} \to B_n(M)/[P_n(M), P_n(M)] \xrightarrow{\bar{s}} \Sigma_n \to 1.$$

The quotient $B_n(M)/[P_n(M), P_n(M)]$ is a crystallographic group of dimension 2ng, whose holonomy group is Σ_n .

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g\geqslant 1$ without boundary, and let $n\geqslant 2$. Then there exists a split extension of the form:

$$1 \to \mathbb{Z}^{2ng} \to B_n(M)/[P_n(M), P_n(M)] \xrightarrow{\bar{s}} \Sigma_n \to 1.$$

The quotient $B_n(M)/[P_n(M), P_n(M)]$ is a crystallographic group of dimension 2ng, whose holonomy group is Σ_n .

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let $M = \mathbb{S}^2$ or N_g , where $g \geqslant 1$. Then for all $n \geqslant 1$, the quotient $B_n(M)/[P_n(M),P_n(M)]$ is not a crystallographic group.

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g\geqslant 1$ without boundary, and let $n\geqslant 1$. The quotient $B_n(M)/[P_n(M),P_n(M)]$ has the following presentation: Generators: $\sigma_1,\cdots,\sigma_{n-1},a_{i,r},1\leqslant i\leqslant n,1\leqslant r\leqslant 2q$.

Relations:

1 the Artin relations.

2
$$\sigma_i^2 = 1$$
, for all $i = 1, \dots, n-1$

3
$$[a_{i,r}, a_{j,s}] = 1$$
, for all $i, j = 1, \dots, n$ and $r, s = 1, \dots, 2g$.

•
$$\sigma_i a_{j,r} \sigma_i^{-1} = a_{\tau_i(j),r}$$
 for all $1 \leqslant i \leqslant n-1, \ 1 \leqslant j$ and $1 \leqslant r \leqslant 2g$.

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n\geqslant 2$, and let M be an orientable surface of genus $g\geqslant 1$ without boundary. Let G_n be the cyclic subgroup $\langle (n,n-1,\cdots,2,1)\rangle$ of Σ_n . Then there exists a subgroup $\tilde{G}_{n,g}$ of $\sigma^{-1}(G_n)/[P_n(M),P_n(M)]\subset B_n(M)/[P_n(M),P_n(M)]$ that is a Bieberbach group of dimension 2ng whose holonomy group is G_n . Further, the centre $Z(\tilde{G}_{n,g})$ of $\tilde{G}_{n,g}$ is a free Abelian group of rank 2g.

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n\geqslant 2$, and let M be an orientable surface of genus $g\geqslant 1$ without boundary. Let G_n be the cyclic subgroup $\langle (n,n-1,\cdots,2,1)\rangle$ of Σ_n . Then there exists a subgroup $\tilde{G}_{n,g}$ of $\sigma^{-1}(G_n)/[P_n(M),P_n(M)]\subset B_n(M)/[P_n(M),P_n(M)]$ that is a Bieberbach group of dimension 2ng whose holonomy group is G_n . Further, the centre $Z(\tilde{G}_{n,g})$ of $\tilde{G}_{n,g}$ is a free Abelian group of rank 2g.

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n \geqslant 2$, and let $\chi_{n,g}$ be a 2ng-dimension flat manifold whose fundamental group is the Bieberbach group $\tilde{G}_{n,g}$. Then $\chi_{n,g}$ is an orientable Kahler manifold with first Betti number 2g that admits Anosov diffeomorphisms.

complex braid groups

Theorem (Marin I.)

For every complex reflection group W, the group B/[P,P] is crystallographic with holonomy group W/Z(W) of dimension $N=|\mathcal{A}|$. The kernel of the projection map $B/[P,P] \to W/Z(W)$ is the subgroup P_0 generated by P^{ab} and $Z_0(B)$. We have $P_0 \cong \mathbb{Z}^N$.

complex braid groups

Theorem (Marin I.)

For every complex reflection group W, the group B/[P,P] is crystallographic with holonomy group W/Z(W) of dimension $N=|\mathcal{A}|$. The kernel of the projection map $B/[P,P] \to W/Z(W)$ is the subgroup P_0 generated by P^{ab} and $Z_0(B)$. We have $P_0 \cong \mathbb{Z}^N$.

Theorem (Marin I.)

For every complex reflection group W, the group B/[P,P] has no element of order 2.

Orbit Braid Group

Orbit Braid Group

$$G \curvearrowright M$$

Definition (orbit configuration space, Xicontencatle)

$$F_G(M,n) = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \in M^n | G(\mathbf{x}_i) \cap G(\mathbf{x}_j) = \emptyset \quad if \quad i \neq j\}$$

Orbit Braid Group

 $G \curvearrowright M$

Definition (orbit configuration space, Xicontencatle)

$$F_G(M,n) = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \in M^n | G(\mathbf{x}_i) \cap G(\mathbf{x}_j) = \emptyset \quad if \quad i \neq j\}$$

Definition (Hao Li, Zhi Lü, Fengling Li) (orbit braid group)

$$B_n^{orb}(M,G) \cong \pi_1^E(F_G(M,n), \mathbf{x}, \mathbf{x}^{orb})$$

$$P_n^{orb}(M,G) \cong \pi_1^E(F_G(M,n), \mathbf{x}, G^n(\mathbf{x}))$$

$$B_n(M,G) \cong \pi_1^E(F_G(M,n), \mathbf{x}, \Sigma_n \mathbf{x})$$

$$P_n(M,G) \cong \pi_1(F_G(M,n), \mathbf{x})$$

 $\mathbb{Z}_2 \curvearrowright \mathbb{C}$

$$\mathbb{Z}_2 \curvearrowright \mathbb{C}$$

Theorem (Hao Li, Zhi Lü, Fengling Li)

 $B_n^{orb}(\mathbb{C},\mathbb{Z}_2)$ admits the following presentation:

- # generators: σ ; σ_i , $i = 1, \dots, n-1$.
- ***** relations:
 - **1** $\sigma^2 = 1$;

 - $\bullet \ \sigma_i \sigma_j = \sigma_j \sigma_i, |i j| > 1;$

$\mathbb{Z}_2 \curvearrowright \mathbb{C}$

Theorem

 $P_n^{orb}(\mathbb{C},\mathbb{Z}_2)$ admits the following presentation:

- $*$ generators: $z_k, k = 1, \dots, n; S_{ij}, 1 \le i < j \le n.$
- ***** relations:

$$z_k^2 = 1, k = 1, \dots, n;$$

$$z_k S_{ij} z_k = \left\{ \begin{array}{ll} S_{i,j}, & k < i < j \quad or \quad i < j < k; \\ z_j S_{ij} z_j, & k = i < j; \\ z_j S_{kj} z_j S_{kj}^{-1} S_{ij} S_{kj} z_j S_{kj}^{-1} z_j, & i < k < j; \end{array} \right.$$

$$S_{rs}^{-1}S_{ij}S_{rs} = \left\{ \begin{array}{ll} S_{ij}, & r < s < i < j; \\ S_{ij}, & i < r < s < j; \\ S_{rj}S_{ij}S_{rj}^{-1}, & r < i = s < j; \\ (S_{ij}S_{sj})S_{ij}(S_{ij}S_{sj})^{-1}, & r < i = s < j; \\ (S_{rj}S_{sj}S_{rj}^{-1}S_{rj}^{-1})S_{ij}(S_{rj}S_{sj}S_{rj}^{-1}S_{sj}^{-1})^{-1}, & r < i < s < j. \end{array} \right.$$

Denote

$$P_n^{orb} = P_n^{orb}(\mathbb{C}, \mathbb{Z}_2); \quad P_n = P_n(\mathbb{C}, \mathbb{Z}_2);$$

$$B_n^{orb} = B_n^{orb}(\mathbb{C}, \mathbb{Z}_2); \quad B_n = B_n(\mathbb{C}, \mathbb{Z}_2).$$

Denote

$$P_n^{orb} = P_n^{orb}(\mathbb{C}, \mathbb{Z}_2); \quad P_n = P_n(\mathbb{C}, \mathbb{Z}_2);$$

$$B_n^{orb} = B_n^{orb}(\mathbb{C}, \mathbb{Z}_2); \quad B_n = B_n(\mathbb{C}, \mathbb{Z}_2).$$

Proposition

 $B_n^{orb}/[P_n^{orb},P_n^{orb}]$ is not a crystallographic group.

$$1 \to P_n \to B_n^{orb} \xrightarrow{s} (\mathbb{Z}_2)^n \rtimes \Sigma_n \to 1.$$

$$1 \to P_n \to B_n^{orb} \xrightarrow{s} (\mathbb{Z}_2)^n \rtimes \Sigma_n \to 1.$$

We obtain

$$1 \to P_n/[P_n,P_n] \to B_n^{orb}/[P_n,P_n] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^n \rtimes \Sigma_n \to 1.$$

$$1 \to P_n \to B_n^{orb} \xrightarrow{s} (\mathbb{Z}_2)^n \rtimes \Sigma_n \to 1.$$

We obtain

$$1 \to P_n/[P_n,P_n] \to B_n^{orb}/[P_n,P_n] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^n \rtimes \Sigma_n \to 1.$$

Remark

 $\Theta: \mathbb{Z}_2^n \rtimes \Sigma_n \to Aut(\mathbb{Z}^{n(n-1)})$ induced by the conjugation is not faithful.

Lemma

Let
$$E=s^{-1}((-1,\cdots,-1),1)$$
. Then $(E\bigcup P_n)/[P_n,P_n]\cong \mathbb{Z}^{n(n-1)}$ is a normal subgroup of $B_n^{orb}/[P_n,P_n]$ and it is generated by:

$$\omega = \sigma(\sigma_1 \sigma \sigma_1) \cdots (\sigma_{n-1} \cdots \sigma_1 \sigma \sigma_1 \cdots \sigma_{n-1}),$$

$$S_{n-1,n}, S_{i,j}, 1 \leq |i| < n-1, 1 < j \leq n, |i| < j.$$

Lemma

Let $E=s^{-1}((-1,\cdots,-1),1)$. Then $(E\bigcup_n P_n)/[P_n,P_n]\cong \mathbb{Z}^{n(n-1)}$ is a normal subgroup of $B_n^{orb}/[P_n,P_n]$ and it is generated by:

$$\omega = \sigma(\sigma_1 \sigma \sigma_1) \cdots (\sigma_{n-1} \cdots \sigma_1 \sigma \sigma_1 \cdots \sigma_{n-1}),$$

$$S_{n-1,n}, S_{i,j}, 1 \leq |i| < n-1, 1 < j \leq n, |i| < j.$$

Proposition

Let $n \geqslant 3$ and $F = Z((\mathbb{Z}_2)^n \rtimes \Sigma_n) = \langle ((-1, \cdots, -1), 1) \rangle$. Then there is a short exact sequence:

$$1 \to \mathbb{Z}^{n(n-1)} \to B_n^{orb}/[P_n,P_n] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^n \rtimes \Sigma_n/F \to 1,$$

and $B_n^{orb}/[P_n, P_n]$ is a crystallographic group.

Theorem

Let $n \geqslant 3$.And let $\vartheta \in \mathbb{Z}_2^n \rtimes \Sigma_n/F$ satisfy the following conditions:

- $\Re \vartheta$ is of order 2
- ϑ is not conjugate to $((-1,1,\cdots,1),1)$.

Then for $H=<\vartheta>$, $\widetilde{H}=\sigma^{-1}(H)/[P_n,P_n]$ is a Bieberbach group of dimension n(n-1) with the holonomy group H.

Theorem

Let $n \geqslant 3$.And let $\vartheta \in \mathbb{Z}_2^n \rtimes \Sigma_n/F$ satisfy the following conditions:

- $\Re \vartheta$ is of order 2
- ϑ is not conjugate to $((-1,1,\cdots,1),1)$.

Then for $H=<\vartheta>$, $\widetilde{H}=\sigma^{-1}(H)/[P_n,P_n]$ is a Bieberbach group of dimension n(n-1) with the holonomy group H.

Corollary

 $B_n^{orb}/[P_n,P_n]$ has no elements of order $2k,k\geqslant 2$.

Theorem

Let $n \geqslant 3$.And let $\vartheta \in \mathbb{Z}_2^n \rtimes \Sigma_n/F$ satisfy the following conditions:

- $\Re \vartheta$ is of order 2
- ϑ is not conjugate to $((-1,1,\cdots,1),1)$.

Then for $H=<\vartheta>$, $\widetilde{H}=\sigma^{-1}(H)/[P_n,P_n]$ is a Bieberbach group of dimension n(n-1) with the holonomy group H.

Corollary

 $B_n^{orb}/[P_n,P_n]$ has no elements of order $2k,k\geqslant 2$.

Theorem

Let $n \geqslant 3$ and let m be odd integers greater than or equal to 3. Then $B_n^{orb}/[P_n,P_n]$ possesses infinitely many elements of order m. Consider the cyclic subgroup $G \subset (\mathbb{Z}_2)^n \rtimes \Sigma_n/F$:

$$G = \langle \mu = ((\varepsilon_1, \dots, \varepsilon_n), \theta) \rangle,$$

$$\theta = (2^d \dots 1) \dots (m2^d \dots (m-1)2^d + 1),$$

where $d \geqslant 1, 0 \leqslant m2^d \leqslant n$.

Consider the cyclic subgroup $G \subset (\mathbb{Z}_2)^n \rtimes \Sigma_n/F$:

$$G = \langle \mu = ((\varepsilon_1, \dots, \varepsilon_n), \theta) \rangle,$$

$$\theta = (2^d \dots 1) \dots (m2^d \dots (m-1)2^d + 1),$$

where $d \geqslant 1, 0 \leqslant m2^d \leqslant n$.

order
$$\mu = 2^u, u \geqslant 1$$
,

satisfying u = d or = 2d.

Consider the cyclic subgroup $G \subset (\mathbb{Z}_2)^n \rtimes \Sigma_n/F$:

$$G = \langle \mu = ((\varepsilon_1, \dots, \varepsilon_n), \theta) \rangle,$$

$$\theta = (2^d \dots 1) \dots (m2^d \dots (m-1)2^d + 1),$$

where $d \geqslant 1, 0 \leqslant m2^d \leqslant n$.

order
$$\mu = 2^u, u \geqslant 1$$
,

satisfying u = d or = 2d.

M is orientable?

M has an Ansov structure?

For the semi-direct product $(\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1}, r \geqslant 2$, we have

$$1 \to \mathbb{Z}^{(2^r+1)(2^r+2)} \to B^{orb}_{2^r+1}/[P_{2^r+1},P_{2^r+1}] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1} \to 1.$$

For the semi-direct product $(\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1}, r \geqslant 2$, we have

$$1 \to \mathbb{Z}^{(2^r+1)(2^r+2)} \to B_{2^r+1}^{orb}/[P_{2^r+1}, P_{2^r+1}] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1} \to 1.$$

Consider
$$(\mathbb{Z}_2)^{2^r} \rtimes \mathbb{Z}_{2^r} \subset (\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1}$$
 generated by

$$\overline{\omega}_i = ((1, 1, \dots, 1, -1, 1, \dots, 1), 1), \quad 1 \le i \le 2^r,$$

 $\overline{\alpha} = ((1, \dots, 1), (2, \dots, 2^r + 1)).$

For the semi-direct product $(\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1}, r \geqslant 2$, we have

$$1 \to \mathbb{Z}^{(2^r+1)(2^r+2)} \to B^{orb}_{2^r+1}/[P_{2^r+1},P_{2^r+1}] \xrightarrow{\overline{s}} (\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1} \to 1.$$

Consider $(\mathbb{Z}_2)^{2^r} \rtimes \mathbb{Z}_{2^r} \subset (\mathbb{Z}_2)^{2^r+1} \rtimes \Sigma_{2^r+1}$ generated by

$$\overline{\omega}_i = ((1, 1, \dots, 1, -1, 1, \dots, 1), 1), \quad 1 \le i \le 2^r,$$

 $\overline{\alpha} = ((1, \dots, 1), (2, \dots, 2^r + 1)).$

Let $F = \langle ((-1, \cdots, -1), 1) \rangle \subset (\mathbb{Z}_2)^{2^r} \rtimes \mathbb{Z}_{2^r}$. $(\mathbb{Z}_2)^{2^r} \rtimes \mathbb{Z}_{2^r}/F$ is non Abelian.

The subgroup $\Gamma \subset B_{2^r+1}^{orb}/[P_{2^r+1},P_{2^r+1}]$ is generated by $X_1 \bigcup X_2$, where

$$X_1 = \{\omega_i, 1 \leqslant i \leqslant 2^r, \alpha = \sigma_{2^r} \cdots \sigma_2\},$$

$$X_2 = \{S_{1,2}S_{-1,2}, \cdots, S_{1,2^r+1}S_{-1,2^r+1}, S_{i,j}, 2 \leqslant |i| < j \leqslant 2^r + 1\}.$$

The subgroup $\Gamma \subset B^{orb}_{2^r+1}/[P_{2^r+1},P_{2^r+1}]$ is generated by $X_1 \bigcup X_2$, where

$$X_1 = \{\omega_i, 1 \leqslant i \leqslant 2^r, \alpha = \sigma_{2^r} \cdots \sigma_2\},$$

$$X_2 = \{S_{1,2}S_{-1,2}, \cdots, S_{1,2^r+1}S_{-1,2^r+1}, S_{i,j}, 2 \leqslant |i| < j \leqslant 2^r + 1\}.$$

 Γ is a Bieberbach group. The holonomy group is the non Abelian group $(\mathbb{Z}_2)^{2^r} \rtimes \mathbb{Z}_{2^r}/F$.

Crystallographic Groups and Bieberbach Groups Conclusions related to a quotient of the Artin braid groups Constructing Bieberbach Groups from $B_n^{orb}/[P_n,P_n]$ Further Research

Definition

An almost-crystallographic group is a discrete subgroup Π of the semi-direct product $N\rtimes C$ that acts properly and discontinuously on N such that N/Π is compact. If in addition Π is torsion free then Π is called an almost-Bieberbach group.

Crystallographic Groups and Bieberbach Groups Conclusions related to a quotient of the Artin braid groups Constructing Bieberbach Groups from $B_n^{orb}/[P_n,P_n]$ Further Research

Definition

An almost-crystallographic group is a discrete subgroup Π of the semi-direct product $N\rtimes C$ that acts properly and discontinuously on N such that N/Π is compact. If in addition Π is torsion free then Π is called an almost-Bieberbach group.

Infra-nilmanifolds are determined completely by their fundamental groups that are almost-Bieberbach groups.

Theorem (Gasior, Petrosyan, Szczepa)

Let M be an almost-flat manifold with holonomy group F. Then M is orientable if and only if det=1. Suppose M is orientable and a 2-Sylow subgroup of F is cyclic, i.e. $C_{2^t}=\langle q\mid q^{2^t}=1\rangle$ for some $t\geqslant 0$. Let π_{ab} denote the abelianisation of the fundamental group π of M.

- If $\frac{1}{2}(n-Trace[\theta(q)^{2^{t-1}}]) \not\equiv 2 \pmod{4}$, then M has a Spin structure.
- If $\frac{1}{2}(n-Trace[\theta(q)^{2^{t-1}}]) \equiv 2 \pmod{4}$, then M has a Spin structure if and only if the epimorphism $q_*: \pi_{ab} \to C_{2^t}$ resulting from projection $q: \pi \to C_{2^t}$ factors through a cyclic group of order 2^{t+1} .

Crystallographic Groups and Bieberbach Groups Conclusions related to a quotient of the Artin braid groups Constructing Bieberbach Groups from $B_n^{orb}/[P_n,P_n]$ Further Research

Theorem (Gonalves, Guaschi, Ocampo)

Let $n, k \geqslant 3$. $B_n/\Gamma_k(P_n)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)

Let $n, k \geqslant 3$. $B_n/\Gamma_k(P_n)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)

For $n, k \geqslant 3$, $B_n/\Gamma_k(P_n)$ has no elements order 2 or 3.

Theorem (Gonalves, Guaschi, Ocampo)

Let $n, k \geqslant 3$. $B_n/\Gamma_k(P_n)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)

For $n, k \geqslant 3$, $B_n/\Gamma_k(P_n)$ has no elements order 2 or 3.

$\mathsf{Theorem}$

 $B_n^{orb}/\Gamma_k(P_n)$ is an almost-crystallographic group.

Crystallographic Groups and Bieberbach Groups Conclusions related to a quotient of the Artin braid groups Constructing Bieberbach Groups from $B_n^{orb}/[P_n,P_n]$ Further Research

Thank you!