Constructing Bieberbach Groups from a quotient group of the orbit braid group

Shuya Cai @ Fudan University

Toric Topology 2022 in Osaka
March, 24, 2022
(1) Crystallographic Groups and Bieberbach Groups
(2) Conclusions related to a quotient of the Artin braid groups
(3) Constructing Bieberbach Groups from $B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$
(4) Further Research

Charlap L. S., Bieberbach Groups and Flat Manifolds;

 Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.Charlap L. S., Bieberbach Groups and Flat Manifolds; Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.

Definition

Let G be a Hausdorff topological group. A subgroup H of G is said to be uniform if G / H is compact.

Charlap L. S., Bieberbach Groups and Flat Manifolds;
Dekimpe K., Almost-Bieberbach groups: Affine and Polynomial Structures.

Definition

Let G be a Hausdorff topological group. A subgroup H of G is said to be uniform if G / H is compact.

Definition

A discrete and uniform subgroup Π of $\mathbb{R}^{n} \rtimes O(n, \mathbb{R}) \subset \operatorname{Aff}\left(\mathbb{R}^{\mathrm{n}}\right)$ is said to be a crystallographic Group of dimension n. If in addition Π is torsion free then Π is called a Bieberbach group of dimension n.

If Φ is a group, an integral representation of rank m of Φ is defined to be a homomorphism $\Theta: \Phi \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)$. Two such representations are said to be equivalent if their images are conjugate in $\operatorname{Aut}\left(\mathbb{Z}^{m}\right)$. We say that Θ is a faithful representation if it is injective.

Lemma

Let Π be a group. Then Π is a crystallographic group if and only if there exists an integer $n \in \mathbb{N}$ and a short exact sequence

$$
1 \rightarrow \mathbb{Z}^{n} \rightarrow \Pi \stackrel{\zeta}{\rightarrow} \Phi \rightarrow 1
$$

such that:
(3) Φ is finite, and
(D) the integral representation $\Theta: \Phi \rightarrow A u t\left(\mathbb{Z}^{n}\right)$, induced by conjugation on \mathbb{Z} and defined by $\Theta(\varphi)(x)=\pi x \pi^{-1}$, for all $x \in \mathbb{Z}^{n}, \varphi \in \Phi$, where $\pi \in \Pi$ is such that $\zeta(\pi)=\varphi$, is faithful.

Lemma

Let Π be a group. Then Π is a crystallographic group if and only if there exists an integer $n \in \mathbb{N}$ and a short exact sequence

$$
1 \rightarrow \mathbb{Z}^{n} \rightarrow \Pi \stackrel{\zeta}{\rightarrow} \Phi \rightarrow 1
$$

such that:
(a) Φ is finite, and
(D) the integral representation $\Theta: \Phi \rightarrow A u t\left(\mathbb{Z}^{n}\right)$, induced by conjugation on \mathbb{Z} and defined by $\Theta(\varphi)(x)=\pi x \pi^{-1}$, for all $x \in \mathbb{Z}^{n}, \varphi \in \Phi$, where $\pi \in \Pi$ is such that $\zeta(\pi)=\varphi$, is faithful.

The integer n is called the dimension of Π. The finite group Φ is called the holonomy group of Π. And the integral representation $\Theta: \Phi \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)$ is called the holonomy representation of Π.

$$
1 \rightarrow \mathbb{Z}^{n} \rightarrow \Pi \stackrel{\zeta}{\rightarrow} \Phi \rightarrow 1
$$

Corollary

Let Π be a crystallographic group of dimension n and holonomy group Φ, and let H be a subgroup of $\Phi . \zeta^{-1}(H)$ is a crystallographic subgroup of Π of dimension n with holonomy group H.

Definition
 A Riemannian manifold M is called flat if it has zero curvature at every point.

Definition

A Riemannian manifold M is called flat if it has zero curvature at every point.

Theorem (the first Bieberbach Theorem)

There is a correspondence between Bieberbach groups and fundamental groups of closed flat Riemannian manifolds.

Theorem (Wolf J.A.)

The holonomy group of the corresponding flat manifold M is isomorphic to the group Φ.

Theorem (Auslander and Kuranishi)

Any finite group is the holonomy group of some flat manifold.

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π. Then M is orientable if and only if the integral representation $\Theta: \Phi \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{\mathrm{n}}\right)$ satisfies

$$
\operatorname{Im}(\Theta) \subset \mathrm{SO}(\mathrm{n}, \mathbb{Z})
$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π. Then M is orientable if and only if the integral representation $\Theta: \Phi \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{\mathrm{n}}\right)$ satisfies

$$
\operatorname{Im}(\Theta) \subset \mathrm{SO}(\mathrm{n}, \mathbb{Z})
$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π. The holonomy group Φ is generated by U_{1}, \cdots, U_{s}. Then the first Betti number of M is:

$$
\begin{aligned}
b_{1}(M) & =\operatorname{rankH}_{1}(\mathrm{M}, \mathbb{Z})=\operatorname{rank} \frac{\pi}{[\pi, \pi]} \\
& =n-\operatorname{rank}\left(\Theta\left(\mathrm{U}_{1}\right)-\mathrm{I}, \cdots, \Theta\left(\mathrm{U}_{\mathrm{s}}\right)-\mathrm{I}\right) .
\end{aligned}
$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π. The holonomy group Φ is cyclic. Suppose that $A=\Theta(1)$. Then M supports an Anosv diffeomorphism if and only if A has none of the following numbers as simple eigenvalues:

$$
\pm 1, \pm i, \pm \omega, \pm \omega^{2}, \text { where } \quad \omega^{3}=1
$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group П. The holonomy group Φ is cyclic. Suppose that $A=\Theta(1)$. Then M supports an Anosv diffeomorphism if and only if A has none of the following numbers as simple eigenvalues:

$$
\pm 1, \pm i, \pm \omega, \pm \omega^{2}, \text { where } \quad \omega^{3}=1
$$

Lemma

Let M be the flat manifold whose fundamental group is the Bieberbach group Π. Then M is Kähler if and only if
(a) the dimension of M is even, and
(D) each \mathbb{R}-irreducible summand of φ which is also \mathbb{C}-irreducible occurs with an even multiplicity.

Definition

The Artin braid group B_{n} on n strands is defined by the presentation: * generators: $\sigma_{1}, \cdots, \sigma_{n-1}$;

* relations:

$$
\begin{aligned}
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad|i-j| \geq 2 \\
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad i=1, \cdots, n-2
\end{aligned}
$$

Definition

The Artin pure braid group P_{n} is defined by the presentation:
generators: $S_{i j}, 1 \leq i<j \leq n$;

* relations:

$$
S_{r s}^{-1} S_{i j} S_{r s}= \begin{cases}S_{i j}, & r<s<i<j ; \\ S_{i j}, & i<r<s<j ; \\ S_{r j} S_{i j} S_{r j}^{-1}, & r<i=s<j ; \\ \left(S_{i j} S_{s j}\right) S_{i j}\left(S_{i j} S_{s j}\right)^{-1}, & r=i<s<j ; \\ \left(S_{r j} S_{s j} S_{r j} S_{s j}\right) S_{i j}\left(S_{r j} S_{s j} S_{r j}^{-1} S_{s j}^{-1}\right)^{-1}, & r<i<s<j .\end{cases}
$$

Proposition (Gonçalves, Guaschi, Ocampo)

Let $n \geqslant 2$. There is a short exact sequence:

$$
1 \rightarrow \mathbb{Z}^{\frac{n(n-1)}{2}} \rightarrow B_{n} /\left[P_{n}, P_{n}\right] \xrightarrow{\bar{s}} \Sigma_{n} \rightarrow 1,
$$

and the middle group $B_{n} /\left[P_{n}, P_{n}\right]$ is a crystallographic group.

Proposition (Gonçalves, Guaschi, Ocampo)

Let $n \geqslant 2$. There is a short exact sequence:

$$
1 \rightarrow \mathbb{Z}^{\frac{n(n-1)}{2}} \rightarrow B_{n} /\left[P_{n}, P_{n}\right] \xrightarrow{\bar{s}} \Sigma_{n} \rightarrow 1,
$$

and the middle group $B_{n} /\left[P_{n}, P_{n}\right]$ is a crystallographic group.

Corollary

Let $n \geqslant 3$, and let H be a subgroup of Σ_{n}. Then the group \widetilde{H}_{n} defined by

$$
\begin{equation*}
\widetilde{H}_{n}=s^{-1}(H) /\left[P_{n}, P_{n}\right] \tag{1}
\end{equation*}
$$

is a crystallographic group of dimension $\frac{n(n-1)}{2}$ with holonomy group H.

Theorem (Gonçalves, Guaschi, Ocampo)

If $n \geqslant 3$ then the quotient group $B_{n} /\left[P_{n}, P_{n}\right]$ has no finite-order element of even order.

Theorem (Gonçalves, Guaschi, Ocampo)

If $n \geqslant 3$ then the quotient group $B_{n} /\left[P_{n}, P_{n}\right]$ has no finite-order element of even order.

Corollary

Let $n \geqslant 3$, and let H be a 2 -subgroup of Σ_{n}. Then the group \widetilde{H}_{n} given by equation (1) is a Bieberbach group of dimension $\frac{n(n-1)}{2}$.

Consider the cyclic subgroup $H_{2^{d}, k} \subset \Sigma_{n}$:

$$
\begin{aligned}
& H_{2^{d}, k}=\langle\mu\rangle \\
& \mu=\left(2^{d}, \cdots, 1\right)\left(2 \cdot 2^{d}, \cdots, 1+2^{d}\right) \cdots\left(k, \cdots, k-\left(2^{d}-1\right)\right)
\end{aligned}
$$

with $k=2^{d} m$ such that $2^{d} \leqslant k \leqslant n$ and m is a positive integer.
Then $\widetilde{H}_{2^{d}, k}=s^{-1}\left(H_{2^{d}, k}\right) /\left[P_{n}, P_{n}\right]$ is a Bieberbach group with
holonomy group $H_{2^{d}, k}$ and holonomy representation

$$
\psi_{H_{2^{d}, k}}: H_{2^{d}, k} \rightarrow \operatorname{Aut}\left(\mathrm{P}_{\mathrm{n}} /\left[\mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}\right]\right)
$$

Theorem (Ocampo, Rodriguez-Nieto)

Let $k=2^{d} m$. Let $\chi_{H_{2^{d}, k}}$ be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\widetilde{H}_{2^{d}, k}$ and holonomy group $H_{2^{d}, k}=\mathbb{Z}_{2^{d}}$. Then
(a) $\chi_{H_{2^{d}, k}}$ is orientable if and only if one of n or m is even.
(D) The first homology group of the flat manifold $\chi_{H_{2^{d}, k}}$ is $H_{1}\left(\chi_{H_{2^{d}, k}}, \mathbb{Z}\right)=\mathbb{Z}^{|\mathcal{T}|} \oplus \mathbb{Z}_{2^{d-1}}$, where \mathcal{T} is the transversal of the action by conjugation of $H_{2^{d}, k}$ on the basis $\left\{A_{i, j} \mid 1 \leqslant i<j \leqslant n\right\}$ of $P_{n} /\left[P_{n}, P_{n}\right]$ satisying

$$
|\mathcal{T}|=\frac{k}{2^{d}}+\frac{k(2 n-k-2)}{2^{d+1}}+\frac{(n-k)(n-k-1)}{2}
$$

So, the first Betti number of the flat manifold $\chi_{H_{2^{d}, k}}$ is

$$
b_{1}\left(\chi_{H_{2^{d}, k}}\right)=\frac{\left(2^{d}-1\right) k^{2}-2 k n\left(2^{d}-1\right)+2^{d} n^{2}-2^{d} n}{2^{d+1}}
$$

Theorem (Ocampo, Rodriguez-Nieto)

(0) The flat manifold $\chi_{H_{2^{d}, k}}$ with fundamental group $\widetilde{H}_{2^{d}, k}$ admits Anosov diffeomorphism if and only if
(1) $n \geqslant 4$ in the cased $=1$,
(1) $n \geqslant 5$ in the case $d=2$,
(1) $n \geqslant 2^{d}$ in the case $d \geqslant 3$.
(0) Suppose that $\frac{n(n-1)}{2}$ is even, so $n=4 q$ or $n=4 q+1$, for some q. Let $d=1$, then the flat manifold $\chi_{H_{2 d, k}}$ is Kähler if and only if $n=4 q$ and m is even. Let $d 2$ then the flat manifold $\chi_{H_{2^{d}, k}}$ is Kähler if and only if one of the following conditions holds
(1) $n=4 q$
(©) $n=4 q+1$ and m is even.

Theorem (Ocampo)

Let G be a finite abelian group.
(a) There exists n and a Bieberbach subgroup Γ_{G} of $B_{n} /\left[P_{n}, P_{n}\right]$ of dimension $\frac{n(n-1)}{2}$ with holonomy group G.
(D) The finite abelian group G is the holonomy group of a flat manifold $\chi_{\Gamma_{G}}$ of dimension $\frac{n(n-1)}{2}$, where n is an integer for which G embeds in the symmetric group Σ_{n}, and the fundamental group of $\chi_{\Gamma_{G}}$ is isomorphic to a subgroup Γ_{G} of $B_{n} /\left[P_{n}, P_{n}\right]$.

Theorem (Ocampo)

Let $q=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}$ be an odd number, where p_{i} are distinct odd primes and $r_{i} \geqslant 1$ for all $1 \leqslant i \leqslant t$. Let $\chi_{\Gamma_{q}}$ be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\Gamma_{q} \subset B_{n} /\left[P_{n}, P_{n}\right]$ and holonomy group \mathbb{Z}_{q}. Then
(a) $\chi_{\Gamma_{q}}$ is orientable.
(b) The first Betti number of $\chi_{\Gamma_{q}}$ is $b_{1}\left(\chi_{\Gamma_{q}}\right)=\sum_{i=1}^{t} \frac{p_{i}^{r_{i}}-1}{2}+\frac{t(t-1)}{2}$.
(c) The flat manifold $\chi_{\Gamma_{q}}$ with fundamental group Γ_{q} admits Anosov diffeomorphism if and only if $q \neq 3$.

Theorem (Ocampo)

Let $q=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}$ be an odd number, where p_{i} are distinct odd primes and $r_{i} \geqslant 1$ for all $1 \leqslant i \leqslant t$. Let $\chi_{\Gamma_{q}}$ be the flat manifold of dimension $\frac{n(n-1)}{2}$ with fundamental group $\Gamma_{q} \subset B_{n} /\left[P_{n}, P_{n}\right]$ and holonomy group \mathbb{Z}_{q}. Then
(a) $\chi_{\Gamma_{q}}$ is orientable.
(D) The first Betti number of $\chi_{\Gamma_{q}}$ is $b_{1}\left(\chi_{\Gamma_{q}}\right)=\sum_{i=1}^{t} \frac{p_{i}^{r_{i}}-1}{2}+\frac{t(t-1)}{2}$.
(c) The flat manifold $\chi_{\Gamma_{q}}$ with fundamental group Γ_{q} admits Anosov diffeomorphism if and only if $q \neq 3$.

Theorem (Ocampo)

Let p be an odd prime and let $r \geqslant 1$. Let $\chi_{\Gamma_{p^{r}}}$ be the flat manifold of dimension $\frac{p^{r}\left(p^{r}-1\right)}{2}$ with fundamental group $\Gamma_{p^{r}} \subset B_{n} /\left[P_{n}, P_{n}\right]$ and holonomy group $\mathbb{Z}_{p^{r}}$. Then the flat manifold $\chi_{\Gamma_{p^{r}}}$ is Kähler if and only if there is an integer $u \geqslant 1$ such that $p^{r}=4 u+1$.

Surface braid group

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g \geqslant 1$ without boundary, and let $n \geqslant 2$. Then there exists a split extension of the form:

$$
1 \rightarrow \mathbb{Z}^{2 n g} \rightarrow B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right] \xrightarrow{\bar{s}} \Sigma_{n} \rightarrow 1
$$

The quotient $B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ is a crystallographic group of dimension $2 n g$, whose holonomy group is Σ_{n}.

Surface braid group

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g \geqslant 1$ without boundary, and let $n \geqslant 2$. Then there exists a split extension of the form:

$$
1 \rightarrow \mathbb{Z}^{2 n g} \rightarrow B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right] \xrightarrow{\bar{s}} \Sigma_{n} \rightarrow 1
$$

The quotient $B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ is a crystallographic group of dimension $2 n g$, whose holonomy group is Σ_{n}.

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let $M=\mathbb{S}^{2}$ or N_{g}, where $g \geqslant 1$. Then for all $n \geqslant 1$, the quotient $B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ is not a crystallographic group.

Surface braid group

Proposition (Goncalves, Guaschi, Ocampo, Pereiro)

Let M be an orientable, compact connected surface of genus $g \geqslant 1$ without boundary, and let $n \geqslant 1$. The quotient $B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ has the following presentation:
Generators: $\sigma_{1}, \cdots, \sigma_{n-1}, a_{i, r}, 1 \leqslant i \leqslant n, 1 \leqslant r \leqslant 2 g$. Relations:
(1) the Artin relations.
(2) $\sigma_{i}^{2}=1$, for all $i=1, \cdots, n-1$
(3) $\left[a_{i, r}, a_{j, s}\right]=1$, for all $i, j=1, \cdots, n$ and $r, s=1, \cdots, 2 g$.
(9) $\sigma_{i} a_{j, r} \sigma_{i}^{-1}=a_{\tau_{i}(j), r}$ for all $1 \leqslant i \leqslant n-1,1 \leqslant j$ and $1 \leqslant r \leqslant 2 g$.

Surface braid group

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n \geqslant 2$, and let M be an orientable surface of genus $g \geqslant 1$ without boundary. Let G_{n} be the cyclic subgroup $\langle(n, n-1, \cdots, 2,1)\rangle$ of Σ_{n}. Then there exists a subgroup $\tilde{G}_{n, g}$ of $\sigma^{-1}\left(G_{n}\right) /\left[P_{n}(M), P_{n}(M)\right] \subset B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ that is a Bieberbach group of dimension 2 ng whose holonomy group is G_{n}. Further, the centre $Z\left(\tilde{G}_{n, g}\right)$ of $\tilde{G}_{n, g}$ is a free Abelian group of rank $2 g$.

Surface braid group

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n \geqslant 2$, and let M be an orientable surface of genus $g \geqslant 1$ without boundary. Let G_{n} be the cyclic subgroup
$\langle(n, n-1, \cdots, 2,1)\rangle$ of Σ_{n}. Then there exists a subgroup $\tilde{G}_{n, g}$ of $\sigma^{-1}\left(G_{n}\right) /\left[P_{n}(M), P_{n}(M)\right] \subset B_{n}(M) /\left[P_{n}(M), P_{n}(M)\right]$ that is a Bieberbach group of dimension 2 ng whose holonomy group is G_{n}. Further, the centre $Z\left(\tilde{G}_{n, g}\right)$ of $\tilde{G}_{n, g}$ is a free Abelian group of rank $2 g$.

Theorem (Goncalves, Guaschi, Ocampo, Pereiro)

Let $n \geqslant 2$, and let $\chi_{n, g}$ be a $2 n g$-dimension flat manifold whose fundamental group is the Bieberbach group $\tilde{G}_{n, g}$. Then $\chi_{n, g}$ is an orientable Kahler manifold with first Betti number $2 g$ that admits Anosov diffeomorphisms.

complex braid groups

Theorem (Marin I.)

For every complex reflection group W, the group $B /[P, P]$ is crystallographic with holonomy group $W / Z(W)$ of dimension $N=|\mathcal{A}|$. The kernel of the projection map $B /[P, P] \rightarrow W / Z(W)$ is the subgroup P_{0} generated by $P^{a b}$ and $Z_{0}(B)$. We have $P_{0} \cong \mathbb{Z}^{N}$.

complex braid groups

Theorem (Marin I.)

For every complex reflection group W, the group $B /[P, P]$ is crystallographic with holonomy group $W / Z(W)$ of dimension $N=|\mathcal{A}|$. The kernel of the projection map $B /[P, P] \rightarrow W / Z(W)$ is the subgroup P_{0} generated by $P^{a b}$ and $Z_{0}(B)$. We have $P_{0} \cong \mathbb{Z}^{N}$.

Theorem (Marin I.)

For every complex reflection group W, the group $B /[P, P]$ has no element of order 2.

Crystallographic Groups and Bieberbach Groups

Orbit Braid Group

Orbit Braid Group

$G \curvearrowright M$
 Definition (orbit configuration space, Xicontencatle)

$$
F_{G}(M, n)=\left\{\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \in M^{n} \mid G\left(\mathbf{x}_{i}\right) \bigcap G\left(\mathbf{x}_{j}\right)=\emptyset \quad \text { if } \quad i \neq j\right\}
$$

Orbit Braid Group

$G \curvearrowright M$

Definition (orbit configuration space, Xicontencatle)

$$
F_{G}(M, n)=\left\{\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \in M^{n} \mid G\left(\mathbf{x}_{i}\right) \bigcap G\left(\mathbf{x}_{j}\right)=\emptyset \quad \text { if } \quad i \neq j\right\}
$$

Definition (Hao Li, Zhi Lü, Fengling Li) (orbit braid group)

$$
\begin{aligned}
B_{n}^{o r b}(M, G) & \cong \pi_{1}^{E}\left(F_{G}(M, n), \mathbf{x}, \mathbf{x}^{o r b}\right) \\
P_{n}^{o r b}(M, G) & \cong \pi_{1}^{E}\left(F_{G}(M, n), \mathbf{x}, G^{n}(\mathbf{x})\right) \\
B_{n}(M, G) & \cong \pi_{1}^{E}\left(F_{G}(M, n), \mathbf{x}, \Sigma_{n} \mathbf{x}\right) \\
P_{n}(M, G) & \cong \pi_{1}\left(F_{G}(M, n), \mathbf{x}\right)
\end{aligned}
$$

$\mathbb{Z}_{2} \curvearrowright \mathbb{C}$

$\mathbb{Z}_{2} \curvearrowright \mathbb{C}$

Theorem (Hao Li, Zhi Lü, Fengling Li)

$B_{n}^{\text {orb }}\left(\mathbb{C}, \mathbb{Z}_{2}\right)$ admits the following presentation:

* generators: $\sigma ; \sigma_{i}, i=1, \cdots, n-1$.
* relations:
(1) $\sigma^{2}=1$;
(2) $\sigma \sigma_{1} \sigma \sigma_{1}=\sigma_{1} \sigma \sigma_{1} \sigma$;
(3) $\sigma \sigma_{i}=\sigma_{i} \sigma, i=2, \cdots, n-1$;
(9) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j|>1$;
(6) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

$\mathbb{Z}_{2} \curvearrowright \mathbb{C}$

Theorem

$P_{n}^{\text {orb }}\left(\mathbb{C}, \mathbb{Z}_{2}\right)$ admits the following presentation:

* generators: $z_{k}, k=1, \cdots, n ; S_{i j}, 1 \leq i<j \leq n$.
* relations:
(1) $z_{k}^{2}=1, k=1, \cdots, n$;

$$
z_{k} S_{i j} z_{k}= \begin{cases}S_{i, j}, & k<i<j \text { or } \quad i<j<k ; \\ z_{j} S_{i j} z_{j}, & k=i<j ; \\ z_{j} S_{k j} z_{j} S_{k j}^{-1} S_{i j} S_{k j} z_{j} S_{k j}^{-1} z_{j}, & i<k<j ;\end{cases}
$$

(4) $z_{k} z_{s} z_{k}=z_{s} S_{k s} z_{s} S_{k s}^{-1} z_{s}^{-1}, k<s$;

$$
S_{r s}^{-1} S_{i j} S_{r s}= \begin{cases}S_{i j}, & r<s<i<j ; \\ S_{i j}, & i<r<s<j \\ S_{r j} S_{i j} S_{r j}^{-1}, & r<i=s<j ; \\ \left(S_{i j} S_{s j}\right) S_{i j}\left(S_{i j} S_{s j}\right)^{-1}, & r=i<s<j ; \\ \left(S_{r j} S_{s j} S_{r j}^{-1} S_{s j}^{-1}\right) S_{i j}\left(S_{r j} S_{s j} S_{r j}^{-1} S_{s j}^{-1}\right)^{-1}, & r<i<s<j\end{cases}
$$

Denote

$$
\begin{array}{ll}
P_{n}^{o r b}=P_{n}^{o r b}\left(\mathbb{C}, \mathbb{Z}_{2}\right) ; \quad P_{n}=P_{n}\left(\mathbb{C}, \mathbb{Z}_{2}\right) \\
B_{n}^{o r b}=B_{n}^{o r b}\left(\mathbb{C}, \mathbb{Z}_{2}\right) ; \quad B_{n}=B_{n}\left(\mathbb{C}, \mathbb{Z}_{2}\right)
\end{array}
$$

Denote

$$
\begin{array}{ll}
P_{n}^{o r b}=P_{n}^{o r b}\left(\mathbb{C}, \mathbb{Z}_{2}\right) ; \quad P_{n}=P_{n}\left(\mathbb{C}, \mathbb{Z}_{2}\right) \\
B_{n}^{\text {orb }}=B_{n}^{\text {orb }}\left(\mathbb{C}, \mathbb{Z}_{2}\right) ; \quad B_{n}=B_{n}\left(\mathbb{C}, \mathbb{Z}_{2}\right)
\end{array}
$$

Proposition

 $B_{n}^{\text {orb }} /\left[P_{n}^{\text {orb }}, P_{n}^{o r b}\right]$ is not a crystallographic group.
$B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ is a crystallographic group?

$B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ is a crystallographic group?

$$
1 \rightarrow P_{n} \rightarrow B_{n}^{\text {orb }} \xrightarrow{s}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} \rightarrow 1 .
$$

$B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ is a crystallographic group?

$$
1 \rightarrow P_{n} \rightarrow B_{n}^{\text {orb }} \xrightarrow{s}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} \rightarrow 1
$$

We obtain

$$
1 \rightarrow P_{n} /\left[P_{n}, P_{n}\right] \rightarrow B_{n}^{o r b} /\left[P_{n}, P_{n}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} \rightarrow 1 .
$$

$B_{n}^{o r b} /\left[P_{n}, P_{n}\right]$ is a crystallographic group?

$$
1 \rightarrow P_{n} \rightarrow B_{n}^{\text {orb }} \xrightarrow{s}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} \rightarrow 1 .
$$

We obtain

$$
1 \rightarrow P_{n} /\left[P_{n}, P_{n}\right] \rightarrow B_{n}^{o r b} /\left[P_{n}, P_{n}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} \rightarrow 1 .
$$

Remark

$\Theta: \mathbb{Z}_{2}^{n} \rtimes \Sigma_{n} \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n(n-1)}\right)$ induced by the conjugation is not faithful.

Lemma

Let $E=s^{-1}((-1, \cdots,-1), 1)$. Then $\left(E \bigcup P_{n}\right) /\left[P_{n}, P_{n}\right] \cong \mathbb{Z}^{n(n-1)}$ is a normal subgroup of $B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ and it is generated by:

$$
\begin{aligned}
& \omega=\sigma\left(\sigma_{1} \sigma \sigma_{1}\right) \cdots\left(\sigma_{n-1} \cdots \sigma_{1} \sigma \sigma_{1} \cdots \sigma_{n-1}\right) \\
& S_{n-1, n}, S_{i, j}, 1 \leqslant|i|<n-1,1<j \leqslant n,|i|<j .
\end{aligned}
$$

Lemma

Let $E=s^{-1}((-1, \cdots,-1), 1)$. Then
$\left(E \bigcup P_{n}\right) /\left[P_{n}, P_{n}\right] \cong \mathbb{Z}^{n(n-1)}$ is a normal subgroup of $B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ and it is generated by:

$$
\begin{aligned}
& \omega=\sigma\left(\sigma_{1} \sigma \sigma_{1}\right) \cdots\left(\sigma_{n-1} \cdots \sigma_{1} \sigma \sigma_{1} \cdots \sigma_{n-1}\right) \\
& S_{n-1, n}, S_{i, j}, 1 \leqslant|i|<n-1,1<j \leqslant n,|i|<j .
\end{aligned}
$$

Proposition

Let $n \geqslant 3$ and $F=Z\left(\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n}\right)=\langle((-1, \cdots,-1), 1)\rangle$. Then there is a short exact sequence:

$$
1 \rightarrow \mathbb{Z}^{n(n-1)} \rightarrow B_{n}^{o r b} /\left[P_{n}, P_{n}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} / F \rightarrow 1
$$

and $B_{n}^{\text {orb }} /\left[P_{n}, P_{n}\right]$ is a crystallographic group.

Theorem

Let $n \geqslant 3$. And let $\vartheta \in \mathbb{Z}_{2}^{n} \rtimes \Sigma_{n} / F$ satisfy the following conditions: * ϑ is of order 2

* ϑ is not conjugate to $((-1,1, \cdots, 1), 1)$.

Then for $H=<\vartheta>, \widetilde{H}=\sigma^{-1}(H) /\left[P_{n}, P_{n}\right]$ is a Bieberbach group of dimension $n(n-1)$ with the holonomy group H.

Theorem

Let $n \geqslant 3$. And let $\vartheta \in \mathbb{Z}_{2}^{n} \rtimes \Sigma_{n} / F$ satisfy the following conditions:

* ϑ is of order 2
* ϑ is not conjugate to $((-1,1, \cdots, 1), 1)$.

Then for $H=<\vartheta>, \widetilde{H}=\sigma^{-1}(H) /\left[P_{n}, P_{n}\right]$ is a Bieberbach group of dimension $n(n-1)$ with the holonomy group H.

Corollary

$B_{n}^{o r b} /\left[P_{n}, P_{n}\right]$ has no elements of order $2 k, k \geqslant 2$.

Theorem

Let $n \geqslant 3$. And let $\vartheta \in \mathbb{Z}_{2}^{n} \rtimes \Sigma_{n} / F$ satisfy the following conditions:

* ϑ is of order 2
* ϑ is not conjugate to $((-1,1, \cdots, 1), 1)$.

Then for $H=<\vartheta>, \widetilde{H}=\sigma^{-1}(H) /\left[P_{n}, P_{n}\right]$ is a Bieberbach group of dimension $n(n-1)$ with the holonomy group H.

Corollary

$B_{n}^{o r b} /\left[P_{n}, P_{n}\right]$ has no elements of order $2 k, k \geqslant 2$.

Theorem

Let $n \geqslant 3$ and let m be odd integers greater than or equal to 3 . Then $B_{n}^{o r b} /\left[P_{n}, P_{n}\right]$ possesses infinitely many elements of order m.

Consider the cyclic subgroup $G \subset\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} / F$:

$$
\begin{aligned}
& G=\left\langle\mu=\left(\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right), \theta\right)\right\rangle, \\
& \theta=\left(2^{d} \cdots 1\right) \cdots\left(m 2^{d} \cdots(m-1) 2^{d}+1\right),
\end{aligned}
$$

where $d \geqslant 1,0 \leqslant m 2^{d} \leqslant n$.

Consider the cyclic subgroup $G \subset\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} / F$:

$$
\begin{aligned}
& G=\left\langle\mu=\left(\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right), \theta\right)\right\rangle \\
& \theta=\left(2^{d} \cdots 1\right) \cdots\left(m 2^{d} \cdots(m-1) 2^{d}+1\right)
\end{aligned}
$$

where $d \geqslant 1,0 \leqslant m 2^{d} \leqslant n$.

$$
\text { order } \mu=2^{u}, u \geqslant 1 \text {, }
$$

satisfying $u=d$ or $=2 d$.

Consider the cyclic subgroup $G \subset\left(\mathbb{Z}_{2}\right)^{n} \rtimes \Sigma_{n} / F$:

$$
\begin{aligned}
& G=\left\langle\mu=\left(\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right), \theta\right)\right\rangle \\
& \theta=\left(2^{d} \cdots 1\right) \cdots\left(m 2^{d} \cdots(m-1) 2^{d}+1\right),
\end{aligned}
$$

where $d \geqslant 1,0 \leqslant m 2^{d} \leqslant n$.

$$
\text { order } \mu=2^{u}, u \geqslant 1 \text {, }
$$

satisfying $u=d$ or $=2 d$.
M is orientable?
M has an Ansov structure?

Crystallographic Groups and Bieberbach Groups

Constructing Bieberbach groups with non Abelian holonomy groups

Constructing Bieberbach groups with non Abelian holonomy groups

For the semi-direct product $\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1}, r \geqslant 2$, we have
$1 \rightarrow \mathbb{Z}^{\left(2^{r}+1\right)\left(2^{r}+2\right)} \rightarrow B_{2^{r}+1}^{o r b} /\left[P_{2^{r}+1}, P_{2^{r}+1}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1} \rightarrow 1$.

Constructing Bieberbach groups with non Abelian holonomy groups

For the semi-direct product $\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1}, r \geqslant 2$, we have

$$
1 \rightarrow \mathbb{Z}^{\left(2^{r}+1\right)\left(2^{r}+2\right)} \rightarrow B_{2^{r}+1}^{\text {orb }} /\left[P_{2^{r}+1}, P_{2^{r}+1}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1} \rightarrow 1 .
$$

Consider $\left(\mathbb{Z}_{2}\right)^{2^{r}} \rtimes \mathbb{Z}_{2^{r}} \subset\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1}$ generated by

$$
\begin{aligned}
& \bar{\omega}_{i}=((1,1, \cdots, 1,-1,1, \cdots, 1), 1), \quad 1 \leqslant i \leqslant 2^{r}, \\
& \bar{\alpha}=\left((1, \cdots, 1),\left(2, \cdots, 2^{r}+1\right)\right) .
\end{aligned}
$$

Constructing Bieberbach groups with non Abelian holonomy groups

For the semi-direct product $\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1}, r \geqslant 2$, we have
$1 \rightarrow \mathbb{Z}^{\left(2^{r}+1\right)\left(2^{r}+2\right)} \rightarrow B_{2^{r}+1}^{\text {orb }} /\left[P_{2^{r}+1}, P_{2^{r}+1}\right] \xrightarrow{\bar{s}}\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1} \rightarrow 1$.
Consider $\left(\mathbb{Z}_{2}\right)^{2^{r}} \rtimes \mathbb{Z}_{2^{r}} \subset\left(\mathbb{Z}_{2}\right)^{2^{r}+1} \rtimes \Sigma_{2^{r}+1}$ generated by

$$
\begin{aligned}
& \bar{\omega}_{i}=((1,1, \cdots, 1,-1,1, \cdots, 1), 1), \quad 1 \leqslant i \leqslant 2^{r}, \\
& \bar{\alpha}=\left((1, \cdots, 1),\left(2, \cdots, 2^{r}+1\right)\right) .
\end{aligned}
$$

Let $F=\langle((-1, \cdots,-1), 1)\rangle \subset\left(\mathbb{Z}_{2}\right)^{2^{r}} \rtimes \mathbb{Z}_{2^{r}} .\left(\mathbb{Z}_{2}\right)^{2^{r}} \rtimes \mathbb{Z}_{2^{r}} / F$ is non Abelian.

The subgroup $\Gamma \subset B_{2^{r}+1}^{\text {orb }} /\left[P_{2^{r}+1}, P_{2^{r}+1}\right]$ is generated by $X_{1} \bigcup X_{2}$, where

$$
\begin{aligned}
& X_{1}=\left\{\omega_{i}, 1 \leqslant i \leqslant 2^{r}, \alpha=\sigma_{2^{r}} \cdots \sigma_{2}\right\} \\
& X_{2}=\left\{S_{1,2} S_{-1,2}, \cdots, S_{1,2^{r}+1} S_{-1,2^{r}+1}, S_{i, j}, 2 \leqslant|i|<j \leqslant 2^{r}+1\right\} .
\end{aligned}
$$

The subgroup $\Gamma \subset B_{2^{r}+1}^{o r b} /\left[P_{2^{r}+1}, P_{2^{r}+1}\right]$ is generated by $X_{1} \bigcup X_{2}$, where
$X_{1}=\left\{\omega_{i}, 1 \leqslant i \leqslant 2^{r}, \alpha=\sigma_{2^{r}} \cdots \sigma_{2}\right\}$,
$X_{2}=\left\{S_{1,2} S_{-1,2}, \cdots, S_{1,2^{r}+1} S_{-1,2^{r}+1}, S_{i, j}, 2 \leqslant|i|<j \leqslant 2^{r}+1\right\}$.
Γ is a Bieberbach group. The holonomy group is the non Abelian group $\left(\mathbb{Z}_{2}\right)^{2^{r}} \rtimes \mathbb{Z}_{2^{r}} / F$.

Definition

An almost-crystallographic group is a discrete subgroup Π of the semi-direct product $N \rtimes C$ that acts properly and discontinuously on N such that N / Π is compact. If in addition Π is torsion free then Π is called an almost-Bieberbach group.

Definition

An almost-crystallographic group is a discrete subgroup Π of the semi-direct product $N \rtimes C$ that acts properly and discontinuously on N such that N / Π is compact. If in addition Π is torsion free then Π is called an almost-Bieberbach group.

Infra-nilmanifolds are determined completely by their fundamental groups that are almost-Bieberbach groups.

Theorem (Gasior, Petrosyan, Szczepa)

Let M be an almost-flat manifold with holonomy group F. Then M is orientable if and only if det $=1$. Suppose M is orientable and a 2 -Sylow subgroup of F is cyclic, i.e. $C_{2^{t}}=\left\langle q \mid q^{2^{t}}=1\right\rangle$ for some $t \geqslant 0$. Let $\pi_{a b}$ denote the abelianisation of the fundamental group π of M.
(a) If $\frac{1}{2}\left(n-\operatorname{Trace}\left[\theta(q)^{2^{t-1}}\right]\right) \not \equiv 2(\bmod 4)$, then M has a Spin structure.
(1) If $\frac{1}{2}\left(n-\operatorname{Trace}\left[\theta(q)^{2^{t-1}}\right]\right) \equiv 2(\bmod 4)$, then M has a Spin structure if and only if the epimorphism $q_{*}: \pi_{a b} \rightarrow C_{2^{t}}$ resulting from projection $q: \pi \rightarrow C_{2^{t}}$ factors through a cyclic group of order 2^{t+1}.

Theorem (Gonalves, Guaschi, Ocampo)

Let $n, k \geqslant 3 . B_{n} / \Gamma_{k}\left(P_{n}\right)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)
 Let $n, k \geqslant 3 . B_{n} / \Gamma_{k}\left(P_{n}\right)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)

For $n, k \geqslant 3, B_{n} / \Gamma_{k}\left(P_{n}\right)$ has no elements order 2 or 3 .

Theorem (Gonalves, Guaschi, Ocampo)

Let $n, k \geqslant 3 . B_{n} / \Gamma_{k}\left(P_{n}\right)$ is an almost-crystallographic group.

Theorem (Gonalves, Guaschi, Ocampo)

For $n, k \geqslant 3, B_{n} / \Gamma_{k}\left(P_{n}\right)$ has no elements order 2 or 3 .

Theorem
 $B_{n}^{\text {orb }} / \Gamma_{k}\left(P_{n}\right)$ is an almost-crystallographic group.

Thank you!

